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Fibrewise equivariant compactifications

under étale groupoid actions

Claire Anantharaman-Delaroche

Abstract. The amenability of the natural action of a discrete group on its
Alexandroff (respectively on its Stone-Čech) compactification is equivalent to
the amenability (respectively the exactness) of the group. Whereas amenability
of groupoids has been widely studied, very few results are known concerning
exactness of groupoids. Our purpose here is mainly to provide the topological
background needed to investigate this notion. To that end, we study first the
fibrewise compactifications of fibre spaces and in particular the Alexandroff and
the Stone-Čech fibrewise compactifications. Starting from G-spaces, where G is
an étale groupoid, we show that these two compactifications are G-spaces in a
natural way. Applications to groupoids will be developed in a separate paper

Introduction

A compactification of a locally compact (Hausdorff) space Y is a pair (Z,ϕ)
where Z is a compact space and ϕ is a homeomorphism from Y onto a dense
open subspace of Z. If (Z,ϕ) and (Z1, ϕ1) are two compactifications of Y , we say
that (Z,ϕ) is smaller than (Z1, ϕ1) if there exists a continuous map ψ : Z1 → Z
such that ψ ◦ ϕ1 = ϕ. Recall that Y has a greatest compactification, namely
its Stone-Čech compactification βY , and a smallest one, namely its Alexandroff
compactification Y +. The Stone-Čech compactification is the Gelfand spectrum
of the abelian C∗-algebra Cb(Y ) of continuous bounded functions from Y to C and
the Alexandroff compactification is the spectrum of its subalgebra formed by the
functions that have a limit at infinity.

Let now G be a discrete group acting by homeomorphisms on Y , in which case
Y is called a G-space and the action is said to be continuous. Then the interesting
compactifications are those to which the initial G-action extends to a continuous
one. Among them we still find βY and Y +. Although we don’t want to enter
here into the details, let us mention that some important intrinsic properties of
the group G are characterized by properties of continuous actions it may have. In
particular, G is amenable if and only if it acts amenably on G+ and it is exact if and
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2 Equivariant compactifications under the action of an étale groupoid

only if it acts amenably on a compact space, or equivalently on βG. We refer the
interested reader to Ozawa’s survey [12] for definitions, results and bibliography.

A natural generalization of the notion of discrete group is that of locally compact
étale groupoid G (see Subsection 2.1). Dynamics furnish many examples of such
groupoids. Our aim in this paper is, in particular, to provide the topological
background necessary to study afterwards such notions as exactness for this class
of groupoids. We are first led to consider the following situation. Let p : Y → X
be a continuous surjective map between locally compact (Hausdorff) spaces, in
which case we say that (Y, p) is a fibre space over X. We assume that X is the
space of units of G and that G acts continuously on Y (i.e., (Y, p) is a G-space, see
Definition 2.1). We need to study the triples (Z,ϕ, q) such that

(a) Z is a locally compact space and ϕ is a homeomorphism from Y onto a
dense open subspace of Z;

(b) the G-action on Y extends to a continuous G-action on Z, turning (Z, q)
into a G-space;

(c) q is a proper continuous map from Z onto X with q ◦ ϕ = p.

Recall that q is said to be proper if for every compact subset K of X, the inverse
image q−1(K) is proper1. In particular, Z is compact if and only if X is com-
pact. However, although Z is not always compact, we call (Z,ϕ, q) a G-equivariant
fibrewise compactification of (Y, p). The fibrewise compactifications of G are ob-
tained by taking (Y, p) = (G, r) where r is the range map and G acts on itself by
multiplication. The group case corresponds to X reduced to a single point.

A a first step, in Section 1 we consider the case where G is trivial (i.e., reduced to
its space X of units. This means that we are looking for triples (Z,ϕ, q) satisfying
Conditions (a) and (c) above. In this purely topological context, without dynam-
ics, this problem seems to have been first considered by Whyburn [17, 18]. We
refer to the book [10] for more on this subject. In [17, 18] the author has studied
a fibrewise compactification of p : Y → X that he called the unified space for p. It
turns out that it is what we call below the Alexandroff fibrewise compactification.
In [10, Definition 3.1], a fibre space q : Z → X (where Z and X are general topo-
logical spaces) such that q is proper is said to be fibrewise compact. We have kept
this terminology. However we consider here a more restrictive situation since we
want our fibrewise compactifications to be locally compact and to contain Y as an
open subspace. Moreover, the compactifications by adding appropriate ultrafilters
that are constructed in [10] are not convenient for our purpose. Our compactifica-
tions are obtained as Gelfand spectra of well-chosen abelian C∗-algebras that we
characterize. In particular, there is a smallest one and a greatest one. They give

1or equivalently, if q is closed and each fibre q−1(x) is compact, since X is locally compact and
Y is Hausdorff (see [4, Chap. I, §10]).
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rise respectively to the Alexandroff fibrewise compactification (Y +
p , p

+) and to the

Stone-Čech fibrewise compactification (βpY, pβ) of (Y, p).

A fibrewise compactification (Z,ϕ, q) provides a field (Zx = q−1(x))x∈X of com-
pact spaces over X. Each fibre Zx contains Y x = p−1(x) as as open subset, but in
general Y x is not dense into Zx. In Section 1.2 we describe in details the fibres of
the Alexandroff fibrewise compactification Y +

p . Concerning the general case, we
give some more insight about the fibres in Subsections 1.3 and 1.4.

The G-equivariant case is studied in Section 2. If (Z,ϕ, q) is a fibrewise com-
pactification of a G-space (Y, p), where G is an étale groupoid, we give in Theorem
2.5 a condition sufficient for the G-action on (Y, p) to extend as a G-action on
Z. In particular (Y +

p , p
+) and (βpY, pβ) have a natural structure of G-space. The

applications of these results are postponed to a subsequent paper [1], since they
require a more specialized knowledge about locally compact groupoids and their
C∗-algebras.

Without further mention, all topological spaces considered in this paper are
assumed to be Hausdorff.

1. Fibrewise compactifications

In this section we are given a fibre space (Y, p) over a locally compact space X,
that is the data of a continuous surjective map p from a locally compact space
Y onto X. For x ∈ X we denote by Y x the fibre p−1(x). We say that (Y, p) is
fibrewise compact if p is proper. A morphism from the fibre space (Y1, p1) over X
into the fibre space (Y2, p2) over the same space is a continuous map ϕ : Y1 → Y2
such that p2 ◦ ϕ = p1.

Definition 1.1. A fibrewise compactification of (Y, p) is a triple (Z,ϕ, q) where Z
is a locally compact space, q : Z → X a continuous proper map and ϕ : Y → Z a
homeomorphism onto an open dense subset of Z such that p = q ◦ ϕ.

If (Z,ϕ, q) and (Z1, ϕ1, q1) are two fibrewise compactifications of (Y, p), we say
that (Z,ϕ, q) is smaller than (Z1, ϕ1, q1) if there exists a continuous map ψ : Z1 →
Z such that ψ ◦ ϕ1 = ϕ.

Note that q ◦ ψ ◦ ϕ1 = q ◦ ϕ = p = q1 ◦ ϕ1 and so q ◦ ψ = q1, that is, ψ is a
morphism of fibre spaces.

1.1. Construction of fibrewise compactifications. We denote by Cb(Y ) (resp.
C0(Y )) the C∗-algebra of continuous bounded (resp. vanishing at infinity) functions
from Y to C, and Cc(Y ) will be the involutive subalgebra of continuous functions
with compact support. We set

p∗C0(X) = {f ◦ p : f ∈ C0(X)}.
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Given a fibrewise compactification (Z,ϕ, q) of (Y, p), we usually identify Y with
the open subset ϕ(Y ) of Z. Then ϕ∗ : g 7→ g|Y is an isomorphism from C0(Z) onto
a C∗-subalgebra of Cb(Y ) which obviously contains C0(Y ) and also p∗C0(X) since
q is proper. We shall freely identify C0(Z) to ϕ

∗C0(Z).

Let us denote by C0(Y, p) the closure of

Cc(Y, p) = {g ∈ Cb(Y ) : ∃K compact ⊂ X, Supp g ⊂ p−1(K)},

where Supp is the support of g. Note that C0(Y, p) is the C
∗-algebra of continuous

bounded functions g on Y such that for every ε > 0 there exists a compact subset
K of X satisfying |g(y)| ≤ ε if y /∈ p−1(K). One immediately checks that

p∗C0(X) + C0(Y ) ⊂ ϕ∗C0(Z) ⊂ C0(Y, p).

Proposition 1.2. The fibrewise compactifications of (Y, p) are in bijective cor-
respondence with the C∗-subalgebras A of C0(Y, p) containing p∗C0(X) + C0(Y ).
More precisely, to A we associate (Z,ϕ, q), where Z is the Gelfand spectrum of A,
ϕ is defined by the essential embedding of C0(Y ) into A, and q is defined by the
embedding of C0(X) into C0(Z) via p

∗. The inverse map sends (Z,ϕ, q) to ϕ∗C0(Z).

Proof. Let A be as in the above statement and denote by Z its Gelfand spectrum.
Observe that C0(Y ) is an ideal of A and therefore Y is canonically identified to an
open subspace of Z. Moreover, Y is dense in Z since C0(Y ) is an essential ideal of
A.

Now, let us fix z ∈ Z and consider the map f 7→ (f ◦ p)(z) defined on C0(X). It
is a homomorphism. Let us check that it is non-zero, hence a character of C0(X).
Indeed, let K be the family of compact subsets of X, ordered by inclusion. For
K ∈ K we choose uK : X → [0, 1] in Cc(X) such that uK(x) = 1 if x ∈ K. Then
(uK ◦ p)K∈K is an approximate unit of C0(Y, p). Therefore, if (uK ◦ p)(z) = 0 for
all K, we get g(z) = 0 for every g ∈ A, a contradiction. It follows that there exists
a unique element in X, that we denote by q(z), such that (f ◦ p)(z) = f(q(z)) for
every f ∈ C0(X). In particular, we get p(z) = q(z) when z ∈ Y . Moreover, since
f ◦ q is continuous for every f ∈ C0(X), we see that q is continuous. Finally, q is
a proper map because f ◦ q vanishes at infinity for every f ∈ C0(X).

The other assertions of the proposition are immediate. �

Remarks 1.3. Observe that p∗C0(X) + C0(Y ) is a C∗-algebra (see [7, Corollary
1.8.4]). So, there is a smallest fibrewise compactification, which is given by the
spectrum of p∗C0(X) + C0(Y ). We denote it by (Y +

p , p
+) and call it the fibrewise

Alexandroff compactification. The largest fibrewise compactification is given by the
spectrum of C0(Y, p). We denote it by (βpY, pβ) and call it the fibrewise Stone-Čech
compactification.

We shall use several times the fact, remarked in the proof of the previous propo-
sition, that p∗C0(X) contains an approximate unit of C0(Y, p).
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When X is reduced to a point, the fibrewise compactifications are the usual
compactifications. When X is compact, we have Cc(Y, p) = Cb(Y ). Therefore βpY

is the usual Stone-Čech compactification βY . When Y = X ×V is a product with
X compact, the Alexandroff fibrewise compactification of Y with respect to the
first projection is X × V +. On the other hand, when X is infinite, compact, and
V is not compact, we have βp(X×V ) = β(X×V ), which differs from X×βV (see
[8]). Finally, let us observe that whenever p is proper we have C0(Y ) = C0(Y, p).
So, in this case (Y, p) has only one fibrewise compactification, namely itself.

The next proposition shows that βpY is the solution of an universal problem.

Proposition 1.4. Let (Y, p) and (Y1, p1) be two fibre spaces over X, where (Y1, p1)
is fibrewise compact. Let ϕ1 : (Y, p) → (Y1, p1) be a morphism. There exists a
unique continuous map Φ1 : βpY → Y1 which extends ϕ1. Moreover, Φ1 is a
morphism of fibre spaces, that is, pβ = p1 ◦ Φ1.

Proof. We have ϕ∗
1C0(Y1) ⊂ C0(Y, p) = C0(βpY ). For z ∈ βpY , we consider the

homomorphism f 7→ (f ◦ ϕ1)(z) defined on C0(Y1). Since p1 is proper, we have
p∗1C0(X) ⊂ C0(Y1) and therefore

p∗C0(X) = ϕ∗
1

(

p∗1C0(X)
)

⊂ ϕ∗
1C0(Y1).

As shown in the proof of the previous proposition, p∗C0(X) contains an approxi-
mate unit for C0(Y, p). It follows that f 7→ (f ◦ϕ1)(z) is a non-zero homomorphism,
thus is of the form f 7→ f(Φ1(z)) for a unique Φ1(z) ∈ Y1. Of course, Φ1 extends
ϕ1 and is continuous. Finally, observe that for y ∈ Y and f ∈ C0(X), we have

f ◦ pβ(y) = f ◦ p(y) = f ◦ p1 ◦ ϕ1(y) = f ◦ p1 ◦ Φ1(y)

and so pβ(y) = p1 ◦ Φ1(y). Since Y is dense in βpY we get pβ = p1 ◦ Φ1. �

Remark 1.5. Let (Z,ϕ, q) be a fiberwise compactification of (Y, p). Then Y x is an
open subset of the compact space Zx, but in general Y x is not dense in Zx, as shown
by the following elementary example, and therefore Zx is not a compactification
of Y x in the usual sense. We take X = [0, 1], Y = (X × {0}) ∪ (]0, 1]× {1}) ⊂ R

2

with the topology induced by R
2, and p is the projection on X. Then Y +

p =

X×{0, 1} and p+ is still the first projection. In particular, the fibre of Y +
p above 0

is Y 0 ∪ {(0, 1)} with Y 0 = {(0, 0)}. Note also that βpY = βY since X is compact.

Then p−1
β (0) is the disjoint union of the two compact spaces Y 0 and β(]0, 1])\]0, 1],

whereas p−1
β (x) = Y x for x ∈]0, 1].

Coming back to the general situation, the following elementary observation will
be useful.

Lemma 1.6. Let (Z,ϕ, q) be a fibrewise compactification of (Y, p). Let V be an
open subset of X. Then p−1(V ) is dense in q−1(V ).
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Proof. This follows immediately from the density of Y in Z. �

Remark 1.7. Let (Y, p) be a fibre space over X. We observe that there is a greatest
open subset U of X such that the restriction of p to p−1(U) is proper. Indeed, let
(Ui)i∈I be a family of open subsets with this property. Then ∪i∈IUi still has this
property. To show this fact, let K be a compact subset of ∪i∈IUi. Every x ∈ K
has a compact neighborhood which is contained in some Ui. Then we can cover
K by a finitely many compact sets C1, . . . , Cn with Ck contained in some Uik , for
k = 1, . . . , n. It follows that p−1(K) = ∪n

k=1p
−1(K ∩ Ck) is compact.

Note that U is described as the set of elements of X having a compact neigh-
borhood K such that p−1(K) is compact.

Proposition 1.8. Let (Y, p) be a fibre space over X and U as above. Let (Z,ϕ, q)
be a fibrewise compactification of (Y, p). Then q−1(U) = p−1(U). So, Z and Y
have the same fibres over x ∈ U .

Proof. Let V be an open set contained in a compact subset K of U . Then we have
p−1(V ) ⊂ p−1(K). Observe that p−1(K) ⊂ p−1(U) is a compact subset of q−1(U)
and that p−1(V ) is dense into q−1(V ). It follows that q−1(V ) = p−1(V ) and so
q−1(U) = p−1(U) since U is the union of such open sets V . �

Remark 1.9. Even if x ∈ X is so that Y x is compact, it may happen that Zx is
strictly bigger, and even be very huge as seen in Remark 1.5.

1.2. The Alexandroff fibrewise compactification. Its fibres have a simple
description, in contrast with the Stone-Čech situation.

Proposition 1.10. Let (Y, p) be a fibre space over X and let U be the greatest
open subset of X such that the restriction of p to p−1(U) is proper.

(i) The fibre (Y +
p )x of the Alexandroff fibrewise compactification of (Y, p) is of

the following form:
– (Y +

p )x = Y x if x ∈ U ;

– (Y +
p )x = (Y x)+ = Y x ∪ {ωx}, the Alexandroff compactification of Y x,

if Y x is not compact;
– (Y +

p )x is the disjoint union of Y x and a singleton {ωx} when x /∈ U
with Y x compact.

(ii) Y +
p is the disjoint union of Y and F = {ωx : x ∈ X \ U}. Moreover, Y is

a dense open subset of Y +
p and F , with the induced topology, is canonically

homeomorphic to X \ U .

Proof. Recall that Y +
p is the spectrum of the the abelian C∗-algebra A = I + B

where I is the ideal C0(Y ) and B = p∗C0(X). It follows that the spectrum Y of I
is identified with the open subset of characters of A that are non-zero on I, and
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F = Y +
p \ Y is the set of characters whose kernel contains I, that is, the set of

characters of A/I. Since A/I is isomorphic to B/(B∩I), we have first to determine
B ∩ I.

Let g = f ◦ p with f ∈ C0(X) and assume that g ∈∈ C0(Y ). We claim that
f(x) = 0 when x /∈ U . Indeed, assume on the contrary that f(x) 6= 0. Set
ε = |f(x)|/2. Observe that C = {y ∈ Y : |f ◦ p(y)| ≥ ε} is compact and that p(C)
is a compact neighborhood of x. Denote by V its interior. Since p−1(p(C)) = C
is compact, we see that the restriction of p to p−1(V ) is proper, and so V ⊂ U , a
contradiction. It follows that B ∩ I is contained into p∗C0(U).

On the other hand, since the restriction of p to p−1(U) is proper we have
p∗C0(U) ⊂ C0(Y ). It follows that B ∩ I = p∗C0(U).

Then B/(B ∩ I) = p∗C0(X)/p∗C0(U) is isomorphic to p∗C0(X \ U) and thus to
C0(X \ U). The spectrum F of B/(B ∩ I) is thus homeomorphic to X \ U . The
inverse homeomorphism sends x ∈ X \ U onto the character ωx defined by

ωx(h) = f(x)

for any decomposition h = g + f ◦ p as a sum of an element g ∈ I and an element
f ◦ p ∈ B. This is not ambiguous since B ∩ I = p∗C0(U).

The rest of the proposition is now immediate. �

Remark 1.11. The topology of Y +
p is described in the following way: a subset Ω

of Y +
p is open if and only if

• Ω ∩ Y is open in Y and Ω ∩ F is open in F (which is canonically homeo-
morphic to X \ U);

• for every compact subset K of X, then (p+)−1(K)∩ (Y \Ω) is compact in
Y .

The proof follows the same lines as the proof given in [17] establishing that the
unified space Z of p is fibrewise compact. In fact, as a set, Z = Y ⊔X and Y +

p is
nothing else than the closure of Y in the topological space Z. We shall not need
these observations in the sequel. The details are left as an exercise.

1.3. The case of étale fibre spaces. As already said, the example most impor-
tant for us is that of an étale groupoid and p = r, the range map, which is a local
homeomorphism (see Subsection 2.1). In the general case of an étale fibre space,
we give in Proposition 1.13 a concrete description the above open subset U of X.

Definition 1.12. We say that a fibre space (Y, p) over X is étale2 if every y ∈ Y
has an open neighborhood S such that p(S) is open and the restriction of p to S is
a homeomorphism onto p(S). We denote by p−1

S its inverse map, which is defined
on p(S). Such a set S is called an open section.

2In [10, Definition 1.19] such fibre spaces are called fibrewise discrete.
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We collect several consequences of the definition. First, p is an open map and the
fibres Y x with their induced topology are discrete. Moreover, the topology of Y has
a basis of open sections. Finally, for every g ∈ Cc(Y ), let us set h(x) =

∑

y∈Y x g(y).

Then h ∈ Cc(X). Indeed, using a partition of unity, it suffices to consider the
case where g has its compact support in some open section S. Then we have
h(x) = f ◦ p−1

S (x) if x ∈ p(S) and h(x) = 0 otherwise. The conclusion follows
immediately.

Proposition 1.13. Let (Y, p) be an étale fibre space over X. Let W be the open
subset of X formed by the elements x such that the cardinal of the fibres of Y is
finite and constant in a neighborhood of x. Then, W is the greatest open subset U
of X such that the restriction of p to p−1(U) is proper.

Proof. Assume that x ∈W and write Y x = {y1, . . . , yn}. We choose disjoint open
sections S1, . . . , Sn with yi ∈ Si for i = 1, . . . , n. We may choose S1, . . . , Sn small
enough so that they have the same image V under p and that p−1(V ) = ∪n

i=1Si
since the fibres of Y have the same cardinal n in a neighborhood of x. Let K be
a compact neighborhood of x contained in V . Then p−1(K) = ∪n

i=1p
−1(K) ∩ Si

is a finite union of compact sets and therefore is compact. Therefore x ∈ U (see
Remark 1.7). Conversely, assume that x ∈ U . It has a compact neighborhood K
such that p−1(K) is compact. Let f ∈ Cc(X) be with support in K and equal to
1 in a neighborhood of x. Then f ◦ p belongs to Cc(Y ). For x1 ∈ X, let us set
h(x1) =

∑

y∈Y x1 f ◦ p(y). Then h : X → R
+ is continuous and is equal to the

cardinal of Y x1 in a neighborhood of x. Thus, we have x ∈W . �

1.4. Fibres in the general case. Let (Z, q) be a fibre space over X. Then C0(Z)
is a C0(X)-algebra. Let us recall the definition and some facts we shall need about
such algebras. For more details we refer to [3], [16].

Definition 1.14. A C0(X)-algebra is a C∗-algebra A equipped with a non-degene-
rate ∗-homomorphism from C0(X) into the center of the multiplier algebra of A.

We denote by f · a the product of f ∈ C0(X) with a ∈ A. Recall that the action
of C0(X) on A is non-degenerate if there exists an approximate unit (uλ) of C0(X)
such that limλ uλa = a for every a ∈ A. Here A will be C0(Z) and therefore its
multiplier algebra is Cb(Z).

Given x ∈ X, let us denote by Cx(X) the ideal in C0(X) formed by its elements
f such that f(x) = 0. Let Ix be the closed linear span of {fa : f ∈ Cx(X), a ∈ A}.
It is a closed ideal A and in fact, we have Ix = Cx(X)A = {fa : f ∈ Cx(X), a ∈ A}
(see [3, Corollaire 1.9]). We denote by Ax = A/Ix the quotient C∗-algebra and
by ax the image of a ∈ A in the quotient. Then A appears as an upper semi-
continuous field of C∗-algebras, in the sense that for a ∈ A the function x 7→ ‖ax‖
is upper semi-continuous [16, Proposition 1.2].
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In the case of A = C0(Z) where (Z, q) is a fibre space over X, we define a
structure of C0(X)-algebra on C0(Z) by setting f · g = (f ◦ q)g.

Proposition 1.15. Let (Z, q) as above. For x ∈ X, the fibre Zx is the Gelfand
spectrum of Ax = C0(Z)/Cx(X)C0(Z).

Proof. We set Ix = Cx(X)C0(Z). We denote by θx the map from C0(Z) onto C0(Z
x)

which sends g ∈ C0(Z) onto its restriction to Zx. Let us show that Ix = ker θx. The
inclusion Ix ⊂ ker θx is immediate since every element of Ix is of the form (f ◦ q)g
with f(x) = 0. Take now g ∈ ker θx. Given ε > 0, let K = {z ∈ Z : |g(z)| ≥ ε}.
Let us choose f ∈ Cx(X) such that f(x′) = 1 if x′ ∈ q(K) and f(X) ⊂ [0, 1]. Then
(f ◦ q)g ∈ Ix and ‖(f ◦ q)g − g‖ ≤ ε. So, we have g ∈ Ix. �

Remark 1.16. Let us consider the more specific case where (Z,ϕ, q) is a fibrewise
compactification of (Y, p). We identify C0(Z) with the C∗-algebra ϕ∗C0(Z) obtained

by restriction to Y . We may consider the map θ̃x : ϕ∗C0(Z) → Cb(Y
x) sending g

to its restriction to the closed subset Y x of Y . Let denote by Ĩx the kernel of θ̃x.
Obviously, we have Ix ⊂ Ĩx.

Let us consider the case where Y x is not compact and Z = Y +
p . We see first that

θ̃x
(

p∗C0(X) + C0(Y )
)

is the C∗-algebra of continuous functions on Y x which have

a limit at infinity. Second, we have Ĩx = Ix. Indeed, assume that the restriction of
f ◦p+ g to Y x is equal to zero, where f ∈ C0(X) and g ∈ C0(Y ). Then, since Y x is
not compact, we immediately see that f ∈ Cx(X) and thus f ◦ p ∈ Ix. Moreover,

we get that g ∈ Ĩx. It is an easy exercise to see that g ∈ Ix, since g ∈ C0(Y )
(see the proof of the previous proposition). It follows that (Y +

p )x = (Y x)+, a fact
already observed in Proposition 1.10.

Still with Y x non compact, let us consider the case where Z = βpY . Then, the

range of θ̃x is Cb(Y ). It follows that β(Y x) is a closed subset of (βpY )x. However,

we shall see in Section 2.3 that Ix happens to be strictly smaller than Ĩx, and
therefore β(Y x) can be strictly included into (βpY )x.

2. Fibrewise equivariant compactifications of G-spaces

Let G be a discrete group. A G-space is a locally compact space Y on which G
acts to the left by homeomorphisms. Then G acts on Cb(Y ) by sf(y) = f(s−1y).

A G-equivariant compactification of Y is a pair (Z,ϕ) where Z is a compact
G-space and ϕ is a G-equivariant homeomorphism from Y onto an open dense
subspace of Z. The map sending A to its spectrum is a bijection from the set of
unital G-invariant sub-C∗-algebras A of Cb(Y ) which contain C0(Y ) onto the set of
G-equivariant compactifications of Y . Note that Y + and βY are such equivariant
compactifications.
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In this section, we extend these observations to the case of étale groupoids.

2.1. Preliminaries on étale groupoids. Let us recall some basic notions and
notation. For more details we refer to [14], [13]. A groupoid is a small category
in which every morphism is invertible. More precisely, it consists of a set G of
morphisms and a subset G(0) of objects (also called units) together with source

and range maps s, r : G → G(0), a composition law (or product) (γ1, γ2) ∈ G(2) 7→
γ1γ2 ∈ G, where

G(2) = {(γ1, γ2) ∈ G × G : s(γ1) = r(γ2)},

and an inverse map γ 7→ γ−1 such that

• s(γ1γ2) = s(γ2) and r(γ1γ2) = r(γ1) for (γ1, γ2) ∈ G(2);

• s(x) = x = r(x) for x ∈ G(0);
• γs(γ) = γ = r(γ)γ for γ ∈ G;
• (γ1γ2)γ3 = γ1(γ2γ3) whenever s(γ1) = r(γ2) and s(γ2) = r(γ3);
• s(γ) = r(γ−1) and γγ−1 = r(γ) (and so r(γ) = s(γ−1) and γ−1γ = s(γ)).

A locally compact groupoid is a groupoid G equipped with a locally compact
topology such that the structure maps are continuous, where G(2) has the topology
induced by G × G and G(0) has the topology induced by G.

An étale groupoid is a locally compact groupoid G such that the range and
source maps are local homeomorphisms from G into G(0). Observe that the fibres
Gx = r−1(x) are discrete and that G(0) is open in G (see [14, Proposition 2.8]).
Etale groupoids are sometimes called r-discrete.

Examples of étale groupoids are plentiful. Let us mention groupoids associ-
ated with discrete group actions, local homeomorphisms, pseudo-groups of partial
homeomorphisms, topological Markov shifts, graphs,... (see [14], [6], [11], [2], [15]
for a non exhaustive list). For a brief account on the notion of étale groupoid see
also [5, Section 5.6]. Note that a locally compact space X is a particular case of
étale groupoid. In this case, G = G0 = X, the source and range maps are the
identity one, and the product is (x, x) 7→ x. This groupoid is said to be trivial.

Given an étale groupoid G, let us observe that (G, r) is an étale fibre space over

the space G(0) of units. A bisection is a subset S of G such that the restrictions of
r and s to S are injective. Given an open bisection S, we shall denote by r−1

S the

inverse map, defined on the open subset r(S) of G(0), of the restriction of r to S.
Note that r−1

S is continuous.

An étale groupoid G has a cover by open bisections. These open bisections form
an inverse semigroup with composition law

ST =
{

γ1γ2 : (γ1, γ2) ∈ (S × T ) ∩ G(2)
}

,
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the inverse S−1 of S being the image of S under the inverse map of G (see [13,
Proposition 2.2.4]). A compact subset K of G is covered by a finite number of open
bisections. Thus, using partitions of unity, we see that every element of Cc(G) is
a finite sum of continuous functions whose compact support is contained in some
open bisection.

In the sequel, we fix an étale groupoid and we denote by X its set of units. If
pi : Yi → X, i = 1, 2, are two maps, we denote by Y1 p1∗p2Y2 (or Y1∗Y2 when there is
no ambiguity) the fibred product {(y1, y2) ∈ Y1 × Y2 : p1(y1) = p2(y2)}. Whenever
Y1 and Y2 are topological spaces, we equip Y1 p1∗p2 Y2 with the topology induced
by the product topology.

Definition 2.1. A left G-space is a fibre space (Y, p) over X = G(0), equipped
with a continuous map (γ, y) 7→ γy from G s∗p Y into Y , satisfying the following
conditions:

(i) p(γy) = r(γ) for (γ, y) ∈ G s∗p Y , and p(y)y = y for y ∈ Y ;

(ii) if (γ1, y) ∈ G s∗p Y and (γ2, γ1) ∈ G(2), then (γ2γ1)y = γ2(γ1y).

Note that y 7→ γy is a homeomorphism from Y s(γ) onto Y r(γ). Right G-spaces
are defined similarly. Without further precisions, a G-space will be a left G-space.

A morphism ϕ : (Y, p) → (Y1, p1) between two G-spaces is said to be G-
equivariant if ϕ(γy) = γϕ(y) for every (γ, y) ∈ G s∗p Y .

Let us observe that (G, r) is a G-space in an obvious way, as well as X. It this
latter case, the action of γ ∈ s−1(x) onto x ∈ X will be denoted by γ · x, in order
to distinguish it from γx = γ. By definition, we have γ · x = r(γ). We also note
that if (Y, p) is a G-space, then p is G-equivariant: p(γy) = γ · p(y).

An open bisection S defines a homeomorphism from p−1(s(S)) onto p−1(r(S)),
by sending y onto γy, where γ is the unique element of S such that s(γ) = p(y).
We set Sy = γy. This applies to (Y, p) = (G, r) and to (Y, p) = (X, Id ). In the
latter case, we write γ · x = S · x. Note that S · p(y) = p(Sy) and thus, for every
subset W of p−1(s(S)), we have

S · p(W ) = p(SW ).

Proposition 2.2. Let G be an étale groupoid and (Y, p) a G-space. Let U be the

greatest open subset of X = G(0) such that the restriction of p to p−1(U) is proper.
Then U is invariant under the G-action, that is, r(γ) ∈ U if and only if s(γ) ∈ U .

Proof. Let γ be such that s(γ) ∈ U and let S be a compact bisection which is
a neighborhood of γ. By Remark 1.7 there exists a compact neighborhood K of
s(γ) contained into s(S) such that p−1(K) is compact. Then S ·K is a compact
neighborhood of r(γ) and p−1(S ·K) = Sp−1(K) is compact. Therefore we have
r(γ) ∈ U , again using Remark 1.7. �
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2.2. Construction of G-equivariant fibrewise compactifications. Let (Y, p)
be a G-space. We want to study the equivariant fibrewise compactifications of
(Y, p) as defined below. The groupoid G will still be étale and X will denote the
set of units of G.

Definition 2.3. A G-equivariant fibrewise compactification of the G-space (Y, p) is
a fibrewise compactification (Z,ϕ, q) of (Y, p) such that (Z, q) is a G-space satisfying
ϕ(γy) = γϕ(y) for every (γ, y) ∈ G s∗p Y .

Via ϕ we shall usually identify Y to a G-subspace of Z. The fibrewise com-
pactifications were characterized in terms of specific C∗-subalgebras of Cb(Y ). The
G-equivariant ones are characterized by those C∗-subalgebras that are G-invariant.
This notion of invariance is defined by using convolution products.

For g ∈ Cc(G) and f ∈ Cb(Y ) we define the convolution product g ∗ f by

(g ∗ f)(y) =
∑

γ∈r−1(p(y))

g(γ)f(γ−1y). (1)

Thanks to the fact that g is a finite sum of continuous functions supported in an
open bisection, to study the properties of the convolution product it suffices to
consider the case where g has a compact support K contained in an open bisection
S. Then

(g ∗ f)(y) = 0 if y /∈ p−1(r(K))

= g(γ)f(γ−1y) if y ∈ p−1(r(K)),

where γ = r−1
S (p(y)) and γ−1y = S−1y. It follows that for every g ∈ Cc(G) we have

g ∗ f ∈ Cc(Y, p) ⊂ Cb(Y ) with |(g ∗ f)(y)| ≤
(
∑

{γ:r(γ)=p(y)} |g(γ)|
)

‖f‖∞.

Let (Z,ϕ, q) be a fibrewise compactification of (Y, p). Recall that the restriction
map F 7→ F ◦ϕ identifies C0(Z) to a subalgebra of Cb(Y )). Therefore, for g ∈ Cc(G),
the convolution product g ∗ F makes sense as an element of Cb(Y ), when defined
by g ∗ F = g ∗ (F ◦ ϕ). We say that C0(Z) is stable under convolution by the
elements of Cc(G) if g ∗ F ∈ C0(Z) for every F ∈ C0(Z). In this case g ∗ F denotes
both the function defined on Y and its unique extension to Z. Under this stability
assumption, we want to show that there is a unique continuous G-action on Z
extending the given G-action on Y . For (γ0, z0) ∈ G s∗q Z, we first explain how
γ0z0 is defined.

Lemma 2.4. We assume that C0(Z) is stable under convolution by the elements
of Cc(G). Let (γ0, z0) ∈ G s∗qZ. Let S be an open bisection such that γ0 ∈ S and let

a be a continuous function on X = G(0) with compact support in s(S), such that
a(x) = 1 for x in a neighborhood of s(γ0). We set h = (a◦s)χS and g(γ) = h(γ−1)
(where χS is the characteristic function of S).

(i) Let F ∈ C0(Z). If z0 ∈ Y , we have (g ∗ F )(z0) = F (γ0z0).
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(ii) For F ∈ C0(Z), the complex number (g ∗ F )(z0) does not depend on the
choice of a and S satisfying the above properties, but only on (γ0, z0).

(iii) F ∈ C0(Z) 7→ (g ∗ F )(z0) is a character of C0(Z) that we denote by γ0z0.

Proof. (i) Observe that g ∈ Cc(G) and so g ∗ F ∈ C0(Z). For y ∈ Y ⊂ Z, we have

(g ∗ F )(y) = a ◦ p(y)F (Sy) if p(y) ∈ Supp a ⊂ s(S) (2)

= 0 otherwise.

Obviously, if z0 ∈ Y we have (g ∗ F )(z0) = F (γ0z0).

(ii) Consider two open bisections S1, S2 with γ0 ∈ S1∩S2, and let a1, a2 be two
continuous functions with compact support in S1 and S2 respectively, with constant
value 1 on a neighborhood of s(γ0). Then by (2), there is an open neighborhood V
of s(γ0) in X such that g1∗F and g2∗F coincide on p−1(V ). By Lemma 1.6, we see
that g1∗F = g2∗F on q−1(V ) and in particular we have (g1∗F )(z0) = (g2∗F )(z0).

(iii) To show that F 7→ (g ∗ F )(z0) is a character, we first observe that given
F and F ′ in C0(Z), we have, for y such that p(y) belongs to a neighborhood V of
s(γ0) on which a takes value 1,

a ◦ p(y)(FF ′)(Sy) = a ◦ p(y)F (Sy) a ◦ p(y)F ′(Sy),

that is

(g ∗ (FF ′))(y) = (g ∗ F )(y) (g ∗ F ′(y).

Once again we conclude thanks Lemma 1.6 that this equality still holds when y is
replaced by z0.

It remains to check that there exists F ∈ C0(Z) such that (g ∗ F )(z0) 6= 0. We
take S to be relatively compact. Let V be a compact neighborhood of s(γ0) in
X, contained in s(S) and on which a(x) = 1. We choose f ∈ Cc(X) such that
f(x) = 1 if x ∈ r(SV ) = S · V and we set F = f ◦ q. Since q is proper, we note
that F ∈ Cc(Z). For y ∈ p−1(V ), we have, since p is equivariant,

(g ∗ F )(y) = F (Sy) = f ◦ p(Sy) = f(S · y) = 1.

Once more, we deduce from Lemma 1.6 that (g ∗ F )(z0) = 1. �

Note that, by definition,

F (γ0z0) = (g ∗ F )(z0). (3)

Theorem 2.5. Let (Y, p) be a G-space, where G is an étale groupoid. Let (Z,ϕ, q)
be a fibrewise compactification of (Y, p) such that C0(Z) is stable under convolution
by the elements of Cc(G). The map (γ0, z0) 7→ γ0z0 is a continuous G-action on Z,
and it is the only continuous G-action extending the action of G on Y.
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Proof. Since G s∗pY is dense into G s∗qZ, there is at most one continuous extension
of the G-action.

For (γ0, z0) ∈ G s∗q Z, let us check that q(γ0z0) = r(γ0). Let V be a compact

neighborhood of r(γ0) in X = G(0) and let f be a continuous function supported
in V and taking value 1 in a neighborhood of r(γ0). Set F = f ◦ q ∈ C0(Z) and
take g as in the previous lemma. The choices of a and S are such that a = 1 on a
neighborhood W of s(γ0) and f = 1 on r(SW ). We have

(g ∗ F )(y) = a ◦ p(y)F (Sy) = f ◦ p(Sy) = 1

for every y ∈ Y such that p(y) ∈W . It follows that (g ∗F )(z) = 1 for z ∈ q−1(W ).
In particular F (γ0z0) = (g ∗ F )(z0) = 1, and therefore q(γ0z0) ∈ V . We conclude
that q(γ0z0) = r(γ0) since this holds for every V in a basis of neighborhoods of
r(γ0).

Given z0 ∈ Z, let us check that F (q(z0)z0) = F (z0) for every F ∈ C0(Z). For
the definition of F (q(z0)z0) we take S = X. Then in (2) we get, for y ∈ Y ,

(g ∗ F )(y) = a ◦ p(y)F (y),

and therefore (g ∗ F )(z) = a ◦ q(z)F (z) for z ∈ Z. In particular, we have
F (q(z0)z0) = (g ∗ F )(z0) = F (z0). It follows that q(z0)z0 = z0. Thus, Condi-
tion (i) in the definition 2.1 is fulfilled.

Let us show the continuity of (γ, z) 7→ γz. Let (γ0, z0) ∈ G s∗q Z and let W be
a neighborhood of γ0z0. Let us consider F ∈ C0(Z) such that F (γ0z0) = 1 and
F (z) = 0 if z 6∈ W . We take S, a and g as in Lemma 2.4. Let U be an open
neighborhood of γ0, contained into S such that a ◦ s(γ) = 1 if γ ∈ U . For γ ∈ U
and every z ∈ Z with q(z) = s(γ) we have F (γz) = (g ∗ F )(z). Since g ∗ F is
continuous and (g ∗ F )(z0) = 1, there is a neighborhood V of z0 in Z on which
g ∗ F > 0. It follows that for (γ, z) ∈ Us∗q V we have γz ∈W .

Finally, let us show the associativity: (γ1γ2)z = γ1(γ2z) when this expression
makes sense. We have to check that F ((γ1γ2)z) = F (γ1(γ2z)) for every F ∈ C0(Z).
For i = 1, 2, we choose an open bisection Si containing γi, a continuous function
ai with compact support in s(Si) and taking value 1 in a neighborhood of s(γi).
We introduce gi (with respect now to Si, γi instead of S, γ0) as in Lemma 2.4. A
straightforward computation shows that

F ((γ1(γ2z)) = g2 ∗ (g1 ∗ F )(z).

In the groupoid algebra Cc(G) the convolution product of g2 by g1 is defined as

(g2 ∗ g1)(γ) =
∑

{γ′:r(γ′)=r(γ)}

g2(γ
′)g1(γ

′−1γ)

= a2 ◦ r(γ)
∑

{γ′∈S2:s(γ′)=r(γ}

a1 ◦ s(γ
−1γ′−1)χS1

(γ−1γ′−1).
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It follows that (g2 ∗ g1)(γ) = 0 except possibly whenever γ′ ∈ S2 together with
γ−1γ′−1 ∈ S1 and then we get

(g2 ∗ g1)(γ) = a2 ◦ r(γ)a1 ◦ r(γ
′).

Let θ2 denote the homeomorphism x 7→ S2 · x from s(S2) onto r(S2). Then we
have

a1 ◦ r(γ
′) = a1 ◦ θ2 ◦ s(γ

′) = a1 ◦ θ2 ◦ r(γ),

and therefore

(g2 ∗ g1)(γ) = a2 ◦ r(γ)(a1 ◦ θ2) ◦ r(γ)χS1S2
(γ−1).

We observe that a1 ◦ θ2 is equal to 1 in a neighborhood of s(γ2). From the
beginning we may have chosen S2 so that r(S2) ⊂ s(S1) and a1 with compact
support in r(S2). Then S1S2 is a bisection containing γ1γ2 with s(S1S2) = s(S2).
Moreover, a2(a1 ◦ θ2) is continuous with compact support in s(S2) and is equal to
1 in a neighborhood of s(γ2) = s(γ1γ2).

In conclusion, we get

F ((γ1(γ2z)) = g2 ∗ (g1 ∗ F )(z) =
(

(g2 ∗ g1) ∗ F
)

(z) = F ((γ1γ2)z),

where the last equality follows from (3). Since this holds for every F ∈ C0(Z), we
obtain γ1(γ2z) = (γ1γ2)z. �

Corollary 2.6. Let (Y, p) be a G-space, where G is an étale groupoid. The G-
equivariant fibrewise compactifications of (Y, p) are in bijective correspondence with
the C∗-subalgebras of C0(Y, p) which contain p∗C0(X)+C0(Y ) and are stable under
convolution by the elements of Cc(G). This correspondence is the restriction to the
set formed by these C∗-subalgebras of the bijection described in Proposition 1.2.

Proof. The only fact that remains to show is that if (Z,ϕ, q) is a G-equivariant fi-
brewise compactification, then ϕ∗C0(Z) is stable under convolution by the elements
of Cc(G). Let F ∈ C0(Z) and g ∈ Cc(G). We define g ∗ F by the expression

(g ∗ F )(z) =
∑

γ∈r−1(q(z))

g(γ)F (γ−1z).

This function is continuous with support in q−1(r(K)) where K is the compact
support of g. Since q is proper, the support of g ∗ F is compact.

To conclude, we observe that (g ∗ F ) ◦ ϕ = g ∗ (F ◦ ϕ). �

Proposition 2.7. Let (Y, p) be a G-space, where G is an étale groupoid. The
structure of G-space of (Y, p) extends in a unique way to the Alexandroff and the
Stone-Čech fibrewise compactifications. This makes them G-equivariant fibrewise
compactifications.



16 Equivariant compactifications under the action of an étale groupoid

Proof. We have to show that the C∗-algebra C0(Y, p) and p∗C0(X) + C0(Y ) and
stable under convolution by the elements of Cc(G). The verifications are immediate.

�

Proposition 2.8. Let G be an étale groupoid and (Y, p), (Y1, p1) be two G-spaces.
We assume that (Y1, p1) is fibrewise compact. Let ϕ1 : (Y, p) → (Y1, p1) be a G-
equivariant morphism. The unique continuous map Φ1 : βpY → Y1 which extends
ϕ1 is G-equivariant.

Proof. The two continuous maps (γ, z) 7→ Φ1(γz) and (γ, z) 7→ γΦ1(z), which are
defined on G s∗pβ βpY coincide on G s∗p Y which is dense into G s∗pβ βpY . �

Note in particular that (G, r) has two important G-equivariant fibrewise com-
pactifications, its Alexandroff fibrewise compactification (G+

r , r
+) and its Stone-

Čech fibrewise compactification (βrG, rβ).

With techniques similar to those used above, it is possible to construct smaller
fibrewise compact G-spaces from a given one (Z, q), when G is an étale groupoid.
This fact of independent interest will be needed in [1].

Proposition 2.9. Let (Z, q) be a G-space where q : Z → X = G(0) is proper.
Let A be a C∗-subalgebra of C0(Z) which contains q∗C0(X) and is stable under
convolution by the elements of Cc(G). Denote by Y the Gelfand spectrum of A and
by p : Y → X (resp. qY : Z → Y ) the continuous surjective map corresponding
to the embedding C0(X) ⊂ C0(Y ) (resp. C0(Y ) ⊂ C0(Z). Then (Y, p) has a unique
structure of G-space which make qY equivariant. Moreover, p◦qY = q and therefore
p and qY are proper.

Proof. Since q∗C0(X) contains an approximate unit for C0(Z), the map qY is well
defined by the equality 〈qY (z), f〉 = f(z) for every f ∈ A and z ∈ Z. Similarly, p
is defined be the equality 〈y, f ◦ q〉 = f(p(y)) for f ∈ C0(X) and y ∈ Y . Taking
y = qY (z) we get f ◦ q(z) = f((p ◦ qY )(z)) for f ∈ C0(X) and z ∈ Z. It follows
that p ◦ qY = q.

The uniqueness assertion for the structure of G-space of Y is obvious. Given
(γ0, qY (z0)) ∈ Gs∗p Y , let us explain how γ0qY (z0) is defined. As in the proof of
Lemma 2.4, we consider an open bisection S such that γ0 ∈ S and a continuous
function a on X with compact support in s(S), such that a(x) = 1 for x in a
neighborhood of s(γ0). We set h = (a ◦ s)χS and g(γ) = h(γ−1). Let f ∈ C0(Y ).
Then we have (g∗(f ◦qY ))(z0) = f ◦qY (γ0z0). It follows that f 7→ (g∗(f ◦qY ))(z0)
is a character of A and since g ∗ (f ◦ qY ) belongs to q

∗
Y C0(Y ), this character only

depends on qY (z0) and (as before) γ0. We denote it by γ0qY (z0). So, we have
f ◦qY (γ0z0) = f(γ0qY (z0)) for every f ∈ C0(Y ) and therefore qY (γ0z0) = γ0qY (z0).
The fact that we define in this way a continuous action is proved with arguments
similar to those used in the the proof of Theorem 2.5. �
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2.3. An example. By an étale bundle of groups we mean an étale groupoid G
such that for every γ ∈ G we have r(γ) = s(γ). In particular, r−1(x) = G(x) is a

discrete group for every x ∈ X = G(0). Thus, G is the data of a field x ∈ X 7→ G(x)
of discrete groups with a suitable topology on the union of these groups.

The following class of étale bundle of groups was introduced in [9] in order to
provide examples of groupoids for which the Baum-Connes conjecture fails. We
consider an infinite discrete group Γ∞ and a sequence (Hn)n∈N of normal subgroups
of Γ∞ of finite index. We set Γn = Γ∞/Hn and we denote by πn : Γ → Γn the
quotient map. The identity map of Γ∞ is denoted by π∞. Let G be the quotient
of N+ × Γ∞ by the following equivalence relation: (m, s) ∼ (n, t) if and only if
n = m and πn(s) = πn(t). Then G is the bundle of groups n 7→ Γn over N+. The

range (and also source) map is r : (n, πn(s)) 7→ n ∈ N
+ = G(0). We endow G with

the quotient topology. Then r−1(N) is a discrete open subset of G. A basis of
neighborhoods of (∞, s) is formed by the subsets {(n, πn(s)) : n ≥ n0}, where n0
runs over N. We observe that (∞, s) and (∞, t) have disjoint neighborhoods if and
only if there exists an integer n0 such that πn(s) 6= πn(t) for n ≥ n0. Therefore, G
is Hausdorff (and obviously an étale groupoid) if and only if for every s 6= 1 there
exists n0 such that s /∈ Hn for n ≥ n0 (in which case Γ∞ is residually finite). Such
examples are provided by taking Γ∞ = SLk(Z) and Γn = SLk(Z/nZ), for k ≥ 2.

Let G be such an étale bundle of groups and G+
r its Alexandroff fibrewise com-

pactification. We have (G+
r )

n = Γn for n ∈ N and (G+
r )

∞ = (G∞)+ = Γ+
∞.

As for βrG, it is equal to βG since the basis N
+ of the bundle is compact. We

still have (βrG)
n = Γn for n ∈ N. On the other hand (βrG)

∞ is strictly bigger
than β(G∞) = βΓ∞. Indeed, let us write Γ = {si : i ∈ N}. We choose inductively
a subsequence (nk)k∈N of N such that πnk

(sk) 6= πnk
(si) when i < k. Let g ∈ Cb(G)

be defined as follows: we set g((nk, πnk
(sk)) = 1 for every k and g(y) = 0 if

y /∈ {(nk, πnk
(sk) : k ∈ N}. The continuity of g is due to the choice of (nk)k∈N. Let

ω be a free ultrafilter on N. The map F 7→ limω F ((nk, πnk
(sk)) is a character of

Cb(G). This character χ belongs to (βrG)
∞ \βΓ∞ since we have χ(g) = 1, whereas

χ′(g) = 0 for every χ′ ∈ βΓ∞.
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of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999.
[14] Jean Renault. A groupoid approach to C∗-algebras, volume 793 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1980.
[15] Jean Renault. Cuntz-like algebras. In Operator theoretical methods (Timişoara, 1998), pages
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