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Abstrat

Crude Monte-Carlo or quasi Monte-Carlo methods are well suited to haraterize events of

whih assoiated probabilities are not too low with respet to the simulation budget. For very

seldom observed events, suh as the ollision probability between two airraft in airspae, these

approahes do not lead to aurate results. Indeed, the number of available samples is often

insu�ient to estimate suh low probabilities (at least 10
6
samples are needed to estimate

a probability of order 10
−4

with 10% relative error with Monte-Carlo simulations). In this

artile,one reviewed di�erent appropriate tehniques to estimate rare event probabilities that

require a fewer number of samples. These methods an be divided into four main ategories:

parameterization tehniques of probability density funtion tails, simulation tehniques suh as

importane sampling or importane splitting, geometri methods to approximate input failure

spae and �nally, surrogate modelling. Eah tehnique is detailed, its advantages and drawbaks

are desribed and a synthesis that aims at giving some lues to the following question is given:

"whih tehnique to use for whih problem?".

Key words: Monte-Carlo methods, Rare event, Input-output model, Simulation

∗
orresponding author

Email addresses: jerome.morio�onera.fr (Jér�me Morio), mathieu.balesdent�onera.fr

(Mathieu Balesdent), damien.jaquemart�onera.fr (Damien Jaquemart),

hristelle.verge�onera.fr (Christelle Vergé).

1
Onera - The Frenh Aerospae Lab, BP 74025, 31055 Toulouse Cedex, Frane Tel.: +33 5 62 25 26 63

2
Onera - The Frenh Aerospae Lab, BP 80100, 91123 Palaiseau Cedex, Frane

3
INRIA Rennes, ASPI Appliations of interating partile systems to statistis, ampus de Beaulieu,

35042 Rennes, Frane

4
INRIA Bordeaux, 351 ours de la Libération, 33405 Talene Cedex, Frane

5
CNES, 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, Frane



1. Introdution

Rare event estimation has beome a large area of researh in the reliability engineering

and system safety domains. A signi�ant number of methods has been proposed to redue

the omputation burden for the estimation of rare events from sampling to extreme value

theory. However it is often di�ult to determine whih algorithm is the most adapted to

a given problem. Moreover, the existing survey artiles on rare events are often foused

on spei� algorithms [1�3℄. The novelties of this artile are thus to provide a broad view

of the urrent available tehniques to estimate rare event probabilities desribed with

a uni�ed notation and to provide some lues to answer this question: whih rare event

tehnique is the most adapted to a given situation?

The general problem onsidered in this artile is analysed in a �rst setion and then all

the di�erent methods are desribed separately. Their advantages and drawbaks are also

given. Finally, a synthesis helps the reader to determine the most appropriate method to

a given rare event estimation problem.

Let us onsider a d-dimensional random vetor X with a probability density funtion

(PDF) h0, φ a ontinuous positive salar funtion φ : Rd → R and S a threshold.

The di�erent omponents of X will be denoted X = (X1, X2, ..., Xd) in the following.

The funtion φ is stati, i.e., does not depend on time, and represents for instane an

input-output model. This kind of model is notably used in numerous engineering appli-

ations [4�9℄. We assume that the output Y = φ(X) is a salar random variable. In this

artile, we propose to review di�erent algorithms that an be e�ient to estimate the

probability P = P (φ(X) > S) when this quantity is rare relatively to the available sim-

ulation budget N , that is when P < 1
N . For the sake of oniseness, the issue of extreme

quantile estimation is not addressed even if the vast majority of the methods that are

presented in the paper an be adapted to this spei� ase. The ase of dynami systems

modeled with Markov hains is also not onsidered in this paper. Spei� algorithm ex-

tensions for large omplex systems modelled by a network or a oherent fault tree are

ompletely detailed in [10℄ and will not be muh developed here. It orresponds to the

ase where the inputs X i
, i = 1, ..., d follow a Bernoulli distribution and the output is

equivalent to an indiator funtion.

2. Monte-Carlo methods

A simple way to estimate a probability is to onsider rude Monte-Carlo (CMC) [11�

16℄. For that purpose, one generates N independent and identially distributed (i.i.d.)

samples X1, ...,XN from the PDF h0 and omputes their outputs with the funtion φ:

φ(X1), ..., φ(XN ). The probability P (φ(X) > S), also alled failure probability, is then

estimated with

P̂CMC =
1

N

N∑

i=1

1φ(Xi)>S, (1)

where 1φ(Xi)>S is equal to 1 if φ(Xi) > S and 0 otherwise. This estimation onverges to

the real probability as shows the law of large numbers [13℄. The positive and negative as-

pets of CMC are desribed in Table 1. A possible indiator of the estimation e�ieny is

notably its relative deviation. The relative deviation or relative error RE of an estimator
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Advantages of CMC Drawbaks of CMC

Simple implementation Slow onvergene

Information on φ not needed Signi�ant simulation budget for rare events

No bias

Table 1

Advantages and drawbaks of CMC methods.

P̂ of P is given by the following ratio:

RE(P̂ ) =
σP̂

E(P̂ )
, (2)

with σP̂ the standard deviation of P̂ and E the mathematial expetation. The relative

error is said bounded when RE(P̂ ) remains bounded when P −→ 0 [17,18℄. In that ase,

the number of samples needed to get a spei�ed relative error is bounded whatever the

rarity of φ(X) > S. The logarithmi e�ieny LE an also be de�ned for an unbiased

estimator P̂ with [17,18℄,

LE(P̂ ) = lim
P→0

log(E(P̂ 2))

log(P )
= 2. (3)

Logarithmi e�ieny is a neessary but not su�ient ondition for bounded relative

error. Charaterizing the rare event probability estimate with these onepts is very

important even if they are often di�ult to verify in pratie.

Sine P̂CMC
is unbiased, the relative error of the estimator P̂CMC

is given by the ratio

σ
P̂CMC

P with σP̂CMC , the standard deviation of P̂CMC
. Knowing the true probability P

of the event (φ(X) > S), one has [11,19℄

σP̂CMC

P
=

1√
N

√
P − P 2

P
. (4)

Considering rare event probability estimation, that is when P takes low values, one

obtains

lim
P→0

σP̂CMC

P
= lim

P→0

1√
NP

= +∞. (5)

The relative deviation is onsequently unbounded. For instane, to estimate a probability

P of order 10−4
with a 10% relative deviation, at least 106 samples are required. The

simulation budget is thus an issue when the omputation time required to obtain a sample

φ(Xi) is not negligible. CMC is thus not adapted to rare event estimation and a wide

olletion of statisti and simulation methods has been developed. The following setions

desribe the di�erent available alternatives to CMC to improve probability estimations,

i.e., to redue the number of required samples, inrease the estimation auray, and

thus derease RE(P̂ ).

3. Statistial tehniques

Statistial tehniques enable to derive a probability estimate and assoiated on�dene

intervals with a �xed set of samples φ(X1), ..., φ(XN ). The main statistial approahes,

extreme value theory and large deviation theory, model the behaviour of the PDF tails.

Let us review their theoretial founding.
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3.1. Extreme value theory

Extreme value theory (EVT) [20,21℄ haraterizes the distribution tails of a random

variable, based on a reasonable number of observations. Thanks to its general applia-

tive onditions, this theory has been widely used for desribing extreme meteorologial

phenomena with appliations suh as hydrology [22℄, snowfall [23℄, but also in �nane

and insurane [20,24℄, and engineering [25℄.

3.1.1. Law of sample maxima

EVT is notably very useful when one has to work with only a �xed set of data. One

onsequently assumes in the following that a �nite set of i.i.d. samples φ(X1), ..., φ(XN )
of the output is available, but also that one annot generate new samples of φ(X). The
assoiated ordered sample set is de�ned with φ(X(1)) ≤ φ(X(2)) ≤ ... ≤ φ(X(N)). EVT
enables to estimate for some threshold S the probability P (φ(X) > S).
The founder theorem of EVT [20,26,27℄ is that, under some onditions, the maxima of

an i.i.d. sequene onverge to a generalized extreme value (GEV) distribution Gξ, whih

admits the following umulative distribution funtion (CDF)

Gξ(x) =





exp(− exp(−x)), for ξ = 0,

exp
(
−(1 + ξx)−

1
ξ

)
, for ξ 6= 0.

(6)

The set of GEV distributions is omposed of three distint types, haraterized by ξ =
0, ξ > 0 and ξ < 0 that orrespond to the Gumbel, Fréhet and Weibull distributions

respetively. Let us de�ne G, the CDF of the i.i.d. samples φ(X1), ..., φ(XN ).
Theorem 3.1 Suppose there exist aN and bN , with aN > 0 suh that, for all y ∈ R

P

(
φ(X(N))− bN

aN
≤ y

)
= GN (aNy + bN )

N→∞−→ G(y),

where G is a non degenerate CDF, then G is a GEV distribution Gξ. In this ase, one

denotes G ∈MDA(ξ) (MDA=maximum domain of attration).

The sequenes aN and bN are omputed in [20℄ for most well-known PDF. An approxi-

mation of P (φ(X) > S) [20℄ for large values of S and N an also be obtained:

P̂EV T (φ(X) > S) ≈ 1

N

(
1 + ξ

(
S − bN

aN

))− 1
ξ

. (7)

The GEV approah is notably used when only samples of maxima are available. In that

ase, the di�erent parameters of the GEV distribution are obtained by determining max-

imum likelihood or probability weighted moment estimators. When samples of maxima

are not available, it is required to group the samples φ(X1), ..., φ(XN ) into bloks and �t

the GEV using the maximum of eah blok (blok maxima method). The main di�ulty

is to determine an e�ient sample size for the di�erent bloks.

3.1.2. Peak over threshold approah

Instead of grouping the samples into blok maxima, POT onsiders the largest samples

φ(Xi) to estimate the probability P (φ(X) > S).
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There are two equivalent ways of analyzing extremes with POT. The most ommon is

to haraterize the distribution of samples above a threshold u, whih is given by the

generalized Pareto CDF. An alternative is to use a Poisson point proess whih ounts the

number of threshold exeedanes. This approah is not developed in this artile, but one

an refer to [27℄ for more details. The �rst paper linking the EVT with the distribution

of a threshold exeedane is [28℄. Later, De Haan obtains a result of the same type, with

a slightly simpli�ed onlusion, using slow varying funtions [29℄. The following theorem

[20℄ an be then obtained:

Theorem 3.2 Let us assume that the distribution funtion G of i.i.d. samples φ(X1),...,
φ(XN ) is ontinuous. Set y∗ = sup{y, G(y) < 1} = inf{y, G(y) = 1}. Then, the two fol-

lowing assertions are equivalent

(i) G ∈MDA(ξ),
(ii) there exists a positive and measurable funtion u 7→ β(u) suh that

lim
u7→y∗

sup
0<y<y∗−u

|Gu(y)−Hξ,β(u)(y)| = 0,

where Gu(y) = P (φ(X) − u ≤ y|φ(X) > u), and Hξ,β(u) is the CDF of a generalized

Pareto distribution (GPD) with shape parameter ξ and sale parameter β(u).
The expression of the GPD distribution funtion is the following

Hξ,β(x) =





1− exp
(
− x

β

)
, for ξ = 0,

1−
(
1 + ξx

β

)−1/ξ

, for ξ 6= 0.

(8)

This theorem is in fat useful to estimate a probability of exeedane. Indeed, the

probability P (φ(X) > S) an be rewritten as

P (φ(X) > S) = P (φ(X) > S|φ(X) > u)P (φ(X) > u). (9)

for S > u. A natural estimate of P (φ(X) > u) is given by

P̂CMC(φ(X) > u) =
1

N

N∑

i=1

1φ(Xi)>u. (10)

With the Theorem 3.2 and for signi�ant value of u, one obtains

P̂ (φ(X) > S|φ(X) > u) = 1−Hξ,β(u)(S − u). (11)

The estimate of P (φ(X) > S) is then built with

P̂POT (φ(X) > S) =

(
1

N

N∑

i=1

1φ(Xi)>u

)
×
(
1−Hξ,β(u)(S − u)

)
. (12)

The mathematial justi�ation of Eq. 11 and Eq. 12 is notably disussed in [21℄, [30℄, [31℄,

or [32℄ for a given set of samples to determine if this set is suitable for the appliation

of POT. Three parameters have to be determined in the POT probability estimate of

Eq. 12: the threshold u and the ouple (ξ, β(u)). The hoie of u is very in�uent sine

it determines the samples that are used in the estimation of (ξ, β(u)). Indeed, a high

threshold leads to onsider only a small number of samples in the estimation of (ξ, β(u))
and thus their estimate an be then spoiled by a large variane whereas a low threshold
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Advantages of EVT Drawbaks of EVT

No need to resample Complex estimation of the adequate parameters

(u, ξ, β(u)) or of the blok maxima size.

Can be applied with a relatively low value of N Less e�ient than simulation

methods when resampling is possible

Table 2

Advantages and drawbaks of EVT.

introdues a bias in the probability estimate [33℄. There are several methods to determine

a valuable threshold u knowing the samples. The most well-known ones are the Hill plot

and the mean exess plot [20℄. These methods are nevertheless very empirial sine they

are based on graphial interpretation. It is often neessary in pratie to ompare the

estimates of u given by the di�erent methods. One the value of u is set, the parameters

(ξ, β(u)) are often estimated by maximum likelihood [34℄ or more oasionally by the

method of moments [35℄. The estimate P̂POT (φ(X) > S) given in Eq. 12 for S > u is

then ompletely de�ned. A review of these di�erent methods an be found in [36℄. It is

not possible, to our knowledge, to ontrol the probability error estimate in EVT. Never-

theless, the use of boostrap on samples φ(X1), ..., φ(XN ) [37℄ an give some information

on the e�ieny of EVT.

3.1.3. Blok maxima versus POT

The POTmethod takes into aount all relevant high samples φ(X1), ..., φ(XN ) whereas
the blok maxima method an miss some of these high samples and, on the same time,

onsider some lower samples in its probability estimation. Thus, POT seems to be more

appropriate for the design of sample PDF tail. Nevertheless, the blok maxima method

is preferable when the available samples are not exatly i.i.d. or when only samples of

maxima are available. For instane, the samples of a monthly river maximum height

orrespond to this situation. Finally, the tuning of blok maxima size turns out to be

easier than the tuning of POT threshold u in many situations [38℄. The advantages and

drawbaks of EVT are presented in Table 2.

3.2. Large deviation theory

The large deviation theory (LDT) haraterizes the asymptoti behaviour of PDF se-

quene tails [39�41℄ and more preisely, it analyses how a PDF sequene tail deviates from

its typial behaviour desribed by the law of large numbers. LDT an be used to evaluate

the onvergene of rare event algorithms [42�46℄. Let us de�neHN = J(φ(X1), ..., φ(XN ))
a random variable indexed by N with J a ontinuous salar funtion, H its mathemat-

ial expetation and VN = HN − H . One says that VN satis�es the priniple of large

deviations with a ontinuous rate funtion I if the following limit exists:

lim
N→∞

1

N
ln[P (| VN |> γ)] = −I(γ). (13)

The existene of this limit implies for a large value of N that

P (| VN |> γ) ≈ exp (−NI(γ)) . (14)
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The probability deays exponentially as N grows to in�nity, at a rate depending on

γ. This approximation is a well-known result of LDT. If the limit does not exist, then

P (| VN |> γ) has a too singular behaviour or dereases faster than exponential deay. If

the limit is equal to 0, then the tail P (| VN |> γ) dereases with N slower than exp (−Na)
with a > 0. The omputation of the rate funtion I is not obvious but an be obtained

through the Gärtner-Ellis theorem [47℄. Let us de�ne the funtion λ(θ) of VN with

λ(θ) = lim
N→∞

1

N
ln [E (exp (NθVN ))] , (15)

with θ ∈ R.

Theorem 3.3 Gärtner-Ellis theorem If the funtion λ(θ) of the variable VN exists

and is di�erentiable for all θ ∈ R, then VN satis�es the priniple of large deviations and

I(γ) is given by

I(γ) = sup
θ∈R

[θγ − λ(θ)] .

In the spei� ase of a salar funtion J , one an derive the Cramér theorem from

Gärtner-Ellis theorem [47℄.

Theorem 3.4 Cramér theorem If VN = 1
N

∑N
i=1 J(φ(Xi)) where the random vari-

ables J(φ(Xi)) are i.i.d, the rate funtion is given by

I(γ) = sup
θ∈R

[θγ − λ(θ)] ,

with

λ(θ) = ln [E (exp (θJ(φ(X))))] .

This theorem only holds for light tail distributions.

Let us onsider the Monte-Carlo probability estimate given in Eq. 1. In that ase, one

has J(φ(.)) = 1φ(.). The random variable J(φ(Xi)) follows a Bernoulli distribution of

mean P . The sequene VN is de�ned with

VN =

(
1

N

N∑

i=1

1φ(Xi)>S

)
− P. (16)

The funtions λ(θ) and I(γ) an be derived for some well-known PDF. In the ase of

Bernoulli distributions of mean P , one has

λ(θ) = P exp(θ) + 1− P, (17)

and

I(γ) = γ ln
( γ
P

)
+ (1 − γ) ln

(
1− γ

1− P

)
. (18)

One an then obtain the onvergene speed of the Monte-Carlo probability estimate in

funtion of the number of samples with the following equation

lim
N→∞

1

N
ln[P (| VN |> γ)] = −I(γ) = −γ ln

( γ
P

)
− (1 − γ) ln

(
1− γ

1− P

)
. (19)

The quantity I(γ) orresponds to the relative entropy (Kullbak-Leibler divergene) of

a oin toss with bias γ with respet to true value P . In a lot of situations, the large

deviation rate funtion is the Kullbak-Leibler divergene [47℄.

7



LDT annot in fat be applied diretly to determine a rare event probability in a realisti

pratial ase where the density of Y is not known a priori. LDT an be useful to analyze

the deviation of a probability estimate, notably if the probability estimate is a sum of

random variables as shows Eq. 19. for the CMC estimate. Spei� surveys on LDT an

be found in [3,48℄.

4. Importane sampling

4.1. Priniple of importane sampling

The objetive of importane sampling (IS) is to redue the variane of the Monte-Carlo

estimator P̂CMC
[17,19,49�53℄. The main idea is to generate the samplesX1, ...,XN with

an auxiliary PDF h that is able to generate more samples suh that φ(X) > S than PDF

h0 and then to introdue a weight in the probability estimate to take into aount the

hange in the PDF generating the samples. The IS probability estimate P̂ IS
is then given

with

P̂ IS =
1

N

N∑

i=1

1φ(Xi)>S
h0(Xi)

h(Xi)
. (20)

The term P̂ IS
is an unbiased estimate of the probability P . Its variane is given by the

following equation:

V ar
(
P̂ IS

)
=

V ar
(
1φ(X)>Sw(X)

)

N
, (21)

with w(X) = h0(X)
h(X) . The term w(X) is often alled the likelihood funtion in the impor-

tane sampling literature. The variane of P̂ IS
strongly depends on the hoie of h. If h is

well-hosen, the IS estimate has then a muh smaller variane than Monte-Carlo estimate

and onversely. The objetive of IS is to derease the estimation variane and one an

thus de�ne an optimal IS auxiliary density that minimizes the variane V ar
(
P̂ IS

)
. Sine

varianes are non negative quantities, the optimal auxiliary density hopt is determined

by anelling the variane in Eq. 21. It is well-known that hopt is then de�ned with [54℄

hopt(X) =
1φ(X)>Sh0(X)

P
. (22)

The optimal auxiliary density hopt depends unfortunately on the probability P that

one tries to estimate and is unusable in pratie. Nevertheless, hopt an be useful to

determine an e�ient sampling PDF. Indeed, a valuable sampling auxiliary PDF h will

be lose to the PDF hopt relative to a given riterion. An optimization of the auxiliary

sampling PDF is then neessary. In some spei� ases or spei� funtions φ, importane

sampling probability estimate an have a bounded relative error as demonstrated in

[55,56℄ or logarithmi e�ieny in [57,58℄.

Spei� surveys on IS have been proposed suh as in [1,59℄, and thus, the omplete list

of possible importane algorithms will not be desribed for the sake of oniseness. We

only review the main algorithms in the next setions.
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4.2. Cross entropy optimization of importane sampling auxiliary density

Let us de�ne hλ, a family of PDF indexed by a parameter λ ∈ ∆ where ∆ is the

multidimensional spae of PDF parameters. The parameter λ is, for instane, the mean

and the ovariane matrix in the ase of Gaussian densities. The objetive of IS with ross

entropy (CE) is to determine the parameter λopt that minimizes the Kullbak-Leibler

divergene between hλopt
and hopt [60,61℄. The value of λopt is thus obtained with

λopt = argmin
λ∈∆

{D(hopt, hλ)} , (23)

where D is the Kullbak-Leibler divergene de�ned between PDF p and PDF q by

D(q, p) =

∫

Rd

q(x) ln(q(x))dx −
∫

Rd

q(x) ln(p(x))dx. (24)

Determining the parameter λopt with Eq. 23 is not obvious sine it depends on the

unknown PDF hopt. In fat, it an be shown [60℄ that Eq. 23 is equivalent to the following

one

λopt = argmax
λ∈∆

{
E
[
1φ(X)>S ln (hλ(X))

]}
. (25)

In pratie, one does not fous diretly on Eq. 25 sine it requires the knowledge of some

samples of X so that φ(X) > S. In most realisti appliations, it is not the ase. Thus,

one proeeds iteratively to estimate λopt with an inreasing sequene of thresholds

γ0 < γ1 < γ2 < ... < γk < ... ≤ S, (26)

hosen adaptively using quantile de�nition. At the iteration k, the value λk−1 is available

and one determines in pratie

λk = argmax
λ∈∆

1

N

N∑

i=1

1φ(Xi)>γk

h0(Xi)

hλk−1
(Xi)

ln(hλ(Xi)), (27)

where the samples X1, ...,XN are generated with hλk−1
. The probability P̂CE

is then

estimated with IS at the last iteration. The ross entropy optimization algorithm for the

IS density is desribed more preisely by the following sheme

(i) k = 1, de�ne hλ0 = h0 and set ρ ∈]0, 1[.
(ii) Generate the population X1, ...,XN aording to the PDF hλk−1

and apply the

funtion φ in order to have Y1 = φ(X1), ..., YN = φ(XN ).
(iii) Compute γk = min(S, Yρ) where Yρ denotes the empirial ρ-quantile of Y1, ..., YN .

(iv) Optimize the parameters of the auxiliary PDF family with

λk = argmax
λ∈∆

{
1

N

N∑

i=1

[
1φ(Xi)>γk

h0(Xi)

hλk−1
(Xi)

ln [hλ(Xi)]

]}
.

(v) If γk < S, k ← k + 1, bak to the step (ii).

(vi) Estimate the probability P̂CE(φ(X > S)) = 1
N

N∑

i=1

1φ(Xi)>S
h0(Xi)

hλk−1(Xi)
.

The advantages of and drawbaks of CE are presented in Table 3. CE is a very pratial

algorithm to approximate the optimal sampling density. Nevertheless, the hoie of the

parametri family density hλ has to be done arefully to obtain valuable results. Due to
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Advantages of CE Drawbaks of CE

Simple optimization for exponential PDF family Strong in�uene of the initial

parametri density hoie

Fast omputation Di�ult to apply in ases where the optimal

auxiliary density is multimodal

Table 3

Advantages and drawbaks of CE.

the adaptiveness of the algorithm, it is di�ult to ensure the robustness (logarithmi e�-

ieny) of the CE estimate in the general ase [62℄. The onept of probabilisti bounded

relative error is then proposed.

4.3. Non parametri adaptive importane sampling

The objetive of non parametri adaptive importane sampling (NAIS) tehnique [63�

66℄ is to approximate the IS optimal auxiliary density given in Eq. 22 with kernel density

funtion [67℄. NAIS does not require the hoie of a PDF family and is thus more �exible

than a parametri model. The iterative priniple is relatively similar to the CE optimiza-

tion and is desribed by the following steps. For the sake of simpliity, the algorithm is

presented with a Gaussian kernel but other kinds of kernel an be used.

(i) k = 1 and set ρ ∈]0, 1[.
(ii) Generate the population X

(k)
1 , ...,X

(k)
N aording to the PDF hk−1, apply the fun-

tion φ in order to have Y
(k)
1 = φ(X

(k)
1 ), ..., Y

(k)
N = φ(X

(k)
N ).

(iii) Compute γk = min(S, Y
(k)
ρ ) where Y

(k)
ρ denotes the empirial ρ-quantile of Y

(k)
1 , ..., Y

(k)
N .

(iv) Estimate Ik = 1
kN

∑k
j=1

∑N
i=1 1φ(X

(j)

i
)≥γk

h0(X
(j)
i

)

hj−1(X
(j)
i

)
.

(v) Update the Gaussian kernel sampling PDF with

hk(X) =
1

kNIk det (Bk)

k∑

j=1

N∑

i=1

wj(X
(j)
i )Kd

(
B−1

k

(
X−X

(j)
i

))
. (28)

where Kd is standard d-dimensional Gaussian funtion with zero mean and a di-

agonal ovariane matrix Bk = diag(b1k, ..., b
d
k) and wj(.) = 1φ(.)≥γk

h0(.)
hj−1(.)

. The

adapted oe�ient in the matrix Bk+1 an be optimized aording to the AMISE

(asymptoti mean integrated square error) riterion [11℄ and [68℄.

(vi) If γk < S, k ← k + 1, bak to the step (ii).

(vii) Estimate the probability P̂NAIS(φ(X) > S) = 1
N

N∑

i=1

1
φ(X

(k)
i

)>S

h0(X
(k)
i )

hk−1(X
(k)
i )

.

The advantages of and drawbaks of NAIS are presented in Table 4. The use of kernel

density funtion enables a more �exible and general model than CE. It beome very

di�ult to apply NAIS in ases where the input dimension d is greater than 10 due to

the numerial ost indued by the use of kernel density [66℄.

10



Advantages of NAIS Drawbaks of NAIS

No hoie of a parametri density Computation time

E�ient in ases where the optimal Inappliable when d is greater than 10

auxiliary density is multimodal

Table 4

Advantages and drawbaks of NAIS.

4.4. Simple hanges of measure

The use of CE or NAIS is not always neessary, notably in simple ases of funtion

φ(.). Conventional hanges of density h0 an then be e�ient to derease the probability

estimate variane. Saling and translation an be applied on the initial PDF h0. Saling

onsists in de�ning the auxiliary PDF h so that

h(X) =
1

a
h0

(
X

a

)
, (29)

with a ∈ R∗
. Translation is another simple hange of density that an be applied in IS.

The new auxiliary density is de�ned with translation by

h(X) = h0(X− c), (30)

with c ∈ Rd
. The hoies of a and c for eah method strongly in�uene the importane

sampling e�ieny. Valuable values of a and c are not obvious to �nd without some

knowledge of the funtion φ.

4.5. Exponential twisting

The priniple of exponential twisting is very similar to LDT and saddle point approx-

imation [69�72℄. The main idea of exponential twisting is to de�ne the auxiliary density

on the output Y = φ(X) with

h(y) = exp(θy − λ(θ))g(y), (31)

where g is the density of random variable Y and λ(θ) = ln (E (exp (θY ))). The probability
is then determined with

PTW = E

(
1Y >S

g(Y )

h(Y )

)
.

The variable Y has to get exponential moments so that λ(θ) to be �nite for at least some

values of θ ∈ R. The PDF h(y) depends on the parameter θ. An optimal value θopt an

be obtained with saddle point approximation with

dλ(θ)

dθ

∣∣∣∣
θ=θopt

= S. (32)

The parameter θopt is estimated numerially. Exponential twisting an thus only be

applied in some spei� ases, notably if Y =
∑d

i=1 X
i
(funtion used in some queueing

models) or if the density g is analytially known. In the ase of a sum of random variables,

this estimator has a bounded relative error if the input has a light tail [73,74℄. In ase of

large deviation probabilities and under some general onditions, logarithmi e�ieny is

guaranteed with exponential twisting importane sampling [75℄.
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5. FORM/SORM

First/seond-order reliability methods (FORM/SORM) [76�79℄ are onsidered as reli-

able omputational methods for strutural reliability. FORM is an analytial approxima-

tion in whih the reliability index is interpreted as the minimum distane from the origin

to the limit state surfae in standardized normal input spae. This limit state surfae

haraterizes the input region where φ(X) > S. The most probable failure point (design

point) is searhed using mathematial programming methods. Sine the performane

funtion is approximated by a linear funtion at the design point, auray problems

our when the performane funtion is strongly nonlinear or if the most probable failure

point is not unique [80℄. The seond-order reliability method (SORM) has been estab-

lished as an attempt to improve the auray of FORM. SORM approximates the limit

state surfae at the design point by a seond-order surfae.

FORM/SORM method are applied in four stages to estimate P (φ(X) > S):
(i) Apply a transformation T on the input X suh that R = T (X) with R a normal

redued entered PDF. Depending on the available information on the PDF of X,

several transformations an be proposed [81�86℄. See Table 5 for details on the

orrespondene between assumptions and transformations.

(ii) Evaluate the most probable failure point β suh that

β = argmin
R

|| R ||, (33)

subjet to the onstraint S−φ(T−1(R)) = 0 and where || . || is the Eulidian norm.

The onstraint S − φ(T−1(R)) = 0 de�nes the limit of failure spae for variable

R. The parameter β is the design point and || β || is the reliability index. Several

algorithms have been proposed to solve this optimization problem as proposed in

[82,83,87,88℄.

(iii) Approximate the surfae S − φ(T−1(R)) = 0 at the solution β. In the ase of

FORM, this surfae is a hyperplane and it is a paraboloid in the ase of SORM

[89℄.

(iv) Estimate the failure probability with, in the ase of FORM :

P̂FORM (φ(X) > S) = Ω(− || β ||), (34)

where Ω is the CDF of a normal redued and entered PDF. In the ase of SORM,

the failure probability is given by [90℄

P̂SORM (φ(X) > S) = Ω(− || β ||)
d−1∏

i=1

(1 − βκi)
− 1

2 , (35)

where κi denotes the prinipal urvature of S − φ(T−1(R)) at the design point β.

The term κi is de�ned with

κi =
∂2(S − φ(T−1(R)))

∂2Ri

∣∣∣∣
R=β

, (36)

with Ri
, i = 1, ..., d, a omponent of the vetor R. A �rst order saddle point ap-

proximation (FOSPA) [91,92℄ method has also been proposed as an improvement to

FORM/SORM. It onsists in using LDT and the saddle point approximation [69�72℄

whih onsiders the funtion

12



Assumptions on the PDF of X Corresponding transformations T

X is Gaussian with unorrelated omponents Hasofer-Lind transformation

X has independent omponents (not assumed to be Gaussian) Diagonal transformation

Only the marginal laws of X and their ovariane are known Nataf tranformation

The omplete law of X is known Rosenblatt transformation

Table 5

Possible transformations T depending on the assumptions on the PDF of X.

λ(θ) = ln [E (θφ(X))] , (37)

to estimate the repartition funtion of φ(X). Indeed, it is possible to show that

P (φ(X) > S) ≈ 1− Ω

(
w +

1

w
ln
( v

w

))
, (38)

with

w = sign(θs)(2(θsS − λ(θs)))
1
2 , (39)

and

v = θs

(
2
d2λ(θ)

dθ2
|θ=θs

) 1
2

. (40)

The parameter θs is the saddle point and is the solution of the equation

d2λ(θ)

dθ2
|θ=θs = S. (41)

The approximation proposed in Eq. 38 is not easily omputable in the general ase. It is

thus often neessary to linearize the funtion φ near the most probable failure point with

the onstraint S − φ(X) = 0 and also to linearize the funtion λ. These linearizations

simplify the estimation of λ(θ) in Eq. 37 and of θs. The moment method is also used to

approximate the funtion λ in [91,93,94℄.

The advantage of and drawbaks of geometri methods suh as FORM/SORM/FOSPA

are given in Table 6. These methods do not require a large simulation budget to obtain a

valuable result. Nevertheless, the di�erent assumptions require that one has to be areful

when one applies FORM/SORM/FOSPA to a realisti ase of funtion φ. There is also

no ontrol of the error in FORM/ SORM. However, it is possible from FORM/SORM

to determine an importane sampling auxiliary density and then to sample with it to

estimate the rare event probability.

6. Line sampling

6.1. Priniple

The underlying idea of Line Sampling (LS) [95�97℄ is to employ lines instead of random

points in order to probe the failure domain of the system, i.e. X so that φ(X) > S .

It has to be applied on input random variables that have zero-mean standard normal

density. Let us �rst assume thatX follows a multidimensional zero-mean standard normal

13



Advantages of FORM/SORM/FOSPA Drawbaks of FORM/SORM/FOSPA

Neessary simulation budget very restrited Di�ult to apply when the

optimal auxiliary density is multimodal

Neessary transformation on input

variables if they are not Gaussian

Not adapted to non linear and to

high dimensional funtion φ

No possible ontrol

of the error

Table 6

Advantages and drawbaks of FORM/SORM.

distribution and also de�ne the set A = {X ∈ Rd|φ(X) > S}. The set A an be also

expressed in the following way

A = {X ∈ Rd|X1 ∈ A1(X
−1)}. (42)

where the set A1(X
−1) is de�ned on R and depends on X

−1 = (X2, X3, ..., Xd). Similar

sets A1 an be de�ned with respet to any diretion in the random parameter spae and

for all measurable A. The failure probability P (φ(X) > S) an be written with integrals

in the following way :

P =

∫

Rd

1φ(X)>Sh0(X)dX,

=

∫

Rd

1X∈Ah0(X)dX,

=

∫

Rd−1

∫

R

1X1∈A1
h0(X)dX1dX−1.

It an then be rewritten with mathematial expetation over the variable X
−1

thanks to

the Gaussian assumptions with

P = E
(
P (X1 ∈ A1|X−1)

)
. (43)

The failure probability is desribed as the expetation of the ontinuous random variable

P (X1 ∈ A1) relatively to the variable X
−1
. This expetation is replaed in pratie in

LS by its Monte-Carlo estimate

P̂LS =
1

NC

NC∑

i=1

(P (X1 ∈ A1(X
−1
i ))), (44)

where (X−1
1 ), ..., (X−1

NC
) are samples of the random variable X

−1
. It is still neessary to

estimate the probability P (X1 ∈ A1(X
−1
i )), that is

P (X1 ∈ A1(X
−1
i )) =

∫

R

1X1∈A1(X
−1
i

)ω(X
1)dX1, (45)

where ω is a zero-mean standard normal variable. It is possible to show that this integral

an be approximated with
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Advantages of LS Drawbaks of LS

Neessary simulation budget restrited Di�ult to apply when the

optimal auxiliary density is multimodal

Simple implementation Neessary transformation on

input variables if they are not Gaussian

Need a priori information on φ

Table 7

Advantages and drawbaks of LS.

P (X1 ∈ A1(X
−1
i )) ≈

∫ ∞

ci

ω(X1)dX1, (46)

where ci is the value of X
1
suh that φ(ci,X

−1
i ) = S. This approximation is only valuable

if there is only one intersetion point between the input failure region and the hosen

sampling diretion. The variane of LS estimate is always lower or equal to the CMC es-

timation [95℄. Nevertheless, to our knowledge, the logarithmi e�ieny of this algorithm

has never been provided.

6.2. Algorithm

The omputational steps of the algorithm are:

(i) Assume X follows a entered Gaussian PDF. If it is not the ase, apply a transfor-

mation on X desribed in Table 5.

(ii) In the standard normal spae, determine the unit important diretion vetor α ∈
Rd

. It is the diretion that enables to reah the urve S − φ(X) = 0 with the

shortest path to the origin. This diretion an be found with Monte-Carlo Markov

hain methods [98℄. To simplify the notations, one assumes that the important

diretion vetor is α = (1, 0, ..., 0). If it is not the ase, a rotation has to be applied

to the variable X.

(iii) Generate NC samples X
−1
1 , ...,X−1

NC
of the variable X

−1
and estimate for eah of

these samples the probability P (X1 ∈ A1(X
−1
i )) using Eq. 46.

(iv) Estimate the LS probability estimate with

P̂LS =
1

NC

NC∑

i=1

(P (X1 ∈ A1(X
−1
i ))). (47)

A joint use of Monte-Carlo simulations and line sampling, that does not need the knowl-

edge of the diretion α has been proposed in [99,100℄. It requires nevertheless some a

priori information on φ(.) in order to be e�ient. The advantages and drawbaks of LS

are presented in Table 7.
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7. Adaptive splitting tehnique

7.1. Priniple

The idea of importane splitting, also alled subset sampling, subset simulation or

sequential Monte-Carlo, is to deompose the sought probability in a produt of ondi-

tional probabilities that an be estimated with a reasonable simulation budget. It has

�rstly been proposed in a physial ontext in 1951 [101℄, and numerous variants have

been then worked out. Considering the set A = {X ∈ Rd|φ(X) > S}, the objetive

of adaptive splitting tehnique (AST) [102�106℄ is to determine the probability P (X ∈
A) = P (φ(X) > S). For that purpose, the priniple of AST [107�113℄ is to iteratively

estimate supersets of A and then to estimate P (X ∈ A) with onditional probabilities.

Let us de�ne A0 = Rd ⊃ A1 ⊃ ... ⊃ An−1 ⊃ An = A, a dereasing sequene of Rd

subsets with smallest element A = An. The probability P (X ∈ A) an be then rewritten

in the following way:

P (X ∈ A) =

n∏

k=1

P (X ∈ Ak|X ∈ Ak−1), (48)

where P (X ∈ Ak|X ∈ Ak−1) is the probability thatX ∈ Ak knowing thatX ∈ Ak−1. An

optimal hoie of the sequene Ak, k = 0, ..., n is given when P (X ∈ Ak|X ∈ Ak−1) = ρ,

where ρ is a onstant, that is when all the onditional probabilities are equal. The vari-

ane of P (X ∈ A) is indeed minimized in this on�guration as shown in [114,115℄. Conse-

quently, if eah P (X ∈ Ak|X ∈ Ak−1) is well estimated, then the probability P (X ∈ A)
is estimated more aurately with AST than with a diret estimation by Monte-Carlo

[116℄.

Let us de�ne hk
the density of X restrited to the set Ak. The subset Ak an be de�ned

with Ak = {X ∈ Rd|φ(X) > Sk} for k = 0, ..., n with S = Sn > Sn−1 > ... > Sk >

... > S0. Determining the sequene Ak is equivalent to hoose some values for Sk, with

k = 0, ..., n. The values of Sk for k = 0, ..., n an be determined in an adaptive manner to

perform valuable results [116℄ using ρ-quantile of samples generated with the PDF hk
.

7.2. Algorithm

The di�erent stages of AST to estimate P (φ(X) > S) are the following ones:

(i) Set k = 0, ρ ∈]0, 1[ and h0 = h0

(ii) Generate N samples X
(k)
1 , ...,X

(k)
N from hk

and apply the funtion φ in order to

have Y
(k)
1 = φ(X

(k)
1 ), ..., Y

(k)
N = φ(X

(k)
N )

(iii) Estimate the ρ-quantile γ
(k)
ρ of the samples Y

(k)
1 , ..., Y

(k)
N .

(iv) Determine the subset Ak+1 with Ak+1 = {X ∈ Rd|φ(X) > γ
(k)
ρ } and the ondi-

tional density hk+1
.

(v) If γ
(k)
ρ < S, set k ← k + 1 and go bak to stage (ii). Otherwise, estimate the

probability with

P̂AST = (1− ρ)k × 1

N

N∑

i=1

1
φ(X

(k)

i
)>S

.
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Advantages of AST Drawbaks of AST

Appliable in high dimensions Important simulation budget

and non linear systems

E�ient on very rare events (P < 10−6) Di�ult to apply on non Gaussian inputs

Table 8

Advantages and drawbaks of AST.

Generating diretly independent samples from the hk
onditional densities is in most

ases impossible as they are usually unknown [102,117℄. Nevertheless, AST provides an

iterative way to do it, yet in a dependent fashion using a h0-reversible Markovian kernel

K(X, ·). With suh a kernel and Xk following the density hk
, one an distribute random

variable Ξk aording to hk
with the following proposal/refusal method [116℄:

Ξk = Ξk(Xk) =





K(Xk, ·), if K(Xk, ·) ∈ Ak,

X
k, otherwise.

This proposal/refusal algorithm enables to generate any number of samples aording to

hk
in a relative simple manner. It also enables us to keep onstant the number of samples

to estimate eah P (X ∈ Ak+1|X ∈ Ak). This operation has to be applied for eah density
hk
. The generated samples are unfortunately dependent and identially distributed a-

ording to hk
. Up to now, there is no way to do this in an independent fashion. However,

under mild onditions, it an be shown [117℄ that applying the proposal/refusal method

several times may derease variane.

The advantages and drawbaks of AST are desribed in Table 8. AST is often applied to

estimate very rare events (P < 10−6). For higher probabilities, other simulation methods

as IS are more e�ient than AST [116℄. The logarithmi e�ieny has been proved for

splitting with �xed levels in [118℄.

8. CMC inspired methods

Even if CMC is not adapted to rare event estimations, CMC an nevertheless be slightly

improved with the use of strati�ed sampling of Latin hyperube sampling as desribed

the following subsetions.

8.1. Strati�ed Sampling

The priniple of strati�ed sampling (SS) is very similar to CMC [119℄. The idea is

to propose more samples in the input spae so that 1φ(X)>S = 1. SS onsists thus in

partitioning the support of X, de�ned by Rd
in the general ase as proposed in Setion

1, in several subsets Qi, i = 1, ...,m suh that Qi

⋂
Qj = ∅ for i 6= j, and

⋃
iQi = Rd

.

One then generates ni i.i.d. samples X
i
1, ...,X

i
ni

from the PDF hQi
de�ned with

hQi
(X) = 1X∈Qi

h0(X)

di
, (49)

where di is de�ned by
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Advantages of SS Drawbaks of SS

Simple implementation Neessary information on funtion φ

Potential derease of CMC relative deviation Subset de�nition strongly in�uenes probability estimate auray

Table 9

Advantages and drawbaks of strati�ed sampling.

di =

∫

Qi

h0(x)dx. (50)

The required number of samples N in SS is equal to

N =

m∑

i=1

ni.

The SS probability estimate P̂SS
is then obtained with

P̂SS =
m∑

i=1

diP̂hQi
, (51)

where P̂hQi
is de�ned as

P̂hQi
=

1

ni

ni∑

j=1

1φ(Xi
j
)>S . (52)

The relative deviation of P̂SS
depends notably on ni and hQi

, and is given by the following

equation [120℄

σP̂SS

P
=

1

P

√√√√
m∑

i=1

di
PhQi

(1− PhQi
)

ni
, (53)

where PhQi
is the true value of P̂hQi

. If m = 1, the previous equation orresponds to the

CMC relative deviation given in Eq. 4. The hoie of the subsets Qi and of ni is thus

very important in order to redue the Monte-Carlo estimator variane, but requires some

information on the input-output funtion φ. If one has no lue on where 1φ(X)>S = 1 in

the input spae, the method of strati�ed sampling is not appliable and an inrease the

Monte-Carlo relative deviation if Qi and ni are not adapted to φ. An adaptive version of

SS has been proposed in [121℄. Table 9 sums up the harateristis of strati�ed sampling

estimator. An extended version of SS alled overage Monte-Carlo method in [122,123℄

has been proposed for spei� systems represented by a fault tree or a network using

its minimal uts to improve the probability estimation. For the same kind of systems,

reursive variane redution methods desribed in [124,125℄, have also been proposed and

have some links with SS. They are one of the most e�ient methods for this appliation

[126℄.

8.2. Monte-Carlo method with Latin Hyperube Sampling

Latin hyperube sampling (LHS) [127�132℄ an be used instead of strati�ed sampling

when the subsets Qi are di�ult to estimate. The priniple is to stratify in an independent

fashion eah of the d input dimensionsX = (X1, X2, ..., Xd) into N equipossible intervals

of probability

1
N . For a given dimension k, one generates one sample in eah interval
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Advantages of LHS Drawbaks of LHS

Simple implementation Weak potential derease of CMC relative deviation

Table 10

Advantages and drawbaks of LHS.

aording to the onditional joint law of h0 for the dimension k and thus obtains N salar

samples. The random mathing between the salar samples in the di�erent dimensions

enables to obtain a N d-tuple X1, ...,XN that desribes a LHS. The probability with

LHS is estimated in the same way as Monte-Carlo with

P̂LHS =
1

N

N∑

i=1

1φ(Xi)>S . (54)

This estimate is unbiased and its relative deviation is always lower than CMC [133,134℄.

The advantages and drawbaks of LHS are desribed in Table 10. In [135℄, the use of

LHS allows to derease by

√
2 the relative deviation of the Monte-Carlo method. This

redution is interesting and divides by 2 the omputational e�ort. It is nevertheless

possible to obtain a better derease of the estimate variane with statisti or simulation

tehniques dediated to rare event estimation. Some information about the relative error

bound of LHS sampling an be found in [15℄. The logarithmi e�ieny of this algorithm

has not been proved.

9. Other simulation algorithms

9.1. Control Variates

The ontrol variate method [136,137℄ is a variane redution tehnique used in Monte-

Carlo methods. The priniple is the following. Let us de�ne the random variable H =
1φ(X)>S . One has E(H) = P and an de�ne a random variable m suh that E(m) = τ .

One an also de�ne the variable H∗
so that, given a oe�ient c,

H∗ = H + c(m− τ). (55)

The variable H∗
is also an unbiased estimator of P for any hoie of the oe�ient c.

The variane of H∗
is given by

V ar(H∗) = V ar(H) + c2V ar(m) + 2c Cov(H,m), (56)

where Cov(H,m) is the ovariane between H and m. It an be shown that hoosing the

optimal oe�ient c∗ de�ned by

c∗ =
−Cov(H,m)

V ar(m)
, (57)

minimizes the variane of H∗
. In that ase, the variane H∗

is equal to

V ar(H∗) = (1− ρ2)V ar(H), (58)

where ρ is the orrelation oe�ient between H and m. Unfortunately, the optimal

oe�ient c∗ is not available and thus, di�erent tehniques allow to hoose e�ient values

of c. When the system an be bounded, that is, if one an determine φL and φR suh
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that φL(X) < φ(X) < φR(X) ∀X, the use of ontrol variates an derease the variane

of the probability estimate. Suh developments have notably been proposed in [138℄ for

fault trees.

9.2. Antitheti variates

The antitheti variate (AV) algorithm [52,139℄ is a variane redution tehnique. Let

us assume that one has two random variables H1 and H2 with the same probability law

of H = 1φ(X)>S . One has then

E(H) =
1

2
(E(H1) + E(H2)) = E

(
H1 +H2

2

)
, (59)

and also

V ar

(
H1 +H2

2

)
=

V ar(H1) + V ar(H2) + 2Cov(H1, H2)

4
. (60)

If H1 and H2 are i.i.d, then Cov(H1, H2) = 0 and one obtains the same variane as

Monte-Carlo estimate. The priniple of AV is to obtain samples so that Cov(H1, H2) <
0. For instane, if X follows a multidimensional normal PDF with mean µ and ovariane

matrix Σ, then X ′ = 2µ−X follows the same law as X . In that ase, one an generate

H1 = 1φ(X)>S and H2 = 1φ(X′)>S and redue the variane of the Monte-Carlo estimate

on P .

Control and antitheti variates annot be easily applied in ases where the funtion φ is

not known analytially whih redues the potential appliability of these methods. Reent

results have thrown an important doubt about their interest [140℄. Dagger sampling,

desribed in [141℄ and more reently in [142℄, is an extension of antitheti variable method.

It improves CMC estimate for spei� systems suh as networks or fault trees.

10. Use of metamodels in rare event probability estimation

Being able to build an e�ient surrogate model whih allows to redue the number of

alls to the expensive input-output funtion φ while keeping a good auray is a key point

in rare event probability estimation. A great number of methods have been proposed and

ompared in reent years. For the sake of oniseness, in this paper, we do not review all

the methods present in the literature whih is very profuse on this subjet. A survey of the

di�erent metamodel methods an be found in [80℄. In this setion, we present the main

surrogate models whih have been got underway with importane sampling and Monte-

Carlo estimators. Classial deterministi surrogate models suh as polynomials, splines

have been tested and ompared to neural networks and �rst order reliability method

(FORM) [143�145℄. Chaos Polynomials have been assoiated with Monte-Carlo sampling

to estimate failure probabilities [146℄. Support vetor mahines have also been employed

to estimate the domains of failure [147℄ and been oupled to rare event estimator suh

as subset sampling [148℄.

Kriging method [149�151℄ presents some advantages in rare event probability estimation.

Indeed, this surrogate model is based on a Gaussian proess, that allows to estimate

the variane of the predition error and onsequently to de�ne a on�dene domain

of the surrogate model. This indiator an be diretly used to re�ne the model, i.e.,
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Advantages Drawbaks

Allow to greatly redue omputation time Indue approximation errors

due to the surrogate model

Allow to use greater simulation budget Require knowledge on φ to build

a onsistent model espeially when φ(X) > S

Table 11

Advantages and drawbaks of metamodel probability estimate.

to hoose new points to evaluate the real funtion that allow to improve the auray

of the model. Kriging has been extensively used with lassial Monte Carlo estimator

[152℄, Importane sampling method [145,153�155℄, importane sampling with ontrol

variates [156℄ or subset simulation [157�159℄. The way to re�ne the Kriging model is a key

point and di�erent strategies have been proposed [155,160,161℄ to exploit the omplete

probabilisti desription given by the Kriging to evaluate the minimal number of points

on the real expensive input-output funtion. A numerial omparison of di�erent Kriging

based methods to estimate a probability of failure an be found in [162℄.

The advantages and drawbaks of metamodel-based rare event probability estimators

are given in Table 11.

11. Synthesis

The proposed synthesis of this artile onsists of a series of questions than an help

the reader to hoose the appropriate methods for his estimation problem.

(i) Is it possible to use the funtion φ to resample? If resampling is not possible, that

is if one onsiders only a �xed set of samples φ(X1), ..., φ(XN ), the only available

methods are EVT and metamodel probability estimate. If resampling is possible,

the other simulation methods presented in this artile are more e�ient than EVT.

(ii) Is the density of Y or the funtion φ analytially known? If it is the ase, then

it an be interesting to fous on LDT, exponential twisting, simple hanges of

importane sampling, ontrol variates and antitheti variates. If these methods are

not e�ient, then more general algorithms are more omplex to implement but

should be e�ient.

(iii) Is the input region whih gives φ(X) > S approximately known? If yes, then SS

and FORM/SORM/FOSPA are adapted.

(iv) Is the input region whih gives φ(X) > S multimodal? If yes or if the answer to

this question is not known, the use of CE, FORM/SORM/FOSPA is not advised.

(v) What is the dimension d of the problem? If d < 10 (value given as an order of

magnitude), NAIS, FORM/SORM/FOSPA and LS an be onsidered. If d > 10,
AST and CE are the most e�ient algorithms.

(vi) What is the available simulation budget N? If N > 1000 (value given as an order of

magnitude), then CE, NAIS and AST are adapted. IfN < 1000, FORM/SORM/FOSPA

and LS have to be used. CE, NAIS and AST an also be applied when N < 1000
but jointly used with a surrogate model.

(vii) Is the funtion φ highly non linear? If it is the ase, then FORM/SORM/FOSPA,

LS and surrogate model an imply a bias in the estimation and has to be applied

arefully whereas AST is adapted.
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(viii) Is it possible to prove that the probability estimate has a bounded relative error or

is logarithmi e�ient ? IS with exponential twisting or with CE optimisation (in

a spei� ontext) and AST have been proved to have good robustness properties

in ertain appliations.

Table 12 sums up these di�erent answers. It is often di�ult to pratially hoose the

most e�ient rare event method for a given problem. Indeed, as desribed in this artile,

a large olletion of methods is available to estimate rare event probability with more

or less auray depending on the problem harateristis. The answers to all the previ-

ous questions an guide the reader to an appropriate algorithm. An open topi on rare

event estimation is the analysis of the robustness properties of the di�erent probability

estimates in very general ases. It would ease the omparison of the di�erent algorithms

to determine whih method ould potentially lead to the required simulation budget for

a �xed relative error.

Impossibility Density of φ known φ and Y Region Region d < 10 d> 10 N > 1000 N < 1000 φ non

of resampling Y known analytially unknown Y > S Y > S linear

partially disjoint - info

known not available

AST

√ √ √ √

Anti.Var.

√ √

CE

√ √
×

√ √

Cont.Var.

√ √

EVT

√

Exp.Tw

√ √

FORM

√ √
×

√
×

/SORM

LDT

√ √

LS

√
×

√ √

Surrogates

√ √
×

√
×

NAIS

√ √ √
×

√

SS

√ √

Table 12

Synthesis table -

√
(resp. ×): the method presents some advantages (resp. drawbaks) for the onsiderate

harateristi
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