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INTRODUCTION

Cloud business intelligence (BI) is becoming increasingly popular, providing the benefits of both classical BI (efficient decision-support) and cloud computing (elasticity of resources and costs). However, one of the top concerns of cloud users and would-be users remains security. Some security issues are inherited from classical distributed architectures, e.g., authentication, network attacks and vulnerability exploitation, but some directly relate to the new framework of the cloud, e.g., cloud service provider (CSP) or subcontractor espionage, cost-effective defense of availability and uncontrolled mashups [START_REF] Chow | Controlling Data in the Cloud: Outsourcing Computation without Outsourcing Control[END_REF].In this paper, we focus on data security, which is of critical importance in a BI context where sensitive data are processed. Data security is usually managed by CSPs, but with the multiplication of CSPs and subcontractors in many different countries, intricate legal issues arise and trust in CSPs may be jeopardized.

In contrast, end-to-end security gives the control of both data security levels and costs back to users, through classical techniques such as data encryption, anonymization, replication and verification. However, updating and querying secured data in the cloud may turn inefficient and expensive. Thus, specific end-to-end security approaches were designed for distributed/cloud databases (DBs) and data warehouses (DWs) [START_REF] Ravan | A Survey on Querying Encrypted Data for Database as a Service[END_REF][START_REF] Sion | Towards Secure Data Outsourcing[END_REF]. The MONOMI system [START_REF] Tu | Processing analytical queries over encrypted data[END_REF] notably encrypts both SQL queries and data with multiple cryptographic schemes. However, although MONOMI enforces data privacy, it addresses neither data availability nor integrity issues. In contrast, secret sharing [START_REF] Shamir | How to Share a Secret[END_REF] simultaneously enforces data privacy, availability and integrity. Secret sharing transforms sensitive data into individually meaningless data pieces (called shares) that are distributed to n CSPs. Computations can then be performed onto shares, but yield meaningless individual results. The global result can only be reconstructed (decrypted) by the user.

All secret sharing-based approaches allow accessing shares from t ≤ n CSPs, i.e., shares are still available when up to n -t CSPs fail, e.g., go bankruptcy, due to a technical problem or even by malice. However, no approach allows updating shares when even one single CSP fails, thus hindering cloud DWs' refreshment capabilities. Moreover, although these approaches feature all basic DB querying operators, only one handles on-line analysis processing (OLAP) and it does not support lazy updates on cloud-stored cubes. In addition, few approaches actually enforce data integrity through verification of inner code (to verify whether CSPs are malicious) or outer code (to detect incorrect data before decryption), and only one features both inner and outer signatures for this sake. Finally, although some approaches bring in solutions to reduce overall storage volume so that it falls well under n times that of original data, and thus de-crease monetary cost in the pay-as-you-go paradigm, there is still room for improvement.

To address all these issues, we propose a novel approach that relies on a flexible verifiable secret sharing scheme (fVSS). To the best of our knowledge, fVSS is the first approach allowing DW refreshment when one or several CSPs fail. Moreover, fVSS allows running OLAP operators on shared DWs or cubes without reconstructing all data first. fVSS also features both inner and outer signatures for data verification. Finally, fVSS allows users adjusting the volume of shared data at each CSP, which helps optimize cost with respect to various CFP pricing policies.

The remainder of this paper is organized as follows. Section 2 discusses previous research related to fVSS. Section 3 details our secret sharing and reconstruction mechanisms, the new outer signature we propose and how our approach applies to data warehouses and OLAP. Section 4 provides a comparative study of fVSS with state-of-the-art existing approaches. Finally, Section 5 concludes this paper and hints at future research perspectives.

RELATED WORKS

Among encryption techniques, only secret sharing [START_REF] Beimel | Secret-Sharing Schemes: A Survey[END_REF] handles both data privacy and availability, which is why we focus on this family of approaches. The principle of secret sharing [START_REF] Shamir | How to Share a Secret[END_REF] is based on the fact that t points define a polynomial y = f (x) of degree t -1. The secret is the polynomial's constant term and the remaining terms are usually randomly selected. Each data piece is transformed into n shares f (xi) corresponding to points of the polynomial. Reconstruction of the secret is achieved through Lagrange interpolation [START_REF] Davis | Interpolation and Approximation[END_REF]: there is only one polynomial p(x) such that degree(p(x)) < t and p(xi) = f (xi). Then the secret is p(0). Moreover, modern secret sharing schemes, such as multi-secret sharing [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF][START_REF] Liu | Efficient (n, t, n) secret sharing schemes[END_REF][START_REF] Waseda | Consideration for Multi-threshold Multi-secret Sharing Schemes[END_REF], verifiable secret sharing [START_REF] Shanyue | A Secret Sharing Scheme Based on NTRU Algorithm[END_REF], and verifiable multisecret sharing [START_REF] Bu | Novel and Effective Multi-Secret Sharing Scheme[END_REF][START_REF] Eslami | A Verifiable Multi-secret Sharing Scheme based on Cellular Automata[END_REF], also help reduce shared data volume, verify the honesty of CSPs, and both, respectively. We classify secret sharing-based approaches for securing DBs and DWs into two families.

In the first family of approaches [START_REF] Agrawal | Database management as a service: challenges and opportunities[END_REF][START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF][START_REF] Emekci | ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing Across Private Data Warehouses[END_REF][START_REF] Emekci | Privacy preserving query processing using third parties[END_REF][START_REF] Hadavi | AS5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF], each table is encrypted into n shared tables, each of which is stored at one given CSP (Figure 1). Recall that only t of n shared tables are sufficient to reconstruct the original table. Most of these approaches assume that CSPs are not malicious and that connections between CSPs and users are secure. Only one [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF] includes a data verification process that exploits hash-generated signatures: an inner signature (incorporated to the shares) to verify whether CSPs are malicious, and an outer signature that helps detect incorrect or erroneous (lost, damaged, alternative...) data before decryption and prevents useless data transfers. Both signatures are stored at CSPs.

In the second family of approaches [START_REF] Hadavi | Secure data outsourcing based on threshold secret sharing: towards a more practical solution[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Thompson | Privacy-Preserving Computation and Verification of Aggregate Queries on Outsourced Databases[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF], one or more additional index servers, located at {CSPi}i>n, store B++ tree indices and signatures (Figure 2). The index servers require higher security and computing power than that of other nodes, and a secure connection to the user's. The index servers support data verification by various means, i.e., homomorphic encryption [START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF], a hash function [START_REF] Thompson | Privacy-Preserving Computation and Verification of Aggregate Queries on Outsourced Databases[END_REF] and checksums and a hash function [START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. However, data verification cannot take place if the index server fails.

Regarding accessing shares, classical secret sharing [START_REF] Shamir | How to Share a Secret[END_REF] and most of its above-cited extensions natively support some exact match and aggregation operators, i.e., equality and inequality, sum, average and count. Each approach handles operators needing sorted data, e.g., range operators, maximum and minimum, with various techniques: preaggregation before sharing [START_REF] Emekci | ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing Across Private Data Warehouses[END_REF], a B++ tree index [START_REF] Hadavi | Secure data outsourcing based on threshold secret sharing: towards a more practical solution[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF] or the rank coefficient used in classical secret sharing [START_REF] Agrawal | Database management as a service: challenges and opportunities[END_REF][START_REF] Emekci | Privacy preserving query processing using third parties[END_REF][START_REF] Hadavi | AS5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF]. However, extra storage space is needed to store these data structures. Finally, almost all approaches allow updates on shares, since each piece of data is encrypted independently.

The features of all above-cited approaches are summarized in Table 2. We compare them with fVSS' in Section 4.

FLEXIBLE VERIFIABLE SECRET SHARING

fVSS Principle

fVSS is a (t, n) flexible verifiable secret sharing scheme belonging to the second family of approaches identified in Section 2. As all similar approaches, fVSS shares data over n CSPs, t of which are necessary to reconstruct original data. Table 1 lists fVSS' parameters, which will be introduced throughout this section.

The main novelty in fVSS is that, to optimize shared data volume and thus cost, we share a piece of data fewer than n times. For example, in Figure 3 where n = 5, record #124 of table PRODUCT is only shared at CSP1, CSP3 and CSP5, which presumably feature the lowest storage costs. To achieve this, we proceed as follows.

Suppose we want to share a piece of data d jkl , e.g., the category ID of product #124 in Figure 3(a). We also need to share its inner signature s in jkl to enforce data integrity. To generate a polynomial of degree t, we need t -2 more values that we call pseudo shares. Usually, secret sharing To reconstruct d jkl , let us assume we select the following set of t CSPs: RG = {CSP1, CSP2, CSP4, CSP5}. Then, if e ijgl is stored at CSPi, it is used for reconstruction. Otherwise, the corresponding pseudo share is used instead. To ease this operation, bitmaps representing where shares are stored are maintained in the index server(s). For example, the bitmap corresponding to product #124 in Figure 3 is 10101, with a 1 value at position #i representing share storage at CSPi.

The remainder of this section details the sharing and reconstruction processes (Section 3.2), our novel outer signatures (Section 3.3) and the way we share data warehouses
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Data Sharing and Reconstruction

In fVSS, DB attribute values, except NULL values and primary or foreign keys, are encrypted and shared in relational DBs at CSPs'. Keys help match records in the data reconstruction process and perform join and grouping operations. Any sensitive primary key, such as a social security number, is replaced by an unencrypted sequential integer key.

Each value d jkl of attribute A jl in record R jk from table Tj is encrypted into n -t + 2 shares generated from a polynomial f jkl (x) of degree t-1 created by Lagrange interpolation from d jkl , its inner signature s in jkl , the identifier numbers IDi of the CSPs selected to store the shares (this set of CSPs is denoted SG jk ), and two generated keys K d and Ks for data and signatures, respectively. The inner signature we use is very similar to that of [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF]. It is created from d jkl by homomorphic encryption [START_REF] Denning | Cryptography and data security[END_REF]. s in jkl matches with d jkl in the reconstruction process only if CSPs in RG return correct shares.

Initialization Phase

1. Set values of p (a big prime number), n and t.

Define one-variable hash function HF1(a)

where a is an integer and hash values HF1(a) must be small integers.

3. Define one-variable homomorphic function HE1(h) such that HE1(h) and h are reals and HE1(h1)±HE1(h2) = HE1(h1 ± h2). 

Data Sharing Process

Any record R jk is encrypted independently as follows.

1. Determine the group of CSPs SG jk that will store R jk 's n -t + 2 shares. Let U G jk be the group of CSPs that do not store R jk 's shares, i.e., U G jk = {CSPi}i=1..n -SG jk .

2. For each attribute A jl :

(a) Compute d jkl 's inner signature: s in jkl = HE1(d jkl ).

(b) Create polynomial f jkl (x) of degree t -1 by Lagrange interpolation (Equation 1):

f jkl (x) = t α=1 1≤β≤t,α =β x -x β xα -x β × yα (1) 
where

{(x1, y2), . . . , (xt, yt)} = {(HF1(K d ), d jkl ), (HF1(Ks), s in jkl )CSP i ∈SG jk } ∪ {(HF1(IDi), HE2(pk jk , IDi))CSP i ∈U G jk }.
(HF1(IDi), HE2(pk jk , IDi)) are pseudo shares.

(c) Compute the set of d jkl 's n -t + 2 shares {e ijgl }. ∀CSPi ∈ SG jk : e ijgl = f jkl (HF1(IDi)), with pk jk = pkijg.

Following this routine, record R jk is shared into n -t + 2 records ERijg at CSPs in SG jk . The relationship between R jk and ERijg is maintained through primary keys pk jk = pkijg. Finally, the bitmap corresponding to R jk is stored in the index server(s) at this time, knowing SG jk and U G jk .

Finally, since each data piece is shared independently, it is easy to handle the usual data types featured in DBs. Integers, dates and timestamps can be directly shared by fVSS. Data of other types (i.e., reals, characters, strings and binary strings) are first transformed into integers before being shared [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF].

Data Reconstruction Process

Any attribute value d jkl is reconstructed as follows.

1. Select t CSPs to form reconstruction group RG.

2.

For each CSPi ∈ RG, if outer data verification (Section 3.3) outputs an error, replace CSPi by another CSP selected from {CSPi}i=1..n -RG.

3. For each CSPi ∈ SG jk ∩ RG, load share e ijgl into yi where pk jk = pkijg.

For each

CSPi ∈ U G jk ∩ RG, compute pseudo share yi = HE2(pk jk , IDi).

5. Create polynomial f jkl (x) of degree t -1 (Equation 1) with xi = HF1(IDi).

Compute value

d jkl = f jkl (HF1(K d )).
7. Compute inner signature s in jkl = f jkl (HF1(Ks)).

8. Verify d jkl 's correctness: if s in jkl = HE1(d jkl ), then restart reconstruction process at step #1 with a new RG.

Recapitulative Example

Let us refer back to Figure 4, where n = 5 and t = 4. The set of CSPs selected for sharing an attribute value d jkl is SG jk = {CSP1, CSP2, CSP3}. Thus, U G jk = {CSP4, CSP5}, from which pseudo shares HE2(pk jk , IDi) i∈{4,5} , where pk jk is the primary key value of record R jk , are computed. Polynomial f jkl (x) is created by Lagrange interpolation from d jkl , its inner signature s in jkl , pseudo shares and keys K d and Ks. Then shares of d jkl are: e ijgl = f jkl (H1(IDi)) i∈{1,2,3} .

Assuming the set of t CSPs selected for reconstruction is RG = {CSP1, CSP2, CSP4, CSP5}, d jkl is reconstructed from shares e ijgl i∈{1,2} (since CSP1, CSP2 ∈ SG jk ) and pseudo shares HE2(pk jk , IDi) i∈{4,5} (since CSP4, CSP5 ∈ U G jk ).

Outer Signatures

Outer data verification helps determine whether data integrity is compromised by CSPs (willingly or not). For this sake, we propose two new types of outer signatures: record and table signatures (whereas [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF] uses an attribute valuelevel signature).

Moreover, we also propose a tree data structure to efficiently exploit outer signatures (Figure 5). Signature trees are stored at CSPs'. The maximum number of child nodes in the signature tree at CSPi is denoted wi. Each signature tree is constituted of two subtrees: a table signature tree and record signature subtree. Leaf nodes of the record signature tree are record signatures. Higher-level nodes represent the signatures of record clusters, until the root, which is a table signature and thus a leaf of the table signature tree. Similarly, higher level nodes represent the signatures of table groups, until the root, which stores the whole DB's signature. Signatures are checked before reconstructing data (Section Data integrity can also be verified on-demand. Outer record signatures are created with the help of user-defined one-way functions HF * i(h). Shared record ERijg passes integrity check if s routij0g = HF * i(ERijg).

Similarly, shared table ETij passes integrity check if s touti0j = HE * i(

er ij g=1 HF * i(ERijg))
, where HE * i(h) are homomorphic functions and erij is the number of records in ETij. Thanks to the homomorphism property [START_REF] Denning | Cryptography and data security[END_REF], all tables are correct if a signature stored in a root node equals the sum of the signatures stored in all its child nodes. This allows directly checking a set of records or tables through one node only, and thus speeds up data integrity verification. Moreover, in case of error, we can also discover where the integrity breach is by testing whether each node respects s outiuv = HE * i( v×w i a=(v-1)×w i s out i(u-1)a ), where s outiuv may either be a record or a table outer signature, u > 0 is a level number and v a node number in level u.

Finally, note that the signature tree's root level is ur = ⌈log w i m⌉ + ⌈log w i max(erij)j=1•••m⌉ -1, the table signature tree's leaf level is ut = ur -⌈log w i m⌉ and the record signature tree's leaf level is ut -⌈log w i erij ⌉ + 1.

Setup

For each CSPi, the following parameters must be userdefined.

1. Determine wi.

2. Define one-way function HF * i(ERijg).

3. Define homomorphic function HE * i(h), where HE * i(h1) ± HE * i(h2) = HE * i(h1 ± h2).

Shared Table Creation

Whenever a new table ETij is created at CSPi, the table signature tree is updated from leaf to root as follows. (c) Otherwise, stop recursion.

Shared Record Insertion

Whenever a new record ERijg is inserted into shared table ETij , the outer signature tree is updated from leaf to root as follows.

1. Compute record signature s routij0g = HF * i(ERijg)

and store it in a new right-most leaf node of ETij's record signature tree.

2. Recursively insert or update parent nodes (u, v) up to the root of ETij 's record signature tree such that u = 1 . . . ⌈log w i g⌉ and v = ⌈g/(wi) u ⌉. (d) Otherwise, update the parent node's signature s routiuv with HE * i(s routijuv + s routij0g).

3. Starting from the root of ETij's record signature tree, which is also leaf s tout i(0)j of the corresponding table signature tree, recursively update parent nodes up to the root of the table signature tree such that u = 1 . . . ⌈log w i m⌉ and v = ⌈j/(wi) u ⌉. Then, update table signature s toutiuv to HE * i(s toutiuv + ∆).

An example of outer signature tree update is provided in Figure 6. Record ER i(3)( 10) is a new record; all white nodes are updated or inserted. s dout i(0) [START_REF] Eslami | A Verifiable Multi-secret Sharing Scheme based on Cellular Automata[END_REF] s dout i(1)(4)

s dout i(2)(2) s dout i(3)(1) s tout i(0)(3) 1 2 4 
s tout i(2)(1)
s tout i(3)(1)
Figure 6: Sample outer signature tree update

Shared Record Update

Whenever a record ERijg is updated in shared table ETij, the outer signature tree is updated from leaf to root as follows.

1. Compute signature change before and after insertion: ∆ = HE * i(s routij0g -HF * i(ERijg).

2. Recursively update nodes (u, v) up to the root of ETij's record signature tree such that u = 0 . . . ⌈log w i erij⌉ and v = ⌈g/(wi) u ⌉. Update s routijuv to HE * i(s routijuv + ∆).

3. Starting from the root of ETij's record signature tree, recursively update parent nodes up to the root of the table signature tree such that u = 1 . . . ⌈log w i m⌉ and v = ⌈j/(wi) u ⌉. Update table signature s toutiuv to HE * i(s toutiuv + ∆).

Sharing Data Warehouses

Since each table of a shared DW is stored in a relational database at a given CSP's and each attribute value in each record is encrypted independently, our approach straightforwardly helps implement any DW logical model, i.e., star, snowflake and constellation schemas. A shared DW bears the same schema as the original DW's. However, all encrypted attributes are transformed into reals by the sharing process (Section 3.2).

Finally, to improve query performance, computation and data transfer costs when performing Relational OLAP (RO-LAP) operations, we use indices and cloud cubes, which are described below.

Indices

We exploit three types of indices, which are all created at data-sharing time. In addition to so-called Type I indices used in the reconstruction process (Section 3.2), Type II and III indices are specifically aimed at enhancing query performance and thus computation cost.

Type II indices are customarily used by the second family of secret sharing approaches (Section 2 [START_REF] Hadavi | AS5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]). They allow computing exact match, range and aggregation (e.g., MAX, MIN, MEDIAN and COUNT) queries, without reconstructing data, with the help of B++ trees. Type II indices are independently stored in the index server(s).

Type III indices help compute aggregate functions such as variance and standard deviation, as well as multiplications and divisions between two attributes, without reconstructing data. Type III indices are stored as extra attributes in shared tables. Let us illustrate why they are needed through examples. To compute the variance and standard deviation over an attribute X, X 2 values are needed. Then, either we reconstruct (i.e., decrypt) all values of X, or we share X 2 values in a new attribute, i.e., a Type III index, and computation can operate directly on shares. Similarly, computing SUM(X × Y ) or SUM(X ÷ Y ) requires sharing X × Y and X ÷ Y as Type III indices, respectively, because homomorphism properties only work for summation and subtraction.

Cloud Cubes

As in [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF], our approach supports the storage of data cubes that optimize response time and bandwidth when performing ROLAP operations. In addition, in this work, cubes are directly created in the cloud and refreshed through shares and indices only.

Since cloud cubes are built from shares, they are physically stored into tables that must be shared at all n CSPs, because pseudo shares are not available. In addition to customary dimension references and aggregate measures, they can include additional attributes that actually are embedded Type III indices. For example, suppose we need to compute the average of measure M from a cube. Then SUM(M ) and COUNT(M ) must be stored in the cube too, to allow computations on shares without reconstruction.

Figure 7 features a cloud cube named Cube-I that sums total prices and numbers of sales by time period and by product. As is customary, NULL values are used to encode superaggregates. All aggregate measures can be queried directly from Cube-I without reconstruction.

Backup, Recovery and Load processes

In our approach, as in all secret sharing approaches, backups are unnecessary because each shared table ETij is actually a backup share of all other shared table ETia, where a ∈ 1, . . . , j -1, j + 1, . . . , n. In case shared tables or shared records are detected as erroneous by outer signature verification (Section 3.3), their can be recovered from t other shared tables.

Loading new data into an existing shared DW does not require decrypting previous data first, because each attribute value in each record is encrypted independently. For instance, in Figure 8, data from Figure 3 are already shared and the last record (#127) is new. After each new shared record is loaded, the outer signature tree must be updated (Section 3.3), and indices and possible cloud cubes refreshed.

Cloud cube refreshment requires further attention. When updating cubes, aggregates can be updated from shares and indices. There are three cases.

For aggregations by, e.g., MAX and MIN operators, the primary key of aggregates is discovered from a Type II index. Then, at each CSP's, the share corresponding to the primary key is updated in the cloud cube. In case no corresponding share is found at that CSP's, the shared cube is updated from a pseudo share with the help of a Type I index.

For COUNTs, aggregates can be easily found from a Type II (g) Shares at CSP5 index and reconstructed. Then, the aggregates can be updated and shared back into the cloud cube [START_REF] Shamir | How to Share a Secret[END_REF].

For SUMs, thanks to the homomorphism property, aggregates can be updated from cloud cubes by summing shares and pseudo shares. For example, to update SUM(X) at CSPi, the new aggregate is the sum of shares and pseudo shares (Equation 2, where SUMCSP i (X) is trivially computed at CSPi and SU M index (P Ki) is computed with the help of a Type I index). SU M (X) = SU MCSP i (X) + HE2(SU M index (P Ki), IDi)

(2) Finally, more complex aggregations require combining the above cases. For example, SUM(X ± Y ) is updated from shares and pseudo shares by Equation 3.

SU M (X ± Y ) = SU MCSP i (X + Y ) +2 × HE2(SU M index (P Ki), IDi) (3) 

Querying a Shared Data Warehouse

Simple SELECT/FROM queries directly apply onto shares, as well as summing positive integer attributes. All join operators, when operating on unencrypted keys, also apply directly. When expressing conditions in a WHERE or HAV-ING clause, Type II indices must be used [START_REF] Hadavi | AS5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. Almost all comparison operators (=, =, EXISTS, IN, >, ≥, <, ≤, BETWEEN...) can be evaluated against such B++ index trees.

Similarly, aggregation functions such as MAX, MIN and COUNT can directly apply on shares with the help of Type II indices [START_REF] Hadavi | AS5: A secure searchable secret sharing scheme for privacy preserving database outsourcing[END_REF][START_REF] Hadavi | Database as a service: towards a unified solution for security requirements[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. In contrast, a SUM must combine relevant aggregates of shares and pseudo shares (as in Equation 2) with an external program before reconstruction.

Other aggregation functions must be computed by an external program after reconstructing relevant aggregates from shares and pseudo shares. Average, variance and standard deviation are computed as in Equations 4, 5 and 6, respectively, where X 2 is a Type III index.

AV G(X) = DC(SU M (X))/DC(COU N T (X)) (4) V AR(X) = DC(SU M (X 2 )) DC(COU NT (X)) + DC(SU M (X)) 2 DC(COU NT (X)) 2 (5) 
ST DDEV (X) = DC(SU M (X 2 )) DC(COU NT (X)) + DC(SU M (X)) 2 DC(COU NT (X)) 2 (6) 
When aggregating calculated fields, multiplication and division can be performed directly from Type III indices. However, summation and subtraction between two attributes must combine relevant aggregates of shares and pseudo shares with an external program before reconstruction. Aggregates at CSPi compute as in Equation 3.

Finally, grouping queries using the GROUP BY or GROUP BY CUBE clauses can directly apply on shares if they target unencrypted key attributes. Again, grouping by other attribute(s) requires the use of a Type II index.

Consequently, executing some queries may require either transforming or splitting the query, depending on its clauses and operators, following the above guidelines. Figure 9 shows a sample query and the way it runs at the user's, at one index server and at CSP1 (query processing at other index servers and CSPs is similar). For clarity, the user, index server and CSP are denoted U, IS and CSP, respectively in Figure 9.

Finally, our approach directly supports all basic OLAP operations by directly querying cloud cubes and reconstructing the global result. For example, the total price and the number of products per year can be queried from Cube-I by query: 3).

(b) Execution steps 

COMPARATIVE STUDY

In this section, we compare fVSS to the related approaches presented in Section 2, with respect to security and cost in the pay-as-you-go paradigm, global cost being customarily divided into storage, computing and data transfer costs. Table 2 synthesizes the features and complexities of all approaches, which we discuss below.

Data Security Features

By data security, we mean data privacy, availability and integrity. By design, all secret sharing-based approaches enforce privacy by guaranteeing shares cannot be decrypted by a single CSP or an intruder who would hack a CSP. Actually, a coalition or the compromise of at least t CSPs is necessary to break the secret. Privacy is further improved in fVSS, because data is not shared at all CSPs', but only n -t + 2. Thence, fVSS imposes a new constraint: no CSP group can hold enough shares to reconstruct the original data if n < 2 × t -2. Indeed, n < 2 × t -2 ⇔ n -t + 2 < t, i.e., the number of shares is lower than the number of shares necessary for reconstruction.

With respect to availability, all secret sharing-based approaches, still by design, allow reconstructing the secret, i.e., query shares, when n -t CSPs fail. However, to the best of our knowledge, only fVSS allows updating shares in case of CSP failure(s), simply by not selecting the failing CSP(s) for sharing new data. This is again possible because data is shared at n -t + 2 CSPs instead of n.

Finally, to enforce integrity, only [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF] and fVSS verify both the correctness of shares and the honesty of CSPs by outer and inner code verification, respectively. Only two other approaches use inner code verification alone. The novelty of fVSS is that outer signatures are computed at the record and table granularity, instead of the attribute value's, which allows faster verification, e.g., when checking one table signature instead all signatures of one or several attributes in said table.

Storage Cost

Storage cost directly depends on shared data volume, which in turn depends on parameters n and t. Figure 10 plots the volume of shared data for all studied approaches, expressed as a multiple of original data volume V , with respect to n, with t = n in the upper graph and t = 3 in the lower graph. Figure 10 shows that fVSS help control shared data volume better than most existing approach, and is close to the best approaches [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF] in this respect.

However, storage cost does not only depend on the global volume of shares. Since fVSS allows selecting the data volume shared at each CSP, it can be differentiated to benefit from different pricing policies. Let us illustrate this through an example. Let n = 5, t = 4 and V = 100 GB. CSP pricing policies for this range of data volume are depicted in Table 3. Prices are real prices from CSPs such as Amazon web services, Windows azure and Google compute engine. Finally, let us assume that each individual share is not bigger than the original data it encrypts, e.g., a shared integer is not bigger than the original unencrypted integer. We also disregard index and signature volume, which depends on user-defined parameters in all approaches, for the sake of simplicity. 2). Storage cost is the sum of data volumes stored at each CSPi times CSPi's storage price. We included two strategies for fVSS. In fVSS-I, data are equitably shared among CSPs. In fVSS-II, data are preferentially shared at CSP1, CSP2 and CSP3, which are the cheapest. Results clearly show that fVSS-II achieves a much lower cost than fVSS-I. Moreover, even though global share volume with fVSS-II is significantly larger that with the most efficient previous approaches [START_REF] Attasena | A novel multi-secret sharing approach for secure data warehousing and on-line analysis processing in the cloud[END_REF][START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF], final cost is comparable, and even a little lower. However, [START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF] is not applicable in our context since it does not allow aggregation queries. It is thus discarded in the following. 

Sharing Cost

The sharing process time complexity (Table 2) depends on n, t and σ, which is the number of shared data pieces, i.e., individual attribute values. Since σ is normally much bigger than n and t, σ log σ > σnt > σt(n -t) > σn. Moreover, the number of CSPs where records are shared is n -t + 2 in fVSS and n in all other approaches. If t ≥ 2, which is quite probable, n -t + 2 ≤ n. Thus, we expect fVSS to be faster than previous approaches when sharing data.

Let us illustrate this through an example. Let n = 5, t = 4 and σ = 10 15 . CSP pricing policies are depicted in Table 3, where sVM, mVM and lVM stand for small, medium and large virtual machine, respectively. Let us assume that the computing powers of sVMs, mVMs and lVMs are 1 × 10 10 , 2×10 10 and 4×10 10 records per second, respectively. Virtual machine size is assigned to each CSP with respect to the number of records to share at that CSP.

Table 5 features a sharing cost comparison of all studied approaches but [START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. Sharing time is the number of processed records divided by the virtual machine's power. CPU cost is the sum of sharing times at each CSPi times CSPi's computing price. Results show that both fVSS-I and fVSS-II have a cheapest sharing process than all existing approaches, even though fVSS-I bears the longer sharing time. They also outline again the advantage of unbalancing the volume of shares at CSPs, which helps decrease cost by a factor 2.3 with respect to state-of-the-art approaches in this example.

Data Access Cost

Query response time, which is critical in an OLAP context, directly depends on the reconstruction process time complexity, which in turn depends on t and the number of records in the query response, γ (Table 2). All secret sharing approaches bear the same reconstruction complexity but [START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. However, this approach cannot compute aggregations on shares, implying all records involved in aggregations must be reconstructed at the user's, which is more costly than computing the aggregation on shares and only reconstruct the result. Moreover, we expect fVSS to be more efficient than previous approaches because we can directly perform all query types on shared DWs and cubes, in parallel, whereas other approaches cannot and must reconstruct bigger datasets before processing them at the user's. Let us illustrate this through an example. Let n = 5, t = 4. Let us assume we run a query matched by 10% of records, i.e., γ = 10 14 , and RG = {CSP1, CSP2, CSP4, CSP5}. CSP pricing policies and virtual machine power are the same as in Section 4.3.1.

Table 6 features a data access cost comparison of all studied approaches but [START_REF] Wang | A comprehensive framework for secure query processing on relational data in the cloud[END_REF]. Response time is the number of processed records divided by the virtual machine's computing power. CPU cost is the sum of response times at each CSPi times CSPi's computing price. Results show again that, even though response time is comparable for all approaches, fVSS allows much lower costs, especially when unbalancing the volume of shares at CSPs in fVSS-II, which helps decrease cost by a factor 4 with respect to state-of-the-art approaches in this example. 

Data Transfer Cost

Data transfer cost directly relates to the size of query results when accessing the shared DW. Since all approaches allow different operations and vary in share volume, it is difficult to compare data transfer cost by proof. However, to reduce data transfer cost, fVSS allows several aggregation operators running on shares. Moreover, by creating shared data cubes, we allow straight computations on shares, and thus only target results are transferred to the user, i.e., with no additional data reconstruction, and thus no stored data transfer.

CONCLUSION AND PERSPECTIVES

In this paper, we propose a new approach for securing cloud DWs, which simultaneously supports data privacy, availability, integrity and OLAP. Our approach builds upon fVSS, which is to the best of our knowledge the first flexible secret sharing that allows users adjusting share volume with respect to CSP pricing polices. Our experiments show that unbalancing share volume at CSPs allows significantly minimizing storage and computing costs in the pay-as-you-go paradigm. Privacy and availability are achieved by design with secret sharing, but fVSS achieves a higher security level and allows DW refreshing even when some CSPs fail. Finally, data integrity is reinforced with both inner and outer signature that help detect errors in query results and shares, respectively.

Future research shall run along three lines. First, we plan to further assess the cost of our solution in the cloud payas-you-go paradigm. We especially plan to balance the cost of our solution against the cost of risking data loss or theft. Moreover, since CSP pricing and servicing policies are likely to evolve quickly, we aim at designing a method for adding and removing CSPs to/from the CSP pool, with the lowest possible update costs and while preserving data integrity. Second, we aim at designing a tool that semi-automatically helps users adjust the volume of shares at each CSP's, with respect to cost, but also quality of service. Finally, we also work on share storage management, to optimize query performance and reduce both response time and computing cost.
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 2 Figure 2: Second strategy for sharing a database
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4 . 5 .

 45 Define two-variable homomorphic function HE2(a, b), where HE2(a, b), a and b are reals and HE2(a1, b) + HE2(a2, b) = HE2(a1 + a2, b). Set values of CSP identifiers IDi=1..n, K d and Ks such that their values range in ]0, p[. All HF1(IDi) must be unique and different from HF1(K d ) and HF1(Ks).
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 5 Figure 5: Outer signature tree at CSPi

  (a) If the right-most node at level u bears the maximum number of children, i.e., v = (j-1) mod (wi) u , insert a new right-most parent node (u, v) with value s touti0j . (b) If there is no node at level u such that j = (wi) u-1 +1, insert a new root node (u, 1) with value s toutiu1 = s tout i(u-1)1 .

( a )

 a If the right-most node at level u bears the maximum number of children, i.e., v = (g-1) mod (wi) u , insert a new right-most parent node (u, v) with value s routij0g. (b) If there is no node in level u such that g = (wi) u-1 +1, insert a new root node (u, 1) with value s routiu1 = HE * i(s rout ij(u-1)1 + s routij0g). Compute signature change before and after insertion: ∆ = HE * i(s rout ij(u-1)1 -s routij0g).(c) If root node has been reached, compute signature change before and after insertion: ∆ = HE * i(s routijuv -s routij0g). Then, update the root node's value to HE * i(s routijuv + s routij0g).
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 8 Figure 8: Example of sharing new data

"

  SELECT YearID, YearName, TotalPrice, Number FROM Cube-I, year WHERE Cube-I.YearID = year.YearID AND MonthID IS NULL AND DateID IS NULL AND CategoryID IS NULL AND Prod-No IS NULL". To drill down to total price and number of products per month in 2014, the previous query becomes: "SELECT YearID, YearName, Month, TotalPrice, Number FROM Cube-I, year, month WHERE Cube-I.YearID = year.YearID AND Cube-I.MonthID = Month.MonthID AND Cube-I.YearID = 2014 AND DateID IS NULL AND CategoryID IS NULL AND Prod-No IS NULL". SELECT SUM(S.price+S.tax) AS sumprice, P.prodName FROM Sale AS S JOIN Product AS P ON S.ProdNo=P.ProdNo JOIN Date AS D ON S.DateKey=D.DateKey WHERE D.Date BETWEEN '2014-01-01' AND '2014-01-15' GROUP BY P.prodName (a) Original query 1. (IS) Match DateKey in Type II index with condition D.Date BETWEEN '2014-01-01' AND '2014-01-15'. Let DK be the resulting set.
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 9 Figure 9: Sample query rewriting
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 10 Figure 10: Storage complexity comparison

Table 1 : fVSS parameters

 1 Lagrange interpolation using d jkl , s in jkl and the t -2 pseudo shares. Then, we can share d jkl and s in jkl at n-t+2 CSPs. Figure4plots an example where t = 4. Shares e 1jgl , e 2jgl and e 3jgl are created from polynomial f jkl (x) of degree t -1 = 3.

	Parameters				Definitions			
		p	A big prime number					
		n	Number of CSPs					
		t	Number of shares necessary for reconstructing original data
		CSPi	CSP number i						
		IDi	Identifier number of CSPi such that p > IDi > 1	
		m	Number of tables					
		Tj	Table number j such that Tj = {Rj,k} k=1...rj		
		ETij	Shared table of Tj stored at CSPi			
		qj	Number of attributes of Tj and ETij			
			(not including primary key)				
		rj	Number of records of Tj					
		erij	Number of records of ETij such that rj ≥ erij and n i=1 erij = (n -t + 2) rj		
		Ajl	Attribute number l of Tj and ETij			
		Rjk	Record #k of Tj such that Rjk = pkjk, djk1 . . . djkq j	
		ERijg	Record #g of ETij such that ERijg = pkijg, eijg1 . . . eijgq j
			ERijg is shared record of Rjk if pkjk = pkijg		
		pkjk	Primary key value of Rjk				
		pkijg	Primary key value of ERijg. It is not encrypted.	
		djkl	Value of Ajl of Rjk such that p > djkl ≥ 0		
		eijgl	Share of djkl stored in Ajl of ERijg such that p > eijgl ≥ 0.
		SGjk	Group of CSPs that store shares of Rjk such that	
			SGjk ⊂ {CSPi}i=1..n and |SGjk| = n -t + 2		
		U Gjk	Group of CSPs that do not store shares of Rjk such that
			U Gjk ⊂ {CSPi}i=1..n and U Gjk = {CSPi}i=1..n -SGjk	
		RG	Group of CSPs selected to reconstruct data such that	
			RG ⊂ {CSPi}i=1..n and |RG| = t			
		s injkl	Inner signature of djkl such that p > s injkl ≥ 0		
	s routijuv	Outer record signature number v, level u of ERijg in ETij
			stored at CSPi						
	s toutiuv	Outer table signature number v, level u of ETij stored	
			at CSPi							
		wi	Maximum number of child nodes in CSPi's outer	
			signature tree						
	ProNo ProName ProDescr CategoryID UnitPrice		ProNo Share location	
	124	Shirt	Red	1	75		124	10101		
	125	Shoe	NULL	2	80		125	01110		
	126	Ring	NULL	1	80		126	11010		
		(a) Original data		(b) Indices on index server
	ProNo ProName ProDescr CategoryID UnitPrice	ProNo ProName ProDescr CategoryID UnitPrice
	124	{6,5,3,11,7}	{10,5,8}	1	6	125	{6,5,4,5}	NULL	2	5
	126	{10,3,6,12}	NULL	2	45	126	{2,6,11,10}	NULL	6	8
		(c) Shares at CSP1		(d) Shares at CSP2	
	ProNo ProName ProDescr CategoryID UnitPrice	ProNo ProName ProDescr CategoryID UnitPrice
	124	{6,6,5,7,9}	{12,8,1}	4	7	125	{9,15,13,8}	NULL	12	7
	125	{6,5,8,3}	NULL	9	11	126	{2,7,6,9}	NULL	12	1
		(e) Shares at CSP3			(f) Shares at CSP4	
			ProNo ProName ProDescr CategoryID UnitPrice		
			124	{5,9,11,1,5}	{10,6,7}	8	13			
				(g) Shares at CSP5			
		Figure 3: Sample original and shared data	
	schemes use random polynomials. In contrast, we construct
	a polynomial by							

Table ETi , 1 Table ETi , 2

 ETi1ETi2 

. . .

Table

  ETi,m-1

					s touti01
						s touti11 s touti21
						s toutiv1
						where
		Table ETi,m			v = ⌈log w m⌉
	P.Keys pkim1	Am1 eim11	• • • • • •	Amq m eim1q m	s routim01 s routim11	
	. . . pkimer im	. . . eimer im 1	. . . • • •	. . . eimer im qm	s routim0r m	s touti0m or s routimur m where u = ⌈log w rm⌉
		Record signature		Record signature trees	tree Table signature
					Outer signature tree

Table Signature

 Signature 

  1. Compute ETij's table signature s touti0j = HF * i(0) and store it in a new right-most leaf node of the table signature tree.

2. Recursively create new parent nodes (u, v) up to the root of the table signature tree such that u = 1 . . . ⌈log w i j⌉ and v = ⌈j/(wi) u ⌉.

  Execute Query-II. Let us denote the results sumP Kpi, where sumP Kpi is sumPK's value for product p and its CSPi pseudo share.

	2. (U) Query-I is created to run at each CSP's:
	SELECT P.prodNo, P.prodName,
	SUM(S.price+S.tax) AS sumprice
	FROM Sale AS S JOIN Product AS P
	ON S.ProdNo=P.ProdNo
	WHERE S.Datekey IN (DK)
	GROUP BY P.ProdNo
	3. (CSP) Execute Query-I. W.r.t. Figure 8, result is:
	{ {124, {6, 5, 3, 11, 7}, 789},
	{126, {10, 3, 6, 12}, 945} }.
	4. (U) Query-II is created to run on Type I index:
	SELECT prodNo, SUM(OrderNo) AS sumPK,
	FROM Sale
	WHERE Datekey IN (DK)
	GROUP BY ProdNo
	5. (IS)

6. (U) Reconstruct each record (prodName, sumprice) in the query result. For example, to reconstruct record prodNo=124: CSP1 share of prodName is {6, 5, 3, 11, 7} and CSP1 aggregate of sumprice is 789 + 2 × HE2(sumP K (124)(1) , ID1) (Equation

Table 2 :

 2 Comparison of database sharing approaches

	Features and costs	[1]	[2]	[8]	[9]	[11]	[12, 13]	[19]	[21]	fVSS
	Data privacy	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Data availability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Ability in case CSPs									
	fail, to									
	-Query shares	Yes	Yes	Yes	Yes	Yes Yes No No	No	No	Yes
	Target	DBs	DWs	DWs	DBs	DBs	DBs	DBs	DBs	DWs
	Data sources	Single	Single	Multi	Multi	Single	Single	Single	Single	Single
	Data types	Positive	Integers,	Positive Integers Integers	Positive	Positive	Positive	Integers,
		integers	Reals,	integers			integers	integers	integers	Reals,
			Characters,							Characters,
			Strings,							Strings,
			Dates,							Dates,
			Booleans							Booleans
	Shared data access									
	-Updates	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
	-Exact match queries	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
	-Range queries	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes
	-Aggregation queries	Yes	Yes	Yes	Yes	Yes Yes No Yes No No	No	Yes
	Complexity									
	-Data storage w.r.t.	≥ n	≥ n/ (t -1)	≥ 2n	≥ 2n	≥ n	≥ n	≥ 2n	≥ n/t	≥ n -t + 2
	original data volume		+ signatures				+1 (B++ tree) +1 (hash tree)	+n/t (B++ tree)	+1 (B++ tree)
									+ signatures	+ signatures
	-Sharing time	O (σnt)	O (σnt)	O (σnt)	O (σnt)	O (σnt)	O (σnt)	O (σnt)	O (max (σ log σ, σn))	O (σt (n -t))
	-Reconstruction time	O γt 2	O γt 2	O γt 2	O γt 2	O γt 2	O γt 2	O γt 2	O (γt)	O γt 2

Table 3 :

 3 CSP pricing policies

		CSP1 CSP2 CSP3 CSP4 CSP5
	Storage ($/GB/month) 0.030 0.040 0.053 0.120 0.325
	sVM CPU time ($/h)	0.013 0.059 0.058 0.060 0.070
	mVM CPU time ($/h)	0.026 0.079 0.115 0.120 0.140
	lVM CPU time ($/h)	0.053 0.120 0.230 0.240 0.280

Table 4

 4 features a storage cost comparison of all studied approaches. The first line relates to unencrypted data stored at one CSP, for reference. Global share volume is computed with respect to data storage complexities (Table

Table 4 :

 4 Storage cost comparison

	Approach	Share volume (GB) Global per CSP	Storage cost ($)
	Unencrypted data	100	100	3 to 32.5
	[8, 9, 19]	1,000	200	113.60
	[1, 11, 12, 13]	500	100	56.80
	[2]	167	34	19.31
	[21]	125	25	14.77
	fVSS-I	300	60	34.08
	fVSS-II	300	99.8 + 99.8 + 99.8 + 0.4 + 0.2	12.39

Table 5 :

 5 Sharing cost comparison

	Approach	#records at VM type each CSP	Sharing time CPU cost (h:mm) ($)
	Unencrypted data at 1 CSP	10 15	lVM	6:57 0.36 to 1.94
	[1, 2, 8, 9, 11, 12, 13, 19]	10 15	lVM	6:57	6.40
	fVSS-I	6 × 10 14	mVM	8:20	4.40
		9.98 × 10 14	lVM	6:56	
		9.98 × 10 14	lVM	6:56	
	fVSS-II	9.98 × 10 14	lVM	6:56 ⇐= 6:56	2.80
		4 × 10 12	sVM	0:07	
		2 × 10 12	sVM	0:04	

Table 6 :

 6 Data access cost comparison

	Approach	#records at VM type each CSP	Response time CPU cost (h:mm) ($)
	Unencrypted data at 1 CSP	10 14	lVM	0:42 0.04 to 0.20
	[1, 2, 8, 9, 11, 12, 13, 19]	10 14	lVM	0:42	0.48
	fVSS-I	6 × 10 13	mVM	0:50	0.30
		9.98 × 10 13	lVM	0:42	
		9.98 × 10 13	lVM	0:42	
	fVSS-II	0	-	0:42 ⇐= 0:00	0.12
		4 × 10 11	sVM	0:01	
		2 × 10 11	sVM	0:01