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Abstract 

Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea 

involved is simple, the implementation of any procedure to solve a general problem is not an easy task. 

Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. 

Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we 

propose three methods for solving unconstrained multiobjective optimization problems involving 

quadratic functions. In the first, for bi-objective optimization defined in the bi-dimensional space, a 

continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a 

condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the 

third, with functions defined in n-dimensional space, a direct non-iterative algorithm is proposed to find 

the Pareto set. Simple problems highlight the suitability of the proposed methods. 
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1. Introduction 

Life is about making decisions and the choice of the optimal solutions is not an exclusive 

subject of scientists, engineers and economists. Decision making is present in day-to-day life. 

Looking for an enjoyable vacancy, everyone will formulate an optimization problem to a travel 

agent, a problem like: with a minimum amount of money, visit a maximum number of places in 

a minimum amount of time and with the maximum of comfort. Usually all real design problems 

have more than one objective, namely they are multiobjective. Moreover, the design objectives 

are often antagonistic. 

Edgeworth (1881) was the pioneer to define an optimum for multi-criteria economic 

decision making problem, at King’s College, London. It was about the multi-utility problem 

within the context of two consumers, P and π: “It is required to find a point (x, y) such that in 

whatever direction we take an infinitely small step, P and π do not increase together but that, 

while one increases, the other decreases.”  

Few years later, in 1896, Pareto (1971), at the University of Lausanne, Switzerland, 

formulated his two main theories, Circulation of the Elites and The Pareto Optimum: “The 

optimum allocation of the resources of a society is not attained so long as it is possible to make 

at least one individual better off in his own estimation while keeping others as well off as before 

in their own estimation.” 

Since then, many researchers have been dedicated to developing methods to solve this kind 

of problem. Interestingly, solutions for problems with multiple objectives, also called multi-

criteria optimization or vector optimization, are treated as Pareto optimal solutions or Pareto 

front, although as Stadler (1988) observed, they should be treated as Edgeworth-Pareto 

solutions. 

Extensive reviews of multiobjective optimization concepts and methods are given by 

Miettinen (1998); for evolutionary algorithms by Goldberg (1989) and for evolutionary 

multiobjective optimization by Deb (2001). The theoretical basis for multiobjective 

optimization adopted in this work was based on these references. 

Thanks to the computer development optimization of large scale problems became a 

common task in engineering designs. The development of high speed computers and its 

increasing use in several industrial branches led to significant changes in the design processes. 

Currently, the computers, each time faster, allow the engineer to consider a wider range of 

design possibilities and optimization processes allow systematic choice between alternatives, 

since they are based on some rational criteria. If used adequately, these procedures can, in most 

cases, improve or even generate the final results of a design.  

Associated to computer development, many of the research done in optimization is focused 

on numerical methods to solve any kind of problem but sometimes simplified problems can give 

important clues to the designer during the trade-off phases of a decision.  

The present work aims to bring new approaches to solve multiobjective optimization 

problems, providing a rapid solution for the Pareto set if the objective functions involved are 

quadratic.  

Nomenclature 

DM decision maker 

𝐟(𝐗) objective functions vector 

GA genetic algorithm 

𝑔𝑗(𝐗) j
th
 inequality constraint function 

ℎ𝑖(𝐗) i
th
 equality constraint function 



 k number of objective functions 

KKT Karush-Khun-Tucker 

 l number of equality constraint functions 

 m number of inequality constraint functions 

MOOP multiobjective optimization problem 

NSGA II non-dominated sorting genetic algorithm, version two 

 n dimension of the design space 

ℝ𝑘 function or criterion space 

ℝ𝑛 decision variables or design space 

𝕊� feasible region in the design space 

𝑥𝑖 i
th
 decision variable 

X decision variable vector 

X* non-dominated solution of a multiobjective optimization problem 

𝐗𝑖𝑛𝑓 , 𝐗𝑠𝑢𝑝 lower and upper bounds of the design space 

𝜔𝑖 weighting factor for the i
th
 objective function gradient in KKT condition 

𝛚 vector of 𝜔𝑖𝑠 
𝜆𝑗 weighting factor for j

th
 inequality constraint gradient in KKT condition 

𝛌 vector of 𝜆𝑗𝑠 

𝜇𝑖  weighting factor for i
th
 equality constraint gradient in KKT condition 

𝛍 vector of 𝜇𝑖𝑠 
∇ gradient operator 

 

2. Multiobjective Optimization Problem 

Multiobjective optimization problems (MOOP) can be defined by the following equations: 

 minimize: 𝐟(𝐗) (1.a) 

 subject to: 𝑔𝑖(𝐗) ≤ 0, 𝑖 = 1,2, …𝑚. (1.b) 

  ℎ𝑗(𝐗) = 0, 𝑗 = 1,2,… 𝑙. (1.c) 

  𝐗𝑖𝑛𝑓 ≤ 𝐗 ≤ 𝐗𝑠𝑢𝑝 (1.d) 

where 𝐟(𝐗) = [�  ,   ,   , …  𝑘�]
  ℝ𝑛  ℝ𝑘 is a vector with the values of scalar objective 

functions � 𝑖(𝐗) ℝ
𝑛  ℝ to be minimized. 𝐗  ℝ𝑛 is the vector containing the design variables, 

also called decision variables, defined in design space�ℝ𝑛. 𝐗𝑖𝑛𝑓 and 𝐗𝑠𝑢𝑝 are respectively the 

lower and upper bounds of the design variables. 𝑔𝑖(𝐗) ℝ
𝑛  ℝ represents the i

th
 inequality 

constraint function and ℎ𝑗(𝐗) ℝ
𝑛  ℝ� the j

th
 equality constraint function. Equations (1.b) to 

(1.d), define the region of feasible solutions, 𝕊, in design space�ℝ𝑛. The constraints 𝑔𝑖(𝐗)� are 

of type “less than or equal” functions in view of the fact that “greater or equal” functions may 

be converted to the first type if they are multiplied by -1. Similarly, the problem considers the 

“minimization” of  𝑖(𝐗), given that function “maximization” can be transformed into the former 

by multiplying it by -1. 

2.1. Pareto optimal solution 

The notion of “optimum” in solving problems of multiobjective optimization is known as 

“Pareto optimal.” A solution is said to be Pareto optimal if there is no way to improve one 

objective without worsening at least one other, i.e., the feasible point 𝐗∗  𝕊 is Pareto optimal if 

there is no other feasible point�𝐗  𝕊 such that ∀�𝑖, 𝑗 with 𝑖 ≠ 𝑗,  𝑖(𝐗) ≤  𝑖(𝐗
∗) with strict 

inequality in at least one condition,  𝑗(𝐗)   𝑗(𝐗
∗). 

Due to the conflicting nature of the objective functions, the Pareto optimal solutions are 

usually scattered in the region 𝕊, a consequence of not being able to minimize all the objective 



functions simultaneously. In solving the optimization problem we obtain the Pareto set or the 

Pareto optimal solutions defined in the design space, and the Pareto front, an image of the 

objective functions, in the criterion space, calculated over the set of optimal solutions. 

2.2. Necessary condition for Pareto optimality 

In fact, optimizing multiobjective problems expressed by Eqs. (1.a)-(1.d) is of general 

character. The equations represent the problem of single-objective optimization when 𝑘 = 1. 

According to Miettinen (1998), such as in single-objective optimization problems, the solution 

𝐗∗  𝕊 for the Pareto optimality must satisfy the Karush-Kuhn-Tucker condition (KKT), 

expressed as: 

 ∑ 𝜔𝑖∇ 𝑖(𝐗
∗)𝑘

𝑖= +�∑ 𝜆𝑗∇𝑔𝑗(𝐗
∗)𝑚

𝑗= +�∑ 𝜇𝑖∇ℎ𝑖(𝐗
∗)𝑙

𝑖= ��= ��0 (2.a) 

 λ𝑗g𝑗(𝐗
∗) �= �0 (2.b) 

 λ𝑗 ≥ 0  (2.c) 

 𝜇𝑖 ≥ 0 (2.d) 

 𝜔𝑖 ≥ 0;��∑ 𝜔𝑖 = 1
𝑘
𝑖=  (2.e) 

where 𝜔𝑖 is the weighting factor for the gradient of the i
th
 objective function, calculated at the 

point 𝐗∗, 𝛻 𝑖(𝐗
∗). λj represents the weighting factor for the gradient of the j

th
 inequality 

constraint function, 𝛻𝑔𝑗(𝐗
∗), and is zero when the constraint function associated is not active, 

i.e., 𝑔𝑗(𝐗
∗) ≤ 0. 𝜇𝑖 represents the weighting factor for the gradient of the i

th
 equality constraint 

function, 𝛻ℎ𝑖(𝐗
∗). 

Equations (2.a) to (2.e) form the necessary conditions for 𝐗∗ to be a Pareto optimal. As 

described by Miettinen (1998), it is sufficient for the complete mapping of the Pareto front if the 

problem is convex and the objective functions are continuously differentiable in the 𝕊 space. 

Otherwise, the solution will depend on additional conditions, as shown by Marler and Aurora 

(2004).  

Some researchers have attempted to classify methods for solving MOOP according various 

considerations. Hwang and Masud (1979) and later Miettinen (1998) suggested the following 

four classes, depending on how the decision maker (DM) articulates preferences: no-preference 

methods, a priori methods, a posteriori methods, and interactive methods. 

In no-preference articulation methods, the preferences of the DM are not taken into 

consideration. The problem can be solved by a simple method and the solution obtained is 

presented to the DM which will accept or reject it.  

In a priori preference articulation methods, the hopes and opinions of the DM are taken into 

consideration before the solution process. Those methods require that the DM knows 

beforehand the priority of each objective transforming the multi-objective problem in a single-

objective problem where the function to be optimized is a combination of objective functions.  

In posteriori preference articulation methods no preferences of the DM are considered. After 

the Pareto set has been generated, the DM chooses a solution from this set of alternatives.  

In interactive preference articulation methods the DM preferences are continuously used 

during the search process and are adjusted as the search continues. 

The methods we will propose in the next sections can be classified in posteriori preference 

articulation and an extensive literature review of the most important methods to solve 

multiobjective optimization problems can be found in Augusto et al (2012). 



3. Two dimensional functions of Class C
1
 

In this section we propose a simple strategy to determine de Pareto set in the decision space 

and the corresponding Pareto front in the function space, for MOOP involving two bi-

dimensional differentiable functions. 

Consider an unconstrained multiobjective optimization problem. From Eq. (2.a), the 

optimality condition can be interpreted by the following proposition:  

Proposition 1. If exists a Pareto front for the minimization problem with two continuous 

and differentiable functions defined in ℝ , say   (𝑥 , 𝑥 ) and   (𝑥 , 𝑥 ), then the curve 

connecting the minima of both functions and is orthogonal to the function contours in 

the decision space defines the Pareto set. 

As the gradients of each function are orthogonal to contours and point outwards from the 

minimum, the curve mentioned in Proposition 1 is the locus where the gradients of both 

functions are parallel and opposite, as shown in Fig. 1.  

 

Figure 1 - Graphical representation of Proposition 1. The continuous Pareto set as the locus 

where objective function gradients are parallel and opposite 

3.1. Two quadratic functions defined in ℝ  space 

Proposition 1 is quite general but as our focus is on quadratic functions let us solve an 

unconstrained bi-objective optimization problem involving quadratic functions defined in the 

two dimensional decision space, i.e., 𝐟(𝑥 , 𝑥 ) = [  ,   ] ℝ
𝟐  ℝ𝟐. The problem is defined as: 

minimize: 

   (𝑥 , 𝑥 ) = 𝑎 𝑥 
 + (𝑏 𝑥 + 𝑒 )𝑥 + 𝑐 𝑥 

 + 𝑑 𝑥 + 𝑐𝑠𝑡  (3.a) 

   (𝑥 , 𝑥 ) = 𝑎 𝑥 
 + (𝑏 𝑥 + 𝑒 )𝑥 + 𝑐 𝑥 

 + 𝑑 𝑥 + 𝑐𝑠𝑡  (3.b) 

Applying the optimality condition, ∑ 𝜔𝑖∇ 𝑖(𝐗
∗) = 0𝑘

𝑖= , to Eq. (3), results: 
 

 [
2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 
𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 

] {
𝜔 
𝜔 
} = {

0
0
} (4) 

𝑓  contours 

𝑓  contours 

 ∇𝑓  and ∇𝑓  are Parallel 

∇𝑓  

∇𝑓  

∇𝑓  
∇𝑓  

∇𝑓  
∇𝑓  

∇𝑓  and ∇𝑓  are Parallel and opposite 



As the system of equations (4) is homogeneous, the non-trivial solution, with 𝝎 ≠ 𝟎, 

requires a singularity, i.e., the determinant of the coefficient matrix must be null: 

 |
2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 
𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 

| = 0 (5) 

which results in the following quadratic curve for (𝑥 , 𝑥 ):  

 𝛼𝑥 
 + (𝛽𝑥 +𝜀)𝑥 + 𝛾𝑥 

 + 𝛿𝑥 + 𝜏 = 0 (6) 

where: 

𝛼 = 2(𝑎 𝑏 − 𝑎 𝑏 ) 
𝛽 = 4(𝑎 𝑐 − 𝑎 𝑐 ) 
𝛾 = 2(𝑏 𝑐 − 𝑏 𝑐 ) 
𝛿 = 2(𝑎 𝑒 − 𝑎 𝑒 ) + (𝑑 𝑏 − 𝑑 𝑏 ) 
𝜀 = 2(𝑑 𝑐 − 𝑑 𝑐 ) + (𝑏 𝑒 − 𝑏 𝑒 ) 

 𝜏 = (𝑑 𝑒 − 𝑑 𝑒 ) 

Function gradients ∇  (𝐗) and ∇  (𝐗) are parallel on the curve defined by Eq. (6), but they 

have to be opposite, resulting positive weights in Eqs. (4). Being the system singular, to find a 

relation between the weights 𝜔  and 𝜔  we can use only one of the equations as the other is its 

linear combination. Using the first equation, this relation can be deduced as: 

 
𝜔2

𝜔1
= −

 𝑎1𝑥1+𝑏1𝑥2+𝑑1

 𝑎2𝑥1+𝑏2𝑥2+𝑑2
 (7) 

which have positive values if and only if  

 (2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 )(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 )  0 (8) 

Therefore Eq. (6) provides the locus where the functions gradients are parallel and Eq. (8) 

defines the Pareto set for the two quadratic functions minimization problem.  

The upper bound of Eq.(8) 

 (2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 )(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 ) = 0  (9) 

is reached if the first term 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 = 0� or the second 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 = 0. As 

both terms are the first components of ∇   and ∇  , respectively, these conditions imply that the 

solution (𝑥 
∗, 𝑥 

∗) is over   (𝑥 , 𝑥 ) minimum or over   (𝑥 , 𝑥 ) minimum. 

Concluding, the Pareto set for quadratic functions will be a quadratic curve connecting the 

functions minima and where the gradients are parallel and opposite. 

As an example, let us consider the following bi-objective problem: 

minimize: 

   (𝑥 , 𝑥 ) = 3𝑥 
 + (𝑥 + 1)𝑥 + 𝑥 

 + 28𝑥 + 69 (10.a) 

   (𝑥 , 𝑥 ) = 𝑥 
 − (𝑥 + 1)𝑥 + 𝑥 

 − 7𝑥 + 19 (10.b) 

From Eq. 6, the Pareto set takes the form: 

 −8𝑥 
 + (8𝑥 +70)𝑥 + 4𝑥 

 − 29𝑥 − 21 = 0 (11) 



and is constrained by the following inequality: 

 (6𝑥 + 𝑥 + 28)(2𝑥 − 𝑥 − 7)  0 (12) 

In Fig. 2.a is depicted the contours of functions    and    in the two-dimensional decision 

space. The thicker grey continuous curve represents Eq. (11) and the tick blue colour portion of 

this curve satisfies Eq. (12), being as expected the continuous Pareto set, namely, the curve 

along which the gradient vectors are parallel and opposite. In Figure 2.b, the continuous curve is 

the image of the Pareto set in the function space, i.e., the Pareto front. In addition, the blue dots 

are the functions image of a set of points taken in a regular grid in the design space. 

For comparison, it is shown in Figs 2.c e 2.d, adapted from Augusto et al (2012), the 

solution obtained by the genetic algorithm NSGA II Deb (2000). It can be seen that the points 

are evenly distributed in the function space but they are not in the decision space. That happens 

because the search procedure in most of GAs is focused in the function space, trying to get a 

well distributed Pareto front. 

 

(a) - Continuous Pareto set obtained by the proposed 
method 

 

(b) - Continuous Pareto front, the Pareto set image in the 
function space. 

 

(c) - Pareto set for the performance functions f1 and f2 

obtained by the NSGA II algorithm. 

 

(d) - Pareto front for performance functions f1 and f2 

obtained by the NSGA II  algorithm. 

 

Figure 1 - Graphical representation of Proposition 1. The continuous Pareto set as the locus 

where objective function gradients are parallel and opposite 
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3.2. Three or more functions defined in ℝ𝟐 space 

In the previous section we found a closed form solution for the optimization of two 

quadratic functions in the bi-dimensional decision space. Unfortunately, we didn’t find a similar 

solution when we add more functions in the problem. Nevertheless, the idea behind 

Proposition 1 remains useful.  

Consider a optimization problem involving three continuous differentiable functions   ,    
and   . If a point 𝐩 belongs to the Pareto set it must satisfy Eq. (2). Therefore, one gradient 

vector, ∇  (𝐩), shall be a linear combination of the other two, ∇  (𝐩) and ∇  (𝐩), i.e., shall 

exist positive weights such that  

 𝜔 ∇  (𝐩) = �−𝜔 ∇  (𝐩) − 𝜔 ∇  (𝐩) (13) 

In Fig. 3 it is illustrated such condition whit the gradient vectors ∇  (𝐩), ∇  (𝐩) and ∇  (𝐩) 
associated with their weighted factors 𝜔 , 𝜔  and 𝜔 , respectively.  

 
 

Figure 3 – Pareto optimality condition for three or more functions in ℝ  decision space. 

An equilibrium condition exists when ∇  (𝐩) is oriented through the opposite angular 

sector defined by the two other gradient vectors, namely, ∇  (𝐩) and ∇  (𝐩).  

Based on this idea we suggest the following: 

Proposition 2. Let 𝐞𝑖 be the unit vector defined by 𝐞𝑖 = ∇ 𝑖(𝐩)/‖∇ 𝑖(𝐩)‖, with 

‖∇ 𝑖(𝐩)‖ ≠ 𝟎, and 𝐞𝑏, the unit vector orthogonal to 𝐞𝑖, i.e., 𝐞𝑏 ∙ 𝐞𝑖 = 0. If p belongs to 

the Pareto set resulting from the multiobjective optimization problem involving 

continuous and differentiable functions defined in ℝ , then exist at least three unit 

vectors, say 𝐞𝑖(𝐩), 𝐞𝑗(𝐩) and 𝐞𝑙(𝐩) that satisfy the following conditions: 

 (𝐞𝑗 ∙ 𝐞𝑖)  0  (14.a) 

 (𝐞𝑙 ∙ 𝐞𝑖)  0 (14.b) 

 (𝐞𝑗 ∙ 𝐞𝑏)(𝐞𝑙 ∙ 𝐞𝑏)  0 (14.c) 

The direction of 𝐞𝑏 divides the decision space in two semi planes. If the vector ∇ 𝑖(𝐩) 

points to one side then Eqs. (14.a) e (14.b) state that the vectors ∇ 𝑗(𝐩) and ∇ 𝑙(𝐩) point to the 

other side and Eq. (14.c) states that -∇ 𝑖(𝐩) is placed between them. 

𝜔 ∇𝑓 (𝐩) 
𝜔 ∇𝑓 (𝐩) 

𝜔 ∇𝑓 (𝐩) 

−𝜔 ∇𝑓 (𝐩) 
𝐩 



Equations (14) form a condition test for a point be Pareto optimum or not. This test can be 

useful if the problem has few optimization functions as to explore all distinguished set with 

three gradient vectors in a problem with k objective functions the maximum of 𝑘!/(𝑘 − 3)! 
permutations of i, j, l  must be checked. 

Let us apply Proposition 2 to find the solution of an unconstrained MOOP with three 

quadratic objective functions being two of them those defined by Eqs. (10) and the third defined 

by: 

   (𝑥 , 𝑥 ) = 𝑥 
 + 12𝑥 + 𝑥 

 + 4𝑥 + 40 (15) 

In the Fig. 4 is shown the Pareto set found applying the Pareto test in the points of a regular 

grid in the design space divided in fifty points in each coordinate axis, (𝑥 , 𝑥 )  � (−10,10]�� 

for all (𝑥 , 𝑥 )𝑖,𝑗 = (−10 +
  

  
𝑖, −10 +

  

  
𝑗), 𝑖, 𝑗 = 1. . 0. The continuous border of the Pareto 

set were obtained applying Proposition 1 for each pair of objective functions. 

3.3. Quadratic functions defined in �ℝ𝑛 space 

In the former two sections we have considered unconstrained MOOP with quadratic 

functions defined in the two dimensional space. To proceed to larger dimensions, let us define a 

quadratic function in the ℝ𝑛 space,  (𝐗) ℝ𝑛  ℝ, written as: 

  (𝐗) = 1

2
𝐗𝐿
T𝐀𝐗𝐿 + 𝑐𝑠𝑡 (16) 

with  

 𝐗𝐿 = 𝐓(𝐗 − 𝐗𝟎) (17) 

and 

𝐗𝐿  ℝ
𝑛 is a local coordinate system for a convenient definition of � (𝐗), 

𝐗𝟎  ℝ
𝑛 is the position of the local coordinate system related to the global one, 

𝐓 is the coordinates transformation matrix, from local to global coordinates systems. 

Using Eq. (17), Eq. (16) can be rewritten:  

  (𝐗) = 1

2
(𝐗 − 𝐗𝟎)

T(𝐓T𝐀𝐓)(𝐗 − 𝐗𝟎) + 𝑐𝑠𝑡 (18) 

Calling 𝐀 = (𝐓
 𝐀𝐓), Eq. (18) can be rewritten: 

  (𝐗) = 1

2
(𝐗 − 𝐗𝟎)

T𝐀 (𝐗 − 𝐗𝟎) + 𝑐𝑠𝑡 (19) 

As  (𝐗) is smooth, its gradient vector is:  

 ∇ (𝐗) = 𝐀 (𝐗 − 𝐗𝟎) (20) 

Matrix 𝐀, as well as its transformed form 𝐀 , is the symmetric Hessian of  (𝐗), H(𝐗), 
containing its second partial derivatives.  

With these definitions, let 𝐗∗ be the solution of an unconstrained MOOP involving k 

quadratic functions defined in �ℝ𝑛 space. Accordingly, exists 𝜔𝑖 �≥ �0, i = 1…k, that satisfy the 

Eq. (2a), i.e.,  



  

(a) - Pareto set 

  

(b) - Pareto front 

 

(c) Pareto front   −    view 

 

(d) - Pareto front   −    view 

 

(e) - Pareto front   −    view 

 

Figure 4 – Pareto optimality condition applied to the three-objective optimization problem 

involving functions defined in the two-dimensional decision space. 
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 ∑ 𝜔𝑖∇ 𝑖(𝐗
∗)𝑘

𝑖= = 0 (21) 

As  𝑖(𝐗) is a quadratic, Eq. (20) can be used and Eq. (21) takes the form: 

 ∑ 𝜔𝑖𝐀 𝑖(𝐗
∗ − 𝐗𝟎𝑖)

𝑘
𝑖= = 0 (22) 

In Eq. (22), the weights 𝜔𝑖 as well as the searched solution 𝐗∗ are unknown. Let us assume 

that all 𝜔𝑖 are known, i.e., 𝜔𝑖 = 𝜔𝑖
∗. Accordingly, Eq. (22) can be rewritten as: 

 ∑ 𝜔𝑖
∗𝐀 𝑖𝐗

∗𝑘
𝑖= = ∑ 𝜔𝑖

∗𝐀 𝑖
𝑘
𝑖= 𝐗𝟎𝑖 (23) 

Calling 

 �̂� = ∑ 𝜔𝑖
∗𝐀 𝑖

𝑘
𝑖=  (24) 

and 

 �̂� = ∑ 𝜔𝑖
∗𝐀 𝑖

𝑘
𝑖= 𝐗𝟎𝑖 (25) 

then, Eq.(23) can be rewritten as: 

 �̂�𝐗∗ = �̂� (26) 

Let us assume that all 𝐀 𝑖 are positive definite, i.e., 𝐗 𝐀 𝑖𝐗  0, for all �𝐗  ℝ𝑛 𝐗 ≠ 𝟎. If 

𝜔𝑖
∗ is real, non-negative and satisfies the normalization equality, i.e., ∑ 𝜔𝑖

∗𝑘
𝑖= = 1, then �̂� will 

also be positive definite and therefore its inverse �̂�   will always exists.  

Consequently, the Pareto optimum solution 𝐗∗ can easily be found by solving Eq. (26), i.e., 

 𝐗∗ = �̂�  �̂� (27) 

In this approach, we have considered that 𝜔𝑖
∗ are known. Consequently, �̂�, Eq. (24), and �̂�, 

Eq.(25), are promptly found. Although this is not the case for a general solution of Eq. (21), this 

approach is very useful to find the Pareto set and the Pareto front of unconstrained 

multiobjective optimization problems involving quadratic functions considering the following: 

Proposition 3. Consider a MOOP involving k quadratic functions, with the Hessian of 

each function being positive definite. To obtain np Pareto optimum solutions the 

following steps is proposed: 

1. Sort, at random over the interval [0,1], the components of 𝝎∗ a vector containing k 

weights 𝜔𝑖
∗. 

2. Perform a normalization such as ∑ 𝜔𝑖
∗𝑘

𝑖= = 1. 

3. Calculate �̂� = ∑ 𝜔𝑖
∗𝐀 𝑖

𝑘
𝑖=  and  �̂� = ∑ 𝜔𝑖

∗𝐀 𝑖
𝑘
𝑖= 𝐗𝟎𝑖. 

4. Solve the linear system 𝐗∗ = �̂�  �̂�, getting the Pareto point 𝐗∗ associated with 𝝎∗. 
5. Repeat, steps 1 to 4 for the number np of Pareto points wanted. 

Even requiring solutions of np linear systems, the method is very fast depending on the 

order of the matrix Â.  

Before advance to the applications, consider an ellipsoid enclosed in a parallelepiped of size 

2a, 2b and 2c, as shown in Fig. 5. Also consider a local coordinates system, 

𝐗𝐿 = [𝑥𝐿 , 𝑥𝐿 , 𝑥𝐿 ]
  with origin centered inside the ellipsoid, fixed to it and oriented along its 

semi-axes.  



The family of quadratic functions that represents this ellipsoid can be written as 

 (𝐗) = 1

2
𝐗𝐿
T𝐀𝐗𝐿 + 𝑐𝑠𝑡 = 0 (28) 

with the matrix 𝐀 defined in Fig. 5. 

The ellipsoid can be rotated around the i
th
 coordinate axis, i.e., 𝐗  =  𝑖𝐗𝐿. Let�𝛼, 𝛽 and   

be the rotation angles, around 𝑥𝐿 , 𝑥𝐿  and 𝑥𝐿  axes, respectively. Each individual rotation 

matrix is depicted in Figs. A1, A2 and A3, Annex A. Then, the general rotation matrix is 

defined by: 

 𝐑 =   (𝛼)  (𝛽)  ( ) (29) 

 

𝐀 = [
𝑎−2 0 0

0 𝑏−2 0

0 0 𝑐−2
] 

 

Figure 5 - Representation of an ellipsoid, a quadratic function  (𝐗) = 0 

defined in �ℝ  space. 

 

 The local coordinate system can be positioned at a point 𝐗 , relative to a global coordinates 

system, 𝐗 = [𝑥 , 𝑥 , 𝑥 ]
 . In such a case, the points on the ellipsoid surface can be referred to 

the global coordinate system as 

 𝐗 = 𝐑𝐗𝐿 + 𝐗  (30) 

To get the transformation matrix 𝐓 of Eq. (17), we isolate 𝐗𝐿 in Eq.(30), i.e.,  

 𝐗𝐿 = 𝐑
  (𝐗 − 𝐗 ) (31) 

Being �𝐑 an orthogonal matrix, its inverse is equal to its transpose, i. e., 𝐓 = 𝐑  = 𝐑 .  

With the previous definitions, consider the following unconstrained MOOP: 

minimize:   (𝐗),  (𝐗) and   (𝐗) (32) 

with �𝐗  ℝ , being   (𝐗),  (𝐗),  (𝐗) defined in Table 1 and illustrated in Fig. 6.a.  

Table 1 – Coefficients for objective functions  𝑖(𝐗) definitions. 

function 
semi-axis rotation origin 

a b c    𝑥   𝑥   𝑥   

  (𝐗) 1 2 3 0 0 -/6 10 10 0 

  (𝐗) 1 2 3 0 0 0 0 -10 0 

  (𝐗) 1 2 3 0 0 /4 -10 10 0 

 



The Pareto set for this problem, illustrated in Fig. 6.b, were obtained applying Proposition 3 

algorithm, with np = 5000. To get all the points, an ordinary 2 GHz dual processor computer 

with 3 Gb RAM, running Matlab expended 0.99 seconds of processing time.  

As all ellipsoids were placed over (x1, x2) plane and were rotated around x3 axis, only, the 

Pareto set is over the (x1, x2) plane. Bold points at the Pareto set boundary were found with the 

same method applied to the functions   (𝐗),  (𝐗),  (𝐗) taken in pairs. According to 

Proposition 1, in such cases, the Pareto set is necessarily a curve.  

The Pareto front is shown in Fig. 6.d. It should be noticed that this front was obtained by 

means of a straightforward solution of the Pareto optimality conditions without using any 

iterative algorithm.  

 

 

(a) –Three quadratic functions,  𝑖(𝐗) = 0, cst = - 0.5 

 

(b) – Pareto set 

 

(c) – Pareto set, 𝑥 − 𝑥  view. 

 

(d) – Pareto front. 

Figure 6 – Solution of the unconstrained MOOP with the quadratic functions defined in Table 1 

In the next example three ellipsoids with different orientations, as defined in Table A1, Annex 

A, were distributed in the (x1, x2, x3) space. 



The Pareto set of this optimization problem found by the proposed methodology delineates 

the curved surface shown in Fig. 7.a. The Pareto front, in the function space, is shown in Fig. 

7.b. 

 

(a) – Pareto set  

 

(b) – Pareto front 

Figure 7 – Solution of the unconstrained MOOP with the quadratic functions defined in 

Table A1, Annex A 

Adding to the unconstrained MOOP the function   (𝐗), defined in Table A2, Annex A, the 

proposed method generated in 1.17 seconds the three dimensional Pareto set illustrated in Fig. 8. 

 

Figure 8 – Pareto set of the unconstrained MOOP with the quadratic functions defined in 

Table  A2, Annex A 

In the problems all functions were defined by convenience in ℝ  space, nevertheless, 

Proposition 3 can be applied to quadratic functions defined in �ℝ𝑛 space. 

4. Conclusions 

Most of the real problems are multiobjective and their objective functions being 

antagonistic. To solve this problem many researchers are developing methods to solve 

multiobjective optimization problems without reducing them to single objective. Up to now, 

evolutionary algorithms are widespread as a general technique to find a candidate set of the 



optimal solutions. These algorithms provide a discrete picture of the Pareto front in the function 

space, without bringing to much information about the decision space.  

In the framework of this paper, we have proposed different methods to determine the Pareto 

set of unconstrained multiobjective optimization problems involving quadratic objective 

functions. Three different procedures were proposed. One for bi-objective optimization, with 

functions defined in �ℝ  space, which results in an analytical solution for the Pareto set. For 

three or more functions also defined in �ℝ  space it was proposed a condition test that is able to 

check if a point in the decision space is Pareto optimum or not. In the third method, suitable for 

multiobjective optimization with functions defined in ℝ𝑛 space and having Hessian positive 

definite, a direct algorithm was proposed which finds a Pareto optimum based in an arbitrary 

valid weighting vector. Some illustrative examples were used to highlight the potentiality of the 

methods.  

It is apparent that the Pareto set for two distinct two-dimensional functions is a curve, and 

for three and above, the Pareto set is a surface. In three-dimensional space, for two distinct 

three-dimensional functions, the Pareto set will be a space curve, for three functions, a surface, 

and for four functions and above, a solid.  

Although the proposed methods are restricted to unconstrained optimization the authors 

believe they can be extend to constrained problems and are working on it.  
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Annex – A 

  (𝛼) = [

1 0 0

0    �(𝛼) −   ��(𝛼)

0    �(𝛼)    �(𝛼)
] 

 

Figure A1 - Rotation 𝛼 around 𝑥𝐿  axis. 

  (𝛽) = [
   �(𝛽) 0 −   ��(𝛽)

0 1 0
   �(𝛽) 0    �(𝛽)

] 

 

Figure A2 - Rotation 𝛽 around 𝑥𝐿  axis. 

  ( ) = [
   �( ) −   ��( ) 0
   �( )    �( ) 0
0 0 1

] 

 

Figure A3 - Rotation   around 𝑥𝐿  axis. 

 

Table A1 – Optimization problem with 3 objective functions  

function 
semi-axis rotation origin 

a b c    x01 x02 x03 

  (𝐗) 1 2 3 0 0 0 0 0 0 

  (𝐗) 1 2 3 0 /4 0 10 0 0 

  (𝐗) 1 2 3 0 0 /6 0 10 10 

 

Table A2 – Optimization problem with 4 objective functions 

function 
semi-axis rotation origin 

a b c    x01 x02 x03 

  (𝐗) 1 2 3 0 0 /6 0 0 0 

  (𝐗) 1 2 3 0 -/30 0 15 0 0 

  (𝐗) 1 2 3 0 0 /6 0 15 0 

  (𝐗) 1 2 3 0 0 0 10 10 15 
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