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Summary

e In order to progress in the understanding of mechanical stress generation, the mesoporosity
of the cell wall and its changes during maturation of poplar (Populus deltoides x P. nigra) ten-
sion wood (TW) and opposite wood (OW) were measured by nitrogen adsorption—desorp-
tion.

e Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify
whether the mesoporosity change simultaneously with the deposition of the G-layer in TW.

e Results show that mesoporous structures of TW and OW were very similar in early develop-
ment stages before the deposition of G-layers. With the formation of the S, layer in OW and
the G-layer in TW, the mesopore volume decreased steeply before lignification. However, in
TW only, the decrease in mesopore volume occurred together with the pore shape change
and a progressive increase in pore size.

o The different patterns observed in TW revealed that pores from G-layers appear with a dif-
ferent shape compared to those of the compound middle lamella, and their size increases dur-
ing the maturation process until stabilising in mature wood. This observation strongly
supports the hypothesis of the swelling of the G-layer matrix during maturation as the origin

of maturation stress in poplar tension wood.

Introduction

Trees have a remarkable ability to modulate their secondary
growth to adapt their material to environmental stresses (slope,
wind, snow or light). More than just modifying the amount of
secondary growth, trees can adapt the mechanical state of the
wood produced. All around the circumference of the trunk, the
newly formed wood layers are produced under tensile stress.
Trees can develop a dissymmetry of the stresses around the tree
circumference, generating a bending moment allowing the trunk
to recover verticality or maintain a branch at a defined angle. In
angiosperm trees, asymmetry is produced by forming a wood
with high tensile stress, called tension wood, on the upper side of
the leaning stem (Wardrop, 1964; Fisher & Stevenson, 1981). In
tension wood, tensile stress is ¢. 5-10 times higher than in oppo-
site wood (Archer, 1986; Fournier ez al., 1994; Clair et al., 2013).
The generation of this stress occurs during the maturation of the
cell wall, and is therefore called maturation stress. This process
may start after differentiation and elongation of meristematic
fibres, as during these early stages the cell primary wall is too soft
to support the stress. Then, stress generation is suspected to finish

when the cell wall is stiff enough, possibly (but not surely)
concomitant with the cell death.

In most of the temperate species, such as poplar, tension wood
is characterized by the presence of gelatinous (G-) fibres which
contain a peculiar cell wall layer, called the G-layer (Onaka,
1949; Dadswell & Wardrop, 1955) replacing the S3 and part or
whole of the S, layer. The G-layer is highly cellulosic with highly
crystalline cellulose and microfibrils oriented nearly parallel to
the fibre axis (Fujita ezal., 1974; Daniel ezal., 2006). Cellulose
microfibrils are embedded within a matrix of polysaccha-
rides, including pectin (Bowling & Vaughn, 2008), xyloglucan
(Nishikubo ezal, 2007), glucomannan and xylan (Kim &
Daniel, 2012) and arabino-galactan proteins (AGP; Lafarguette
et al., 2004; Andersson-Gunneras ez al., 2006; Bowling & Vaughn,
2008). A strong activity of a xyloglucan transglucosylase/hydro-
lase (XTH) was also reported in the G-layer (Nishikubo ezal.,
2007; Mellerowicz et al., 2008; Hayashi & Kaida, 2010). Con-
trary to any other secondary wall, the G-layer is almost devoid of
lignin (Pilate ez al., 2004; Yoshinaga ez al., 2012).

In many tropical tree species, tension wood does not contain
any G-layer, showing that the G-layer is not always necessary for



the generation of tensile maturation stress. Nevertheless, the G-
layer has been taken as a model for studying the origin of matura-
tion stress. Indeed, in species in which it is present, the G-layer is
recognised as playing an essential role in the mechanism of stress
generation in tension wood. First evidence comes from the rela-
tionship between the amount of G-layer and the stress level: the
higher the amount of G-layer, the higher the tensile stress (Clair
etal., 2003; Yamamoto etal, 2005; Fang eral., 2008). It has
been suggested (Miinch, 1938; Goswami ez a/., 2008) that the G-
layer was providing the initial driving force generating this stress,
which would be transferred to outer lignified layers and finally
supported by them. However, observation at the cell wall level of
the high contractile deformation of the G-layer when a free sur-
face is created in a tension wood sample (Clair ezal, 2005),
proves that the G-layer is not only the driver of, but also supports
the tensile stress. Finally, the observation of the cellulose lattice
spacing changes in the fibre direction using synchrotron X-ray
diffraction during stress release (Clair ezal., 2006) and following
the maturation process (Clair eral., 2011), revealed that tensile
stress is directly supported by cellulose microfibrils and that the
stress is generated synchronously with the synthesis of the G-layer
in poplar tension wood.

However, the mechanism of maturation stress generation still
remains to be addressed: what generates this tension inside G-
layer microfibrils? Different hypotheses have been proposed and
discussed to explain this mechanism towards elucidating G-layer
functions: the modification of the cellulose structure (Bamber,
2001; Mellerowicz etal., 2008), the contraction of amorphous
zones within the cellulose microfibrils (Okuyama eral., 1994;
Yamamoto, 2004), or the biochemical activity of hemicellulose
in the G-layer matrix during the formation of microfibril
aggregates (Nishikubo ezal., 2007; Bowling & Vaughn, 2008;
Mellerowicz e al., 2008). Alméras ezal. (2012; later detailed by
the authors in Fournier eral, 2014) proposed several mecha-
nisms whereby the stress would be transferred to the cellulose
microfibrils by the swelling or shrinkage of the matrix in an inter-
connected network of cellulose microfibrils. The hydrophilic
properties of gels could provide a physical basis for the cause of
this matrix swelling or shrinkage.

From a physicochemical point of view, hydrogels are defined
by a large amount of water-filled mesopores (with cavities from 2
to 50 nm across). The nitrogen adsorption method allows estima-
tion of the pore size and surface area of mesoporous materials
(Gregg & Sing, 1982; Rouquerol ¢z al., 1999). This technique is
based on the measurement of the adsorption isotherm of N, at
its boiling temperature (77 K) on an outgassed sample. The
analysis of the isotherm allows for the determination of the
amount of N, used for the deposition of the first monolayer (giv-
ing the surface area) and the following N, layers up to the filling
of the pores. Knowledge of the size of N, molecules allows for
determination of pore size distribution. A detailed description of
the method applied to wood is given in Chang ez al. (2009). This
technique applied to the study of the texture of tension wood
aerogel allowed for the identification of the hydrogel structure of
the G-layer characterized by a large amount of water-filled mes-
opores, with peak-pore size ranging from 6 to 12 nm in chestnut

(Castanea sativa) tension wood (Clair ez al., 2008), poplar tension
wood (Chang eral, 2011, 2012) and in several tropical species
(Chang ez al., 2009).

Gels are known to be able to exhibit high shrinkage or swelling
in response to physicochemical changes, such as ion concentra-
tion change. In angiosperm, similar cellulose-based hydrogels
have been shown in the pit membranes of vessels and it has been
proposed that the microstructure change depends on the change
of cation concentration (Zwieniecki eral, 2001; van leperen,
2007; Lee etal., 2012). Therefore, physicochemical changes of
pectin-like substances in the G-layer matrix could make it swell
or shrink and then be the driving force of the growth stress gener-
ation in tension wood. These strains are expected to be accompa-
nied by changes in pore size and/or shape in the gel of the
G-layer. The aim of this study is to follow these changes during
the maturation process of poplar tension wood.

In this study, wood tissues were sampled at different depths
from the cambium to mature wood on the upper side (tension
wood) and the lower side (opposite wood) of a naturally tilted
poplar tree. The mesoporous texture of the samples, in their aero-
gel forms, was analysed using the nitrogen sorption isotherm tech-
nique in order to record the changes in shape and size of
mesopores during wood formation, and check the assumption of
G-layer matrix swelling or shrinkage during maturation stress gen-
eration. Opposite wood was taken as a control, as usual in studies
of tension wood, because ‘normal’ woods (taken in a straight stem
or in lateral sides of a tilted stem) may contain a small amount of
G-layers, which could have a confounding effect on the results.

Materials and Methods

Sampling

A naturally tilted poplar (Populus deltoides (Bartr.) Marsh. x
P. nigra L.) tree (24 cm diameter at breast height (dbh)) grown in
Grabels (Domaine Maspiquet, Lycee Agropolis Montpellier) in
the South of France was sampled on 7 June 2012 during a fast
growing period. The tree was felled at 11:00 h and sampling was
performed early in the afternoon at the laboratory. The sampling
was made on both the upper side (tension wood) and the lower
side (opposite wood) of the leaning stem according to the proce-
dure described below. The bark and phloem were carefully
removed to open a ‘window’ to the cambial zone (Fig. 1a). For
the bark side, the inner surface of the phloem was peeled with
knife blade and the peeled sample was marked as TO and OO,
respectively, for tension side and opposite side. For the xylem
side, the back of a scalpel blade was used to peel the entire surface
gently, and the first peeled sample was marked as T1 and O1.
For the second and third peeled samples (numbered T2, T3, O2
and O3), the front of a scalpel blade and a knife blade were used,
respectively, with increasing peeling force while carefully avoid-
ing sectioning. Peeling of the soft tissues of the developing xylem
result in a highly hydrated fibrous material indicating that the
peeling separates fibers but does not (or does so only marginally)
break the cell walls. Some resultant stretching is expected at a mi-
crometric scale but this is assumed not to affect significantly the
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Fig. 1 Picture of the peeling experiment. (a) Debarking. (b) Peeling of the soft first wood layer (T1). (c) Schematic diagram showing sample preparation for
N, adsorption—desorption measurement to examine the mesoporosity from each developmental stage of poplar (Populus deltoides x P. nigra) tension
wood cell wall formation (tension wood side taken as example). L, longitudinal direction; R, radial direction; T, tangential direction.

mesoporosity, which is at a nanometric scale. After three peeled
samples, it becomes impossible to obtain further samples by peel-
ing due to the increasing adherence between fibers. Then wood
blocks (20 x 10 x 10 mm, longitudinal (L) x tangential
(T) x radial (R)) were extracted from the peeled area with care to
avoid mechanical damage and maintain samples in a wet condi-
tion during the time of sampling. Then 260-pm-thick samples
(obtained with several sections) were cut successively from the
wood blocks with a sliding microtome until the previous growth
ring was reached. In total 12 sectioned samples for the tension
wood side, numbered T4-T15 and nine sectioned samples for
the opposite wood side, numbered O4-O12, were obtained.
Immediately after peeling and sectioning, samples were kept in
30% ethanol and dehydrated in a graded series of ethanol solu-
tions (30%, 50%, 70%, 85%, 96% and 100%). The dehydrated
samples were exchanged with liquid CO, and supercritically
dried (aerogel form) before N, adsorption measurements in order
to maintain the mesoporosity, avoiding the collapse of the gel
(Clair ez al., 2008).

Several previous works (Clair ez al., 2008; Chang ez al., 2009,
2011, 2012) have shown the reproducibility of the measurements
in mature tension wood and opposite wood and the strong differ-
ence of mesoporosity between these types. Here the aim of the
study is to make a detailed description of the changes in mesopo-
rosity from cambium to mature wood, so the choice was there-
fore to maximize the number of steps on a single tree by refining
the sample thickness for each step for both tension wood and
opposite wood formation. In order to check the reproducibility
in the developing xylem, other poplar trees were sampled in the
cambial zone (S. S. Chang, unpublished data) and results were in
good agreement with presented data. Part of the samples were
also duplicated in order to validate the repeatability of our mea-
surements, and here again, results were in perfect accordance.

The distance from the cambial zone was recorded for each tan-
gential section. For peeled samples, a small wood block was

sampled before the first peeling and after each peeling, at which
point the distance from the border of the block to the annual ring
was measured with Image] (National Institutes of Health,
Bethesda, MD, USA) in order to estimate the depth of successive
peelings.

Microscopic observations and cell wall thickness
measurement

Wood blocks extracted from unpeeled samples at the vicinity of
the peeled part were dehydrated with ethanol and embedded in
LR White resin (two exchanges of resin/ethanol mixture for 1 h,
followed by two exchanges in pure resin for 1h and kept over-
night at room temperature, then polymerised at 65°C overnight).
Transverse sections of 1-pm thickness were cut with a diamond
knife and observed with an optical microscope (Leica Microsys-
tems, Milton Keynes, UK) in phase contrast mode. The radial
cell wall thicknesses (with and without G-layer) were manually
measured from the images using the image analysis software
Image]. Measurement of cell wall thicknesses without the G-layer
allows calculation of the non-G-layer cell wall (called other layers,
OL), and measurement of thicknesses with the G-layer allows cal-
culation of the G-layer thickness (GL) by subtracting OL.

N, adsorption—desorption measurement

The supercritically dried samples (c. 0.4—0.7 g) were outgassed at
323 K under vacuum until a stable 3 x 107> Torr pressure was
reached without pumping. This is done to remove physically
adsorbed gases from the sample surface, in particular, water
vapour. Nitrogen adsorption—desorption isotherms were recorded
at 77 K on a micromeritics ASAP 2020 volumetric apparatus.
This experimental technique allows evaluating the surface area
(SpeT> Brunauer eral., 1938) which is directly correlated with the
pore volume (Gregg & Sing, 1982) and the pore size distribution
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Fig. 2 Representation of the median pore size and pore size range in
poplar (Populus deltoides x P. nigra) calculated from the adsorption pore
size distribution (using method of Broekhoff & de Boer, 1967). Fifty
percent of the pore volume has a pore size in between the two vertical
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(Broekhoff & de Boer, 1967) of the samples. In order to cha-
racterise the change in the whole distribution of pore sizes, pore
size is not only characterised by its peak pore size (size of the
pores the more represented), but also by its range of distribution.
The pore size range was calculated from adsorption pore size dis-
tribution diagrams (Fig. 2) after integration of the area under the
curve of pore size distribution. Corresponding pore sizes at 25%,
50% (median) and 75% of the volume were then plotted for each
peeling or section sample (Figs 3¢, 4c).

Under the assumption of a uniform distribution of pores in
the material, an average pore diameter (D) and a distance
between pores (#) can be estimated using surface (SpeT) and mes-
opore volume (V,,,):
D =X x Vmp/SBET Eqn 1
with X=2, 3 or 4 depending on the pore shapes spherical, cylin-
drical or lamellar, respectively;
t = 2/(SBET X p) Eqn 2
with p~ 1.5 for wood constituents. The hypothesis of an
uniform porosity of the cell wall is only acceptable near the cam-
bial zone, before the deposition of the secondary wall, and there-

fore these parameters are only used to discuss the early change of
mesoporosity near cambial zone.

Results

Cell wall deposition

Figures 3(b) and 4(b) show variations in the average thickness of
cell wall layers during maturation of opposite wood and tension

wood, respectively. The thicknesses are plotted vs the distance of
the measured fibres from the cambial zone. In Figs 3(a) and 4(a)
light micrographs of the transverse sections of opposite wood and
tension wood, respectively, are shown, displaying the cell differ-
entiation at different distance from the cambium. These photo-
graphs demonstrated that the optical microscopy in phase
contrast mode allows one to easily trace G-layer formation from
unstained transverse sections.

In the first 500 pm after the cambium, the gradual thickening
of the compound middle lamella (CML) and secondary wall layer
is clearly visible both in opposite wood and tension wood
(Figs 3al—a3, 4al—a2). No difference in cell morphology between
opposite wood and tension wood could be observed in this area.
In opposite wood, the thickening of the cell walls is completed at
1100 pm after the cambium where the cell wall thickness remains
constant (Fig. 3a5-a6). No G-layer was observed in the opposite
wood sample (Fig. 3a). In tension wood, the G-layers start to
become visible after 500 um (Fig. 4a3). However, the sudden
decrease of OL thickness at the same position suggests that a very
thin G-layer could already be produced at ¢. 400 pm (the dotted
line in Fig. 4b is an interpolation of the G-layer thickening) but
is not detectable when its thickness is < 0.3 pm.

The G-layer thickness changes abruptly at the growth ring
transition located ¢. 2600-2800 um (Fig. 4b). This change can
be attributed to the decrease in fibre diameter in latewood and
the strong relationship between G-layer thickness and fibre diam-
eter, as observed in poplar by Fang ez a/. (2008). In tension wood,
OL thickness is not disturbed at the ring transition. In opposite
wood, a sharp change of the cell wall thickness is observed at the
growth ring transition ¢. 2300-2400 pm (Fig. 3b).

High mesoporosity in the cambial zone and its sudden loss
after the last peelable sample

The surface area Sger of the samples from opposite wood and
tension wood are shown in Figs 3(c) and 4(c), respectively. The
value of Sggr is very high near the cambium zone allowing us to
conclude that the middle lamella and primary wall (hereafter
denoted CML) have a hydrogel structure in the early stages of
wood formation. During these stages, the wall is made of an un-
organised cellulose network embedded in hemicelluloses and pec-
tin components which are known for their ability to produce a
gel. These ‘wood’ layers are weakly bonded to each other and
were easily manually peeled.

After this stage, the surface area of opposite wood decreases
dramatically undil it almost disappears (1.2-1.5 m* g~ "), parallel
to the linear increase in cell wall thickness. In tension wood, the
steep decrease of surface area starts from sample T3 at
105m®g ™" to sample T5 at 11 m”> g~ " and then remains con-
stant, due to the appearance of the G-layer from T4. At positions
O4 and T4, the cohesion between fibres is much stronger and
prevented sample preparation by peeling, indicating also some
strong modification in the CML. At this stage, the cell wall
reaches about half of its final thickness in opposite wood, whereas
in tension wood, OL nearly reached its final thickness and the G-
layer is presumably starting to be deposited.
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Fig. 3 Cell wall structure and mesoporous texture of poplar (Populus deltoides x P. nigra) opposite wood during cell wall maturation. (a) Morphological fibre
details according to the distance from the cambial zone in poplar opposite wood. Bar, 10 um. The light micrographs (a1-a6) were acquired with an optical
microscope in phase contrast mode. (b) Cell wall thickness. (c) Median pore size (closed circles), pore size range (straight lines) and surface area (open squares,
Sger, displayed in logarithmic scale). The vertical dashed line indicates the position of the previous growth ring. (d) Nitrogen sorption isotherms at four key
stages: O1, early stage of cell wall thickening; O4, later stage of cell wall thickening; O6, completion of cell wall thickening; O9, mature cell wall (closed circles,
adsorption; open circles, desorption; the corresponding pore shapes are presented in each figure). STP, standard temperature and pressure (0°C, 100 kPa).

Table 1 shows the D and # under the assumption of an  an overall steep increase in # This increase by a factor > 10 can-
uniform pore distribution. In opposite wood, the transition  not be attributed to the change in pore size and can only be the
between O3 and O4 is characterized by a decrease in D but also  result of the filling of almost all the mesoporosity, indicating that
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details according to the distance from the cambial zone. Bar, 10 pm. The light micrographs (a1-a6) were acquired with an optical microscope in phase
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distribution (straight lines), and surface area (open squares, Sger, displayed in logarithmic scale). (d) Nitrogen sorption isotherms at four key stages: T1, before
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Table 1 Pore size diameter (D) and distance between pores (t) calculated
from surface (Sger) and and mesopore volume (Vi) under the assump-
tion of an uniform distribution of cylindrical pore in the poplar (Populus
deltoides x P. nigra) material

Peeled samples Sections
1 2 3 4 5
D (nm)
ow 7.8 6.8 6.2 2.6 2.2
T™W 7.9 8.3 7.6 6.0 6.4
t (nm)
ow 8.7 215 22.9 265.8 462.0
™ 7.7 71 11.8 44.5 108.8

OW, opposite wood; TW, tension wood. Abrupt change in t from peeled
sample to section cannot be explained by the D increase indicating the fill-
ing of most of the mesoporosity between the stages.

the middle lamella and primary wall lose there porosity before
the completion of the cell wall. This deposition of new material
in the mesoporous system would explain the difference in attach-
ment/cohesion between fibres observed during sampling (‘peel-
able’ to ‘unpeelable’). In tension wood, a similar trend is
observed but additional mesoporosity from the newly deposited
G-layer makes the transition less abrupt. However, considering
the sample preparation, wherein these two states of the wall could
clearly be separated, it can be stated that in tension wood, also,
mesoporosity from the CML is mainly filled when deposition of
the G-layer starts.

Pore shape

The shape of the N, adsorption—desorption isotherms combined
with the difference in pore size distributions obtained from
adsorption and desorption provide information on the shape of
the pores in the samples (Groen & Pérez-Ramirez, 2004). Iso-
therms are compared at all stages during cell differentiation of
tension wood and opposite wood; only four stages are presented
in Figs 3(d) and 4(d) (full set of data is presented in Supporting
Information Figs S1, S2). For opposite wood, the selection of the
four stages was defined as follows: O1, early stage of cell wall
thickening; O4, later stage of cell wall thickening; O6, comple-
tion of cell wall thickening and O9, mature cell wall. For tension
wood, the selection of the four stages was based on the G-layer
formation: before G-layer formation (T'1), early stage of G-layer
formation (T4), later stage of G-layer formation (T7) and com-
pletion of G-layer thickening (T11). Measurements at other loca-
tions showed similar isotherms for each differentiation stages.
According to the International Union of Pure and Applied
Chemistry (IUPAC) classification (Sing ezal., 1985), the iso-
therms of tension wood are type IV with a H3 type hysteresis
loop, indicating the presence of mesopores with a nonuniform
size. For opposite wood, the isotherm of the first stage (O1) is
similar with tension wood (T1). For the next three stages, the iso-
therms are intermediary between type IV and type 11, indicating
the presence of large mesopores with a broad size distribution
that continues into the macropore domain. The hysteresis loop is

very narrow, the adsorption and desorption branches being
almost vertical and nearly parallel above 0.9 relative pressure.

Peak pore size determined from the adsorption branch of the
isotherm corresponds to the cavity size, whereas that of the
desorption branch corresponds to the throat size of a pore (Groen
& Pérez-Ramirez, 2004). Thus, comparing the adsorption and
desorption pore size distributions provides information about the
pore shapes. At stage 1, for both tension wood and opposite
wood, the peak pore size measured from the adsorption branch
(7 nm) is smaller than the peak pore size measured from the
desorption branch (8 nm). Both isotherms show a wide hysteresis
loop between the adsorption and desorption branches ended near
p/p°=0.48 with nearly parallel branches. This behaviour has
been observed in adsorbents with highly connected three-dimen-
sional pore systems (Fan ezal, 2001) and can be attributed to
cone-shaped pores with a wide opening, which decreases the acti-
vation energy of condensation.

With the G-layer formation in tension wood, the desorption
branch is characterised by a steep desorption at p/p°®=0.48 in all
isotherms, indicating that the pore opening is somewhat nar-
rower than the pore cavity. The peak pore size calculated from
desorption branches is still 8 nm, whereas more than one peak
appears on the adsorption pore size distribution, with mean sizes
of 7 and 12 nm. To produce such a size distribution, some of the
pores have an ink-bottle shape with pore cavities that are less than
twice the diameter of the throats, whereas others could have a
slit-shape character with nearly constant cavity and throat sizes.
The comparison of peak pore size from adsorption and desorp-
tion branches suggests that mesopores have an ink-bottle shape.
This typical mesopore shape is characteristic of the G-layer as
previously described in mature poplar (Chang eral, 2011) and
chestnut tension wood (Clair et al, 2008). The transition from
conical pores to ink-bottle shaped pores appears clearly between
samples T3 and T4, indicating that a mesoporosity typical of the
G-layer is already observed before the G-layer is visible in phase
contrast microscopy.

For opposite wood, from O4 to mature wood, the hysteresis
loops are very narrow, and the adsorption data show similar pore
size to that of the desorption data (mean peak size of 8 nm). It
tends to indicate the presence of mesopores between the cellulose
microfibrils or in the matrix forming slit-shaped pores. However,
it should be noted that due to the low mesopore volume and low
surface area in opposite wood, the pore shape and pore size distri-
butions have to be interpreted with caution.

Pore size distribution

Pore size ranges are shown in Figs 3(c) and 4(c) and a detail on
some of the pore size distribution (determined from adsorption
isotherm) is given in Fig. 5. Opposite wood and tension wood
have very similar patterns near the cambium zone (at the first
300 pm after cambium) with median pore size ¢. 10 nm and peak
pore size at ¢. 7 nm. Cell walls at this stage are mainly composed
of the middle lamella and primary walls. After this stage, a new
contribution of pores with peak pore size of 11.5 nm is observed
in both opposite wood and tension wood (Fig.5). The
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Fig. 5 Poplar (Populus deltoides x P. nigra) pore size distributions determined from the absorption branch of the isotherms of five of the samples from
tension wood (a) and four of the samples from opposite wood (b). T1-T14 and O1-O5: tension wood and opposite wood samples, respectively, at
increasing distance from cambium (T1, O1) to mature wood (T14, O5). Pore volume is normalised by its maximum value (value at peak pore size), in order
to emphasize the shift in pore size during cell wall development, revealed by the decreasing contribution of the peak located near 7 nm, together with the

increasing contribution of the peak located near 11.5 nm.

contribution of this peak increases during maturation to become
higher than the peak at 7 nm at the end of the maturation pro-
cess, both in opposite and tension wood (Fig. 5). This stage of
cell maturation is also accompanied by an increasing median pore
size and a wider pore range (Figs3c, 4c). In tension wood, the
pore size range progressively increases with a wider pore size
range centred on 20 nm, nearly two times higher than in the
cambial zone, synchronously with the deposition of the G-layer.
This range remains nearly constant after the tension wood cell
wall reaches its final thickness. In opposite wood, the median
pore size increases much faster to reach ¢. 25 nm in sample O4
and sample O5. After 1000 pum, it becomes impossible to com-
pute the pore size distribution in opposite wood due to the low
volume of N, adsorbed close to the instrumental limitation.

Discussion

The N, adsorption—desorption isotherm method allowed for the
characterisation of the mesoporosity changes during cell wall
maturation in tension wood and opposite wood. The develop-
ment of the CML started with the deposition of mesoporous
material with high mesopore volume for both tension and oppo-
site wood. The similar hysteresis loops indicate that tension wood
and opposite wood both have a network of large-mouth conical
pores in this development stage. With the cell wall thickening,
the high porosity of the CML of opposite wood decreases
abruptly and is nearly lost. This strong change indicates the depo-
sition or reorganization of material in the wall. These modifica-
tions may be attributed to the lignification process. However,
filling of the mesoporous system was found to occur much before
the completion of the wall (about half of the final cell wall thick-
ness), whereas Yoshinaga ezal. (2012) observed on poplar with

UV photographs and TEM micrographs after KMnOj staining
that lignification of CML is not yet finished (especially between
cell corners) when the cell wall is about half of its final thickness
in normal wood (Yoshinaga eral, 2007; A. Yoshinaga, pers.
comm.) and in tension wood (Yoshinaga ez al., 2012). However,
the detection by FTIR of a peak at 15001510 cm ™" attributed
to the C=C (aromatic symmetrical stretching) of lignin (March-
essault, 1962; Faix, 1991) early in the cell wall deposition both in
normal wood and tension wood (Chang eral., 2014) may sup-
port the hypothesis that some precursor of lignin may be involved
in the mesopore filling. The origin of the filling of the mesopores
of the CML in this early stage of development remains therefore
unsolved and would need a deeper investigation.

In tension wood the decrease of mesoporosity in the CML is
compensated by a new mesoporosity, with ink-bottle shaped
pores, changing the isotherm shape but maintaining the meso-
pore amount. This new mesoporosity, characterized by a pore
shape typical of what was observed in the mature G-layer (Clair
etal., 2008; Chang eral, 2009, 2011, 2012), is observable
shortly before the G-layer was distinguished in phase contrast
optical microscopy and remains all through the G-layer develop-
ment until mature wood. This ink-bottle pore shape is never
observed in opposite wood, even during the maturation process.
However, the peak pore size is shifted from 7 to 11 nm in the
early stage of maturation of opposite wood as it is in tension
wood indicating that the mesoporous texture of secondary wall in
opposite wood does not differ by the shape of pores but differs in
pore size compared to the CML. In mature opposite wood, there
was very low but detectable mesopore volume. This mesoporosity
was proposed to be ascribed to the pit membranes of the vessels
(Clair ezal., 2008; Chang eral., 2009), which are known to be
composed of unlignified primary wall with pectin gel as the
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G-layer (van leperen, 2007; Lee eral, 2012). Interestingly, this
mesoporosity is characterized by a pore size range wider than the
G-layer and nearly three times wider than in primary wall of the
same specimen. This would suggest that, if correctly attributed to
the pits, the primary wall at the pit position would be modified
during the maturation by enlarging the pores in order to achieve
its conductive functions.

Most relevant to the understanding of maturation stress gener-
ation is the specific behaviour of mesoporosity during G-layer
maturation. It appears that the pore size range increases progres-
sively from a median value of 12 nm where first ink-bottle pores
are visible (T4, ¢. 400 pm from the cambium) to ¢. 20 nm at
1600 pm away from the cambium when the G-layer thickness
remain stable and the G-layer can be considered as mature. This
increase in pore size is not sudden after G-layer deposition but
starts from the early beginning of the G-layer deposition, suggest-
ing a continuous increase in size of the newly deposited pores (see
schematics Fig. 6). The initial size of pores in the G-layer is quite
similar to the one observed in CML but differs by its shape, indi-
cating that the initial state of G-layer matrix may present similar
polysaccharides as in the CML but with a different organisation.
This last observation could find explanation in the strong differ-
ence in the organisation of the cellulose network as CML have
cellulose microfibrils much less organised than in the well orien-
tated G-layer (Norberg & Meier, 1966).

Matrix swelling
during maturation

\AAAAAAAAA/

Tensile stress

Fig.7 Model of longitudinal tensile stress generation through the swelling
pressure of the gelatinous matrix within the cellulose microfibril network.

The increasing pore size during maturation suggests that the
G-layer matrix swells during cell wall maturation in tension
wood. This observation strongly supports the hypothesis of a
swelling of the matrix as the driving force of maturation stress
generation as proposed by Alméras ezal. (2012). According to
this model (Fig. 7), the swelling of the matrix in the intercon-
nected cellulosic network results in a longitudinal stress of high
magnitude, through the redirection of the swelling pressure along



the microfibrils, thus putting them in a state of tensile stress, con-
sistent with 7z vive observations of the extension of cellulose
lattice spacing during G-layer maturation (Clair ezal., 2011).

Future lines of research on this topic will focus on the triggers
of this swelling. It is known that some physicochemical changes
such as water content or ion concentration, as observed in pit
membranes (van leperen, 2007; Lee e al., 2012), are able to act
on the gel structure and function. However, up to now, no evi-
dence has been provided that a similar process occurs during mat-
uration of tension wood cell wall. Another challenge will be to
elucidate the mechanisms associated with tension stress genera-
tion in species not producing a G-layer.
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