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Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for bi-objective optimization defined in the bi-dimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct non-iterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

Introduction

Life is about making decisions and the choice of the optimal solutions is not an exclusive subject of scientists, engineers and economists. Decision making is present in day-to-day life. Looking for an enjoyable vacancy, everyone will formulate an optimization problem to a travel agent, a problem like: with a minimum amount of money, visit a maximum number of places in a minimum amount of time and with the maximum of comfort. Usually all real design problems have more than one objective, namely they are multiobjective. Moreover, the design objectives are often antagonistic. [START_REF] Edgeworth | Mathematical Psychic: an essay on the application of mathematics to the moral sciences[END_REF] was the pioneer to define an optimum for multi-criteria economic decision making problem, at King's College, London. It was about the multi-utility problem within the context of two consumers, P and π: "It is required to find a point (x, y) such that in whatever direction we take an infinitely small step, P and π do not increase together but that, while one increases, the other decreases."

Few years later, in 1896, [START_REF] Pareto | Manual of Political Economy, translated by Schiwier, A. S. from French Edition of[END_REF], at the University of Lausanne, Switzerland, formulated his two main theories, Circulation of the Elites and The Pareto Optimum: "The optimum allocation of the resources of a society is not attained so long as it is possible to make at least one individual better off in his own estimation while keeping others as well off as before in their own estimation."

Since then, many researchers have been dedicated to developing methods to solve this kind of problem. Interestingly, solutions for problems with multiple objectives, also called multicriteria optimization or vector optimization, are treated as Pareto optimal solutions or Pareto front, although as Stadler (1988) observed, they should be treated as Edgeworth-Pareto solutions.

Extensive reviews of multiobjective optimization concepts and methods are given by [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF]; for evolutionary algorithms by [START_REF] Goldberg | Genetic Algorithms in Search and Machine Learning[END_REF] and for evolutionary multiobjective optimization by [START_REF] Deb | Multi-objective Objective Optimization using Evolutionary Algorithms[END_REF]. The theoretical basis for multiobjective optimization adopted in this work was based on these references.

Thanks to the computer development optimization of large scale problems became a common task in engineering designs. The development of high speed computers and its increasing use in several industrial branches led to significant changes in the design processes. Currently, the computers, each time faster, allow the engineer to consider a wider range of design possibilities and optimization processes allow systematic choice between alternatives, since they are based on some rational criteria. If used adequately, these procedures can, in most cases, improve or even generate the final results of a design. Associated to computer development, many of the research done in optimization is focused on numerical methods to solve any kind of problem but sometimes simplified problems can give important clues to the designer during the trade-off phases of a decision.

The present work aims to bring new approaches to solve multiobjective optimization problems, providing a rapid solution for the Pareto set if the objective functions involved are quadratic. 

Nomenclature

DM

Multiobjective Optimization Problem

Multiobjective optimization problems (MOOP) can be defined by the following equations: (1.c) 𝐗 𝑖𝑛𝑓 ≤ 𝐗 ≤ 𝐗 𝑠𝑢𝑝 (1.d) where 𝐟(𝐗) = [ , , , … 𝑘 ] ℝ 𝑛 ℝ 𝑘 is a vector with the values of scalar objective functions 𝑖 (𝐗) ℝ 𝑛 ℝ to be minimized. 𝐗 ℝ 𝑛 is the vector containing the design variables, also called decision variables, defined in design spaceℝ 𝑛 . 𝐗 𝑖𝑛𝑓 and 𝐗 𝑠𝑢𝑝 are respectively the lower and upper bounds of the design variables. 𝑔 𝑖 (𝐗) ℝ 𝑛 ℝ represents the i th inequality constraint function and ℎ 𝑗 (𝐗) ℝ 𝑛 ℝ the j th equality constraint function. Equations (1.b) to (1.d), define the region of feasible solutions, 𝕊, in design spaceℝ 𝑛 . The constraints 𝑔 𝑖 (𝐗) are of type "less than or equal" functions in view of the fact that "greater or equal" functions may be converted to the first type if they are multiplied by -1. Similarly, the problem considers the "minimization" of 𝑖 (𝐗), given that function "maximization" can be transformed into the former by multiplying it by -1.

Pareto optimal solution

The notion of "optimum" in solving problems of multiobjective optimization is known as "Pareto optimal." A solution is said to be Pareto optimal if there is no way to improve one objective without worsening at least one other, i.e., the feasible point 𝐗 * 𝕊 is Pareto optimal if there is no other feasible point𝐗 𝕊 such that ∀𝑖, 𝑗 with 𝑖 ≠ 𝑗, 𝑖 (𝐗) ≤ 𝑖 (𝐗 * ) with strict inequality in at least one condition, 𝑗 (𝐗) 𝑗 (𝐗 * ).

Due to the conflicting nature of the objective functions, the Pareto optimal solutions are usually scattered in the region 𝕊, a consequence of not being able to minimize all the objective functions simultaneously. In solving the optimization problem we obtain the Pareto set or the Pareto optimal solutions defined in the design space, and the Pareto front, an image of the objective functions, in the criterion space, calculated over the set of optimal solutions.

Necessary condition for Pareto optimality

In fact, optimizing multiobjective problems expressed by Eqs. (1.a)-(1.d) is of general character. The equations represent the problem of single-objective optimization when 𝑘 = 1. According to [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF], such as in single-objective optimization problems, the solution 𝐗 * 𝕊 for the Pareto optimality must satisfy the Karush-Kuhn-Tucker condition (KKT), expressed as:

∑ 𝜔 𝑖 ∇ 𝑖 (𝐗 * ) 𝑘 𝑖= + ∑ 𝜆 𝑗 ∇𝑔 𝑗 (𝐗 * ) 𝑚 𝑗= + ∑ 𝜇 𝑖 ∇ℎ 𝑖 (𝐗 * ) 𝑙 𝑖= = 0 (2.a) λ 𝑗 g 𝑗 (𝐗 * ) = 0 (2.b) λ 𝑗 ≥ 0 (2.c) 𝜇 𝑖 ≥ 0 (2.d) 𝜔 𝑖 ≥ 0;∑ 𝜔 𝑖 = 1 𝑘 𝑖= (2.e)
where 𝜔 𝑖 is the weighting factor for the gradient of the i th objective function, calculated at the point 𝐗 * , 𝛻 𝑖 (𝐗 * ). λ j represents the weighting factor for the gradient of the j th inequality constraint function, 𝛻𝑔 𝑗 (𝐗 * ), and is zero when the constraint function associated is not active, i.e., 𝑔 𝑗 (𝐗 * ) ≤ 0. 𝜇 𝑖 represents the weighting factor for the gradient of the i th equality constraint function, 𝛻ℎ 𝑖 (𝐗 * ).

Equations (2.a) to (2.e) form the necessary conditions for 𝐗 * to be a Pareto optimal. As described by [START_REF] Miettinen | Nonlinear Multiobjective Optimization[END_REF], it is sufficient for the complete mapping of the Pareto front if the problem is convex and the objective functions are continuously differentiable in the 𝕊 space. Otherwise, the solution will depend on additional conditions, as shown by Marler and Aurora (2004). Some researchers have attempted to classify methods for solving MOOP according various considerations. [START_REF] Hwang | Multiple objective decision making, methods and applications: a state-of-the-art survey[END_REF] and later Miettinen (1998) suggested the following four classes, depending on how the decision maker (DM) articulates preferences: no-preference methods, a priori methods, a posteriori methods, and interactive methods.

In no-preference articulation methods, the preferences of the DM are not taken into consideration. The problem can be solved by a simple method and the solution obtained is presented to the DM which will accept or reject it.

In a priori preference articulation methods, the hopes and opinions of the DM are taken into consideration before the solution process. Those methods require that the DM knows beforehand the priority of each objective transforming the multi-objective problem in a singleobjective problem where the function to be optimized is a combination of objective functions.

In posteriori preference articulation methods no preferences of the DM are considered. After the Pareto set has been generated, the DM chooses a solution from this set of alternatives.

In interactive preference articulation methods the DM preferences are continuously used during the search process and are adjusted as the search continues.

The methods we will propose in the next sections can be classified in posteriori preference articulation and an extensive literature review of the most important methods to solve multiobjective optimization problems can be found in Augusto et al (2012).

Two dimensional functions of Class C 1

In this section we propose a simple strategy to determine de Pareto set in the decision space and the corresponding Pareto front in the function space, for MOOP involving two bidimensional differentiable functions.

Consider an unconstrained multiobjective optimization problem. From Eq. (2.a), the optimality condition can be interpreted by the following proposition: As the gradients of each function are orthogonal to contours and point outwards from the minimum, the curve mentioned in Proposition 1 is the locus where the gradients of both functions are parallel and opposite, as shown in Fig. 1. As the system of equations ( 4) is homogeneous, the non-trivial solution, with 𝝎 ≠ 𝟎, requires a singularity, i.e., the determinant of the coefficient matrix must be null:

| 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 𝑏 𝑥 + 2𝑐 𝑥 + 𝑒 | = 0 (5)
which results in the following quadratic curve for (𝑥 , 𝑥 ):

𝛼𝑥 + (𝛽𝑥 +𝜀)𝑥 + 𝛾𝑥 + 𝛿𝑥 + 𝜏 = 0

where:

𝛼 = 2(𝑎 𝑏 -𝑎 𝑏 ) 𝛽 = 4(𝑎 𝑐 -𝑎 𝑐 ) 𝛾 = 2(𝑏 𝑐 -𝑏 𝑐 ) 𝛿 = 2(𝑎 𝑒 -𝑎 𝑒 ) + (𝑑 𝑏 -𝑑 𝑏 ) 𝜀 = 2(𝑑 𝑐 -𝑑 𝑐 ) + (𝑏 𝑒 -𝑏 𝑒 ) 𝜏 = (𝑑 𝑒 -𝑑 𝑒 )
Function gradients ∇ (𝐗) and ∇ (𝐗) are parallel on the curve defined by Eq. ( 6), but they have to be opposite, resulting positive weights in Eqs. (4). Being the system singular, to find a relation between the weights 𝜔 and 𝜔 we can use only one of the equations as the other is its linear combination. Using the first equation, this relation can be deduced as:

𝜔 2 𝜔 1 = - 𝑎 1 𝑥 1 +𝑏 1 𝑥 2 +𝑑 1 𝑎 2 𝑥 1 +𝑏 2 𝑥 2 +𝑑 2 (7) 
which have positive values if and only if

(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 )(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 ) 0 (8) 
Therefore Eq. ( 6) provides the locus where the functions gradients are parallel and Eq. (8) defines the Pareto set for the two quadratic functions minimization problem.

The upper bound of Eq.( 8)

(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 )(2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 ) = 0 (9) 
is reached if the first term 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 = 0 or the second 2𝑎 𝑥 + 𝑏 𝑥 + 𝑑 = 0. As both terms are the first components of ∇ and ∇ , respectively, these conditions imply that the solution (𝑥 * , 𝑥 * ) is over (𝑥 , 𝑥 ) minimum or over (𝑥 , 𝑥 ) minimum.

Concluding, the Pareto set for quadratic functions will be a quadratic curve connecting the functions minima and where the gradients are parallel and opposite.

As an example, let us consider the following bi-objective problem: From Eq. 6, the Pareto set takes the form:

-8𝑥 + (8𝑥 +70)𝑥 + 4𝑥 -29𝑥 -21 = 0 (11) 
and is constrained by the following inequality:

(6𝑥 + 𝑥 + 28)(2𝑥 -𝑥 -7) 0 (12) 
In Fig. 2.a is depicted the contours of functions and in the two-dimensional decision space. The thicker grey continuous curve represents Eq. ( 11) and the tick blue colour portion of this curve satisfies Eq. ( 12), being as expected the continuous Pareto set, namely, the curve along which the gradient vectors are parallel and opposite. In Figure 2.b, the continuous curve is the image of the Pareto set in the function space, i.e., the Pareto front. In addition, the blue dots are the functions image of a set of points taken in a regular grid in the design space.

For comparison, it is shown in Figs 2.c e 2.d, adapted from Augusto et al (2012), the solution obtained by the genetic algorithm NSGA II [START_REF] Deb | A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization[END_REF]. It can be seen that the points are evenly distributed in the function space but they are not in the decision space. That happens because the search procedure in most of GAs is focused in the function space, trying to get a well distributed Pareto front. 

Three or more functions defined in ℝ 𝟐 space

In the previous section we found a closed form solution for the optimization of two quadratic functions in the bi-dimensional decision space. Unfortunately, we didn't find a similar solution when we add more functions in the problem. Nevertheless, the idea behind Proposition 1 remains useful.

Consider a optimization problem involving three continuous differentiable functions , and . If a point 𝐩 belongs to the Pareto set it must satisfy Eq. ( 2). Therefore, one gradient vector, ∇ (𝐩), shall be a linear combination of the other two, ∇ (𝐩) and ∇ (𝐩), i.e., shall exist positive weights such that

𝜔 ∇ (𝐩) = -𝜔 ∇ (𝐩) -𝜔 ∇ (𝐩) (13) 
In Fig. 3 it is illustrated such condition whit the gradient vectors ∇ (𝐩), ∇ (𝐩) and ∇ (𝐩) associated with their weighted factors 𝜔 , 𝜔 and 𝜔 , respectively. An equilibrium condition exists when ∇ (𝐩) is oriented through the opposite angular sector defined by the two other gradient vectors, namely, ∇ (𝐩) and ∇ (𝐩).

Based on this idea we suggest the following: Proposition 2. Let 𝐞 𝑖 be the unit vector defined by 𝐞 𝑖 = ∇ 𝑖 (𝐩)/‖∇ 𝑖 (𝐩)‖, with ‖∇ 𝑖 (𝐩)‖ ≠ 𝟎, and 𝐞 𝑏 , the unit vector orthogonal to 𝐞 𝑖 , i.e., 𝐞 𝑏 • 𝐞 𝑖 = 0. If p belongs to the Pareto set resulting from the multiobjective optimization problem involving continuous and differentiable functions defined in ℝ , then exist at least three unit vectors, say 𝐞 𝑖 (𝐩), 𝐞 𝑗 (𝐩) and 𝐞 𝑙 (𝐩) that satisfy the following conditions:

(𝐞 𝑗 • 𝐞 𝑖 ) 0 (14.a) (𝐞 𝑙 • 𝐞 𝑖 ) 0 (14.b) (𝐞 𝑗 • 𝐞 𝑏 )(𝐞 𝑙 • 𝐞 𝑏 ) 0 (14.c)
The direction of 𝐞 𝑏 divides the decision space in two semi planes. If the vector ∇ 𝑖 (𝐩) points to one side then Eqs. (14.a) e (14.b) state that the vectors ∇ 𝑗 (𝐩) and ∇ 𝑙 (𝐩) point to the other side and Eq. (14.c) states that -∇ 𝑖 (𝐩) is placed between them.

𝜔 ∇𝑓 (𝐩) 𝜔 ∇𝑓 (𝐩) 𝜔 ∇𝑓 (𝐩)

-𝜔 ∇𝑓 (𝐩) 𝐩 Equations ( 14) form a condition test for a point be Pareto optimum or not. This test can be useful if the problem has few optimization functions as to explore all distinguished set with three gradient vectors in a problem with k objective functions the maximum of 𝑘!/(𝑘 -3)! permutations of i, j, l must be checked. 

Let us apply

Quadratic functions defined in ℝ 𝑛 space

In the former two sections we have considered unconstrained MOOP with quadratic functions defined in the two dimensional space. To proceed to larger dimensions, let us define a quadratic function in the ℝ 𝑛 space, (𝐗) ℝ 𝑛 ℝ, written as:

(𝐗) = 1 2 𝐗 𝐿 T 𝐀𝐗 𝐿 + 𝑐𝑠𝑡 (16) 
with

𝐗 𝐿 = 𝐓(𝐗 -𝐗 𝟎 ) (17) 
and 𝐗 𝐿 ℝ 𝑛 is a local coordinate system for a convenient definition of (𝐗), 𝐗 𝟎 ℝ 𝑛 is the position of the local coordinate system related to the global one, 𝐓 is the coordinates transformation matrix, from local to global coordinates systems.

Using Eq. ( 17), Eq. ( 16) can be rewritten:

(𝐗) = 1 2 (𝐗 -𝐗 𝟎 ) T (𝐓 T 𝐀𝐓)(𝐗 -𝐗 𝟎 ) + 𝑐𝑠𝑡 (18) 
Calling 𝐀 = (𝐓 𝐀𝐓), Eq. ( 18) can be rewritten:

(𝐗) = 1 2 (𝐗 -𝐗 𝟎 ) T 𝐀 (𝐗 -𝐗 𝟎 ) + 𝑐𝑠𝑡 (19)
As (𝐗) is smooth, its gradient vector is:

∇ (𝐗) = 𝐀 (𝐗 -𝐗 𝟎 ) (20) 
Matrix 𝐀, as well as its transformed form 𝐀 , is the symmetric Hessian of (𝐗), H(𝐗), containing its second partial derivatives.

With these definitions, let 𝐗 * be the solution of an unconstrained MOOP involving k quadratic functions defined in ℝ 𝑛 space. Accordingly, exists 𝜔 𝑖 ≥ 0, i = 1…k, that satisfy the Eq. (2a), i.e., 

f 2 f 3 ∑ 𝜔 𝑖 ∇ 𝑖 (𝐗 * ) 𝑘 𝑖= = 0 (21) 
As 𝑖 (𝐗) is a quadratic, Eq. ( 20) can be used and Eq. ( 21) takes the form:

∑ 𝜔 𝑖 𝐀 𝑖 (𝐗 * -𝐗 𝟎𝑖 ) 𝑘 𝑖= = 0 (22) 
In Eq. ( 22), the weights 𝜔 𝑖 as well as the searched solution 𝐗 * are unknown. Let us assume that all 𝜔 𝑖 are known, i.e., 𝜔 𝑖 = 𝜔 𝑖 * . Accordingly, Eq. ( 22) can be rewritten as:

∑ 𝜔 𝑖 * 𝐀 𝑖 𝐗 * 𝑘 𝑖= = ∑ 𝜔 𝑖 * 𝐀 𝑖 𝑘 𝑖= 𝐗 𝟎𝑖 (23) 
Calling

𝐀 ̂= ∑ 𝜔 𝑖 * 𝐀 𝑖 𝑘 𝑖= (24) 
and

𝐛 ̂= ∑ 𝜔 𝑖 * 𝐀 𝑖 𝑘 𝑖= 𝐗 𝟎𝑖 (25) 
then, Eq.( 23) can be rewritten as:

𝐀 ̂𝐗 * = 𝐛 ̂ (26) 
Let us assume that all 𝐀 𝑖 are positive definite, i.e., 𝐗 𝐀 𝑖 𝐗 0, for all 𝐗 ℝ 𝑛 𝐗 ≠ 𝟎. If 𝜔 𝑖 * is real, non-negative and satisfies the normalization equality, i.e., ∑ 𝜔 𝑖 * 𝑘 𝑖= = 1, then 𝐀 ̂ will also be positive definite and therefore its inverse 𝐀 ̂ will always exists.

Consequently, the Pareto optimum solution 𝐗 * can easily be found by solving Eq. ( 26), i.e.,

𝐗 * = 𝐀 ̂ 𝐛 ̂ (27) 
In this approach, we have considered that 𝜔 𝑖 * are known. Consequently, 𝐀 ̂, Eq. ( 24), and 𝐛 ̂, Eq.(25), are promptly found. Although this is not the case for a general solution of Eq. ( 21), this approach is very useful to find the Pareto set and the Pareto front of unconstrained multiobjective optimization problems involving quadratic functions considering the following:

Proposition 3. Consider a MOOP involving k quadratic functions, with the Hessian of each function being positive definite. To obtain n p Pareto optimum solutions the following steps is proposed:

1. Sort, at random over the interval [0,1], the components of 𝝎 * a vector containing k weights 𝜔 𝑖 * . Even requiring solutions of n p linear systems, the method is very fast depending on the order of the matrix Â.

Perform a normalization such as

Before advance to the applications, consider an ellipsoid enclosed in a parallelepiped of size 2a, 2b and 2c, as shown in Fig. 5. Also consider a local coordinates system, 𝐗 𝐿 = [𝑥 𝐿 , 𝑥 𝐿 , 𝑥 𝐿 ] with origin centered inside the ellipsoid, fixed to it and oriented along its semi-axes.

The family of quadratic functions that represents this ellipsoid can be written as (𝐗) = 1 2 𝐗 𝐿 T 𝐀𝐗 𝐿 + 𝑐𝑠𝑡 = 0 (28)

with the matrix 𝐀 defined in Fig. 5.

The ellipsoid can be rotated around the i th coordinate axis, i.e., 𝐗 = 𝑖 𝐗 𝐿 . Let𝛼, 𝛽 and be the rotation angles, around 𝑥 𝐿 , 𝑥 𝐿 and 𝑥 𝐿 axes, respectively. Each individual rotation matrix is depicted in Figs. A1, A2 and A3, Annex A. Then, the general rotation matrix is defined by: To get the transformation matrix 𝐓 of Eq. ( 17), we isolate 𝐗 𝐿 in Eq.(30), i.e.,

𝐑 = (𝛼) (𝛽) ( ) (29 
𝐗 𝐿 = 𝐑 (𝐗 -𝐗 ) (31) 
Being 𝐑 an orthogonal matrix, its inverse is equal to its transpose, i. e., 𝐓 = 𝐑 = 𝐑 .

With the previous definitions, consider the following unconstrained MOOP:

minimize: (𝐗), (𝐗) and (𝐗)

with 𝐗 ℝ , being (𝐗), (𝐗), (𝐗) defined in Table 1 and illustrated in Fig. 6.a. The Pareto set for this problem, illustrated in Fig. 6.b, were obtained applying Proposition 3 algorithm, with n p = 5000. To get all the points, an ordinary 2 GHz dual processor computer with 3 Gb RAM, running Matlab expended 0.99 seconds of processing time.

As all ellipsoids were placed over (x 1 , x 2 ) plane and were rotated around x 3 axis, only, the Pareto set is over the (x 1 , x 2 ) plane. Bold points at the Pareto set boundary were found with the same method applied to the functions (𝐗), (𝐗), (𝐗) taken in pairs. According to Proposition 1, in such cases, the Pareto set is necessarily a curve. The Pareto front is shown in Fig. 6.d. It should be noticed that this front was obtained by means of a straightforward solution of the Pareto optimality conditions without using any iterative algorithm. In the next example three ellipsoids with different orientations, as defined in Table A1, Annex A, were distributed in the (x 1 , x 2 , x 3 ) space.

The Pareto set of this optimization problem found by the proposed methodology delineates the curved surface shown in Fig. 7.a. The Pareto front, in the function space, is shown in Fig. A2, Annex A, the proposed method generated in 1.17 seconds the three dimensional Pareto set illustrated in Fig. 8. A2, Annex A

In the problems all functions were defined by convenience in ℝ space, nevertheless, Proposition 3 can be applied to quadratic functions defined in ℝ 𝑛 space.

Conclusions

Most of the real problems are multiobjective and their objective functions being antagonistic. To solve this problem many researchers are developing methods to solve multiobjective optimization problems without reducing them to single objective. Up to now, evolutionary algorithms are widespread as a general technique to find a candidate set of the optimal solutions. These algorithms provide a discrete picture of the Pareto front in the function space, without bringing to much information about the decision space.

In the framework of this paper, we have proposed different methods to determine the Pareto set of unconstrained multiobjective optimization problems involving quadratic objective functions. Three different procedures were proposed. One for bi-objective optimization, with functions defined in ℝ space, which results in an analytical solution for the Pareto set. For three or more functions also defined in ℝ space it was proposed a condition test that is able to check if a point in the decision space is Pareto optimum or not. In the third method, suitable for multiobjective optimization with functions defined in ℝ 𝑛 space and having Hessian positive definite, a direct algorithm was proposed which finds a Pareto optimum based in an arbitrary valid weighting vector. Some illustrative examples were used to highlight the potentiality of the methods.

It is apparent that the Pareto set for two distinct two-dimensional functions is a curve, and for three and above, the Pareto set is a surface. In three-dimensional space, for two distinct three-dimensional functions, the Pareto set will be a space curve, for three functions, a surface, and for four functions and above, a solid.

Although the proposed methods are restricted to unconstrained optimization the authors believe they can be extend to constrained problems and are working on it. x L1

x L2  

  subject to: 𝑔 𝑖 (𝐗) ≤ 0, 𝑖 = 1,2, … 𝑚.(1.b) ℎ 𝑗 (𝐗) = 0, 𝑗 = 1,2, … 𝑙.

Proposition 1 .

 1 If exists a Pareto front for the minimization problem with two continuous and differentiable functions defined in ℝ , say (𝑥 , 𝑥 ) and (𝑥 , 𝑥 ), then the curve connecting the minima of both functions and is orthogonal to the function contours in the decision space defines the Pareto set.

Figure 1 -

 1 Figure 1 -Graphical representation of Proposition 1. The continuous Pareto set as the locus where objective function gradients are parallel and opposite 3.1. Two quadratic functions defined in ℝ space

  minimize: (𝑥 , 𝑥 ) = 3𝑥 + (𝑥 + 1)𝑥 + 𝑥 + 28𝑥 + 69 (10.a) (𝑥 , 𝑥 ) = 𝑥 -(𝑥 + 1)𝑥 + 𝑥 -7𝑥 + 19 (10.b)

  (a) -Continuous Pareto set obtained by the proposed method (b) -Continuous Pareto front, the Pareto set image in the function space. (c) -Pareto set for the performance functions f 1 and f 2 obtained by the NSGA II algorithm. (d) -Pareto front for performance functions f 1 and f 2 obtained by the NSGA II algorithm.

Figure 1 -

 1 Figure 1 -Graphical representation of Proposition 1. The continuous Pareto set as the locus where objective function gradients are parallel and opposite

Figure 3 -

 3 Figure 3 -Pareto optimality condition for three or more functions in ℝ decision space.

  Proposition 2 to find the solution of an unconstrained MOOP with three quadratic objective functions being two of them those defined by Eqs. (10) and the third defined by: (𝑥 , 𝑥 ) = 𝑥 + 12𝑥 + 𝑥 + 4𝑥 + 40 (15) In the Fig. 4 is shown the Pareto set found applying the Pareto test in the points of a regular grid in the design space divided in fifty points in each coordinate axis, (𝑥 , 𝑥 ) (-10,10] for all (𝑥 , 𝑥 ) 𝑖,𝑗 = (-10 + 𝑖, -10 + 𝑗), 𝑖, 𝑗 = 1. . 0. The continuous border of the Pareto set were obtained applying Proposition 1 for each pair of objective functions.

Figure 4 -

 4 Figure 4 -Pareto optimality condition applied to the three-objective optimization problem involving functions defined in the two-dimensional decision space.

4 .

 4 Solve the linear system 𝐗 * = 𝐀 ̂ 𝐛 ̂, getting the Pareto point 𝐗 * associated with 𝝎 * . 5. Repeat, steps 1 to 4 for the number n p of Pareto points wanted.

) 2 ]Figure 5 -

 25 Figure 5 -Representation of an ellipsoid, a quadratic function (𝐗) = 0 defined in ℝ space.

  (a) -Three quadratic functions, 𝑖 (𝐗) = 0, cst = -0.5 (b) -Pareto set (c) -Pareto set, 𝑥 -𝑥 view. (d) -Pareto front.

Figure 6 -

 6 Figure 6 -Solution of the unconstrained MOOP with the quadratic functions defined in Table 1

Figure 7 -

 7 Figure 7 -Solution of the unconstrained MOOP with the quadratic functions defined in Table A1, Annex A Adding to the unconstrained MOOP the function (𝐗), defined in TableA2, Annex A, the proposed method generated in 1.17 seconds the three dimensional Pareto set illustrated in Fig.8.

Figure 8 -

 8 Figure 8 -Pareto set of the unconstrained MOOP with the quadratic functions defined in TableA2, Annex A

FigureFigure A3 -

 A3 Figure A1 -Rotation 𝛼 around 𝑥 𝐿 axis.

Table 1 -

 1 Coefficients for objective functions 𝑖 (𝐗) definitions.

	function	a	semi-axis b	c		rotation 	 𝑥	origin 𝑥	𝑥
	(𝐗)	1	2	3	0	0	-/6	10	10	0
	(𝐗)	1	2	3	0	0	0	0	-10	0
	(𝐗)	1	2	3	0	0	/4	-10	10	0

Table A1 -

 A1 Optimization problem with 3 objective functions

	function	a	semi-axis b	c		rotation 		x 01	origin x 02	x 03
	(𝐗)	1	2	3	0	0	0	0	0	0
	(𝐗)	1	2	3	0	/4	0	10	0	0
	(𝐗)	1	2	3	0	0	/6	0	10	10
	Table A2 -Optimization problem with 4 objective functions	
	function	a	semi-axis b	c		rotation 		x 01	origin x 02	x 03
	(𝐗)