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A partial characterization of the core in Bertrand oligopoly

TU-games with transferable technologies

Aymeric Lardon∗

November 11, 2014

Abstract

In this article we study Bertrand oligopoly TU-games with transferable technologies
under the α and β-approaches (Aumann 1959). Although the convexity property
does not always hold, we show that it is satisfied when firms’ marginal costs are
not too heterogeneous. Furthermore, we prove that the core of any game can be
partially characterized by associating a Bertrand oligopoly TU-game derived from
the most efficient technology. Such a game turns to be an efficient convex cover
(Rulnick and Shapley 1997) of the original one. This result implies that the core
is non-empty and contains a subset of payoff vectors with a symmetric geometric
structure easy to compute.

Keywords: Bertrand oligopoly TU-games; Transferable technologies; Core; Convex-
ity property;
JEL Classifications: C71, D43

1 Introduction

The literature on cooperative games uses three main typologies in order to classify
oligopoly TU (Transferable Utility)-games.
The first typology concerns competition type namely Cournot (quantity) and Bertrand
(price) competition in which firms propose homogeneous or differentiated products.
The second typology distinguishes two types of oligopolies according to the possibility or
not for cooperating firms to transfer their technologies.1 When technologies are transfer-
able, cooperating firms are allowed to produce according to the most efficient technology
available in the cartel. When technologies are not transferable such a transfer is not
possible.
The third typology concerns blocking rules used to convert a normal form oligopoly game
into an oligopoly TU-game. Among many blocking rules we can cite three main ap-
proaches. The first two called the α and β-approaches are suggested by Aumann (1959).

∗University of Nice-Sophia Antipolis, GREDEG UMR 7321 CNRS, 250 rue Albert Einstein, 06560
Valbonne, France, e-mail: aymeric.lardon@unice.fr

1We refer to Norde et al. (2002) for a detailed discussion on this typology.
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According to the first, every cartel computes its max-min profit, i.e. the profit it can
guarantee regardless of what outsiders do. The second approach consists in computing
the min-max cartel profit, i.e. the minimal profit for which external firms can prevent
the cartel from getting more. The third approach called the γ-approach is proposed by
Chander and Tulkens (1997). The cartel profit is then computed by considering a com-
petition setting in which the cartel faces external firms acting individually.

When technologies are not transferable, Zhao (1999b) proves that the core of Cournot
oligopoly TU-games under the α and β-approaches is non-empty if every individual profit
function is continuous and concave.2 Furthermore, Norde et al. (2002) show that such
games are convex when the inverse demand function and cost functions are linear, and
Driessen and Meinhardt (2005) provide sufficient conditions to guarantee the convexity
property in a more general setting. Under the γ-approach, Lardon (2012) shows that
Cournot oligopoly TU-games are balanced if every individual profit function is concave
and provides a single-valued allocation rule in the core, called NP(Nash Pro rata)-value,
when cost functions are linear. Concerning price competition where firms operate at a
constant and identical marginal cost, Lardon (2014) proves that the convexity property
holds for Bertrand oligopoly TU-games under the α and β-approaches and shows that
the core is non-empty under the γ-approach.
When technologies are transferable, Zhao (1999a) provides a necessary and sufficient
condition which guarantees the convexity property in Cournot oligopoly TU-games under
the α and β-approaches where the inverse demand function and cost functions are linear.
Although the convexity property does not hold in general, Norde et al. (2002) show that
these games are totally balanced.

Until now, no work has dealt with Bertrand oligopoly TU-games with transferable tech-
nologies. In this article, as a counterpart to this lack of interest, we study such games by
following the α and β-approaches. First, we show that these games are well-defined and
argue that the α and β-approaches lead to the same class of games by using Zhao’s result
(1999b). Although the convexity property does not always hold, we prove that it is satis-
fied when firms’ marginal costs are not too heterogeneous. Then we show that the core
of any game can be partially characterized by associating a Bertrand oligopoly TU-game
derived from the most efficient technology. Such a game turns to be an efficient convex
cover (Rulnick and Shapley 1997) relative to the original one. This result implies that the
core is non-empty and contains a subset of payoff vectors with a symmetric geometric
structure, and so easy to compute.
This article is organized as follows. Section 2 gives some basic concepts on TU-games.
In Section 3 we introduce the model and argue that the α and β-approaches are equiv-
alent. In Section 4 we provide a sufficient condition under which the convexity property
holds and propose a partial characterization of the core. Section 6 gives some concluding
remarks.

2Zhao shows that the core is non-empty for general TU-games.
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2 Preliminaries

We denote by |X| the cardinality of a finite set X. Given x ∈ R, ⌈x⌉ is the small-
est integer greater than or equal to x. A point x ∈ R

n is a convex combination of
points x1, . . . , xk ∈ R

n, k ∈ N, if there exist non-negative real numbers α1, . . . , αk with
∑k

i=1 αi = 1 such that x =
∑k

i=1 αixi. Given a finite set X, conv(X) denotes the
convex hull of X, i.e. the set of points x ∈ R

n which are a convex combination of some
points in X.

Let N = {1, . . . , n} be a fixed and finite set of players. We denote by 2N the power
set of N and call a subset S ∈ 2N , S 6= ∅, a coalition. The size s = |S| of coalition S
is the number of players in S. A TU-game on N is a set function v : 2N −→ R with
the convention that v(∅) = 0, which assigns a real number v(S) ∈ R to every coalition
S ∈ 2N . The number v(S) is the worth of coalition S. We denote by GN the set of

TU-games on N where v is a representative element of GN .

In a TU-game v ∈ GN , every player i ∈ N may receive a payoff xi ∈ R. A vector
x = (x1, . . . , xn) is a payoff vector. A payoff vector x ∈ R

n is acceptable if for every
coalition S ∈ 2N ,

∑

i∈S xi ≥ v(S), i.e. the payoff vector provides a total payoff to the
members of coalition S that is at least as great as its worth. A payoff vector x ∈ R

n

is efficient if
∑

i∈N xi = v(N), i.e. the payoff vector provides a total payoff to all the
players that is equal to the worth of the grand coalition N . The core C(v) ⊆ R

n of a
TU-game v ∈ GN is the set of payoff vectors that are both acceptable and efficient, i.e.

C(v) =
{

x ∈ R
n : ∀S ∈ 2N ,

∑

i∈S

xi ≥ v(S) and
∑

i∈N

xi = v(N)
}

.

Given a payoff vector in the core, the grand coalition N forms and distributes its worth
as payoffs to its members in such a way that any coalition cannot contest this sharing by
breaking off from the grand coalition.

A TU-game v ∈ GN has a non-empty core if and only if it is balanced (Bondareva 1963
and Shapley 1967).
A permutation on the set of players N is a bijection σ : N −→ N which assigns rank
number σ(i) ∈ N to any player i ∈ N . We denote by ΠN the set of all n! permutations.
For every permutation σ ∈ ΠN , we denote by Sσ,i = {j ∈ N : σ(j) ≤ σ(i)} the set of
predecessors of i with respect to σ, including i himself. Given a TU-game v ∈ GN and
a permutation σ ∈ ΠN , the marginal vector mσ(v) ∈ R

n is defined as

∀i ∈ N, mσ
i (v) = v(Sσ,i)− v(Sσ,i\{i})

and assigns to player i his marginal contribution to the worth of the coalition consisting
of all his predecessors with respect to σ. A TU-game v ∈ GN is convex if

∀i, j ∈ N, ∀S ∈ 2N\{i,j}, v(S ∪ {i})− v(S) ≤ v(S ∪ {i, j})− v(S ∪ {j}) (1)
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A TU-game v ∈ GN is convex if and only if mσ(v) ∈ C(v) for all σ ∈ ΠN (Shapley 1971
and Ichiishi 1981). The core C(v) is then equal to the convex hull of the set of all the
marginal vectors, i.e. C(v) = conv({mσ(v) : σ ∈ ΠN}).

3 Bertrand oligopoly TU-games with transferable tech-

nologies

In this section, we first define a Bertrand oligopoly situation from which we associate a
normal form Bertrand oligopoly game. After formalizing the possibility for cooperating
firms to transfer their technologies, we then convert the normal form Bertrand oligopoly
game into a Bertrand oligopoly TU-game by using the α and β-approaches (Aumann
1959).

First, a Bertrand oligopoly situation is described by the tuple (N, (Di, Ci)i∈N ) where
N = {1, 2, . . . , n} is the finite set of firms, Di : R

n
+ −→ R, i ∈ N , is firm i’s demand

function and Ci : R+ −→ R+, i ∈ N , is firm i’s cost function. Throughout this article,
we assume that

(a) the demand system is Shubik’s (1980), i.e.

∀i ∈ N, Di(p1, . . . , pn) = V − pi − r

(

pi −
1

n

∑

j∈N

pj

)

,

where pj is the price charged by firm j, V ∈ R+ is the intercept of demand and
r ∈ R++ is the substitutability parameter.3 The quantity demanded of firm i’s
brand depends on its price and on the difference between its price and the average
price in the industry;

(b) every firm operates at a linear marginal cost ci ∈ R+, i.e.

∀i ∈ N, Ci(qi) = ciqi,

where qi ∈ R+ is the quantity demanded of firm i’s brand.

Without loss of generality we assume that the firms are ranked according to their marginal
costs, i.e. c1 ≤ c2 ≤ . . . ≤ cn. Given assumptions (a) and (b), a Bertrand oligopoly
situation is summarized by the 4-tuple (N,V, r, (ci)i∈N ).

Then, corresponding to the Bertrand oligopoly situation (N,V, r, (ci)i∈N ), the associated
normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ) is defined as

1. the set of firms is N = {1, . . . , n};
3When r approaches zero, products become unrelated, and when r approaches infinity, products

become perfect substitutes.
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2. for every i ∈ N , the individual strategy set is Xi = R+ where pi ∈ Xi represents
the price charged by firm i;

3. the set of strategy profiles is XN =
∏

i∈N Xi where p = (pi)i∈N is a representa-
tive element of XN ; for every i ∈ N , the individual profit function πi : XN −→ R

is defined as

πi(p) = Di(p)(pi − ci).

Since technologies are transferable, cooperating firms are allowed to produce according to
the cheapest technology available in the coalition. As a consequence, for every coalition
S ∈ 2N it holds that

(c) every cooperating firm operates at the linear marginal cost of the most efficient

firm in S denoted by cS ∈ R+ where cS = min{ci : i ∈ S}.

We denote by XS =
∏

i∈S Xi the coalition strategy set of coalition S ∈ 2N and
XN\S =

∏

i∈N\S Xi the set of outsiders’ strategy profiles for which pS = (pi)i∈S
and pN\S = (pi)i∈N\S are the representative elements respectively. For every coalition

S ∈ 2N , the coalition profit function πS : XS ×XN\S −→ R is defined as

πS(pS , pN\S) =
∑

i∈S

Di(p)(pi − cS).

Finally, we convert the normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ) into a
Bertrand oligopoly TU-game. As discussed in the introduction, Aumann (1959) sug-
gested two approaches of converting a normal form game into a cooperative game called
game in α and β-characteristic function form.
Given the normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ), the α and β-characteristic
functions are defined for every coalition S ∈ 2N as

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S) (2)

and

vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS , pN\S) (3)

respectively. We denote by GN
o ⊆ GN the set of Bertrand oligopoly TU-games with

transferable technologies.

The following proposition states that the β-characteristic function is well-defined in the
framework of Bertrand oligopoly TU-games with transferable technologies. For notational
convenience, for any s ∈ {0, . . . , n} we let δs = 1 + r(n− s)/n.
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Proposition 3.1 Let (N, (Xi, πi)i∈N ) be a normal form Bertrand oligopoly game. Then,

for every coalition S ∈ 2N it holds that

vβ(S) = πS(pS , pN\S),

where (pS , pN\S) ∈ XS ×XN\S is given by

∀i ∈ S, pi = max{cS , (V + δscS)/(2δs)} (4)

and

∑

j∈N\S

pj = max{0, (n/r)(δscS − V )} (5)

Proof: When all the firms operate at a constant and identical marginal cost c ∈ R+, Lar-
don (2014) solves the optimization problems defined in (3). In our model, although firms
operate at possibly distinct marginal costs, we argue that for every coalition S ∈ 2N , the
worth vβ(S) can be determined in a similar way. Given any coalition S ∈ 2N , note that
the optimization problems defined in (3) only concern the coalition profit function πS .
This implies that outsiders’ marginal costs don’t count in the computation of the worth
vβ(S). Moreover, since technologies are transferable cooperating firms in S operate at
the same constant and identical marginal cost cS ∈ R+. Thus, we refer to Lardon (2014)
for the technical arguments proving (4) and (5). �

For every coalition S ∈ 2N , the computation of the worth vβ(S) is consistent with the
fact that the quantity demanded of cooperating firm i’s brand is positive since for every
firm i ∈ S, Di(p) ≥ 0. Moreover, Proposition 3.1 calls for comments which will be useful
for the sequel.

Remark 3.2 For every coalition S ∈ 2N , the computation of the worth vβ(S) results
from two complementary cases:

1. if V ≤ δscS , then by (4) each member i ∈ S charges prices equal to their marginal
cost, i.e. pi = cS , and by (5) the outsiders charge a non-negative average price, i.e.
∑

j∈N\S pj/(n− s) ≥ 0. In this case, coalition S obtains a zero profit, vβ(S) = 0.

2. if V > δscS , then by (4) each member i ∈ S charges prices greater than their
marginal cost, i.e. pi > cS , and by (5) the outsiders charge a zero average price,
i.e.

∑

j∈N\S pj/(n − s) = 0. In this case, coalition S obtains a positive profit

vβ(S) = s(V − δscS)
2/(4δs).

By solving successively the two minimization and maximization problems defined in (2),
we can show that the α-characteristic function is well-defined too. The proof is similar
to the one in Proposition 3.1, and so it is not detailed.
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For general TU-games, Zhao (1999b) shows that the α and β-characteristic functions
are equal when every strategy set is compact, every utility function is continuous, and
the strong separability condition is satisfied. This condition requires that the utility
function of any coalition S and each of its members’ utility functions have the same
minimizers. We argue that Zhao’s result (1999b) holds for the specific class of Bertrand
oligopoly TU-games with transferable technologies. First, we compactify the strategy sets
by assuming that for every firm i ∈ N , Xi = [0,p] where p is sufficiently large so that
the maximization/minimization problems defined in (2) and (3) have interior solutions.
Then, it is clear that every individual profit function πi is continuous. Finally, since the
demand system is symmetric and cooperating firms in any coalition S operate at the
same constant and identical marginal cost cS ∈ R+, it follows that Bertrand oligopoly
TU-games satisfy the strong separability condition.

Corollary 3.3 Let (N, (Xi, πi)i∈N ) be a normal form Bertrand oligopoly game. Then,

for every coalition S ∈ 2N it holds that vα(S) = vβ(S).

This result implies that outsiders’ strategy profile pN\S that best punishes coalition S as
a first mover (α-approach) also best punishes S as a second mover (β-approach).

4 Partial characterization of the core

In this section, we first provide an example in which the convexity does not hold for a
large class of Bertrand oligopoly TU-games with transferable technologies. Then, we
show that the convexity property is satisfied if firms’ marginal costs are not too heteroge-
neous. Finally, even if the core can not be always fully characterized, we identify a subset
of payoff vectors with a symmetric geometric structure easy to compute.

In the general framework of TU-games, the convexity property permits to characterize
the core. However, this property may fail to hold in the present model as illustrated in
the following example.

Example 4.1 Consider the Bertrand oligopoly situation (N,V, r, (ci)i∈N ) where r = n,
c1 = c2 = 0 and for all k ∈ N\{1, 2}, ck = 1. Fix any coalition S ∈ 2N\{1,2} such that
s = ⌈n/2⌉ and assume that V = δs + 1. We want to prove that the convexity property
fails to hold for coalition S. By point 2 of Remark 3.2 the worths of relevant coalitions
to test (1) are given in the following table.

T S S ∪ {1} and S ∪ {2} S ∪ {1, 2}

vβ(T )
s

4(n− s+ 1)
(s+ 1)(n− s+ 2)2

4(n− s)
(s+ 2)(n− s+ 2)2

4(n− s− 1)

Some elementary calculus show that vβ(S∪{1, 2})−vβ(S∪{2}) < vβ(S∪{1})−vβ(S)
for all n ≥ 6. �
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Although the convexity property does not always hold, the following result establishes
that Bertrand oligopoly TU-games with transferable technologies are convex when firms’
marginal costs are not too heterogeneous.

Theorem 4.2 Let vβ ∈ GN
o be a Bertrand oligopoly TU-game with transferable tech-

nologies corresponding to the Bertrand oligopoly situation (N,V, r, (ci)i∈N ) where V ≥
(1 + r)cn. Then vβ is convex if

rc1 ≤ cn − c1 ≤
V√

δ1 +
√
δ3

(

1√
δ1

+
1√
δ3

− 2√
δ2

)

(6)

Proof: Before dealing with the convexity of vβ , we establish three preliminary results.
First, for any s ∈ {0, . . . , n} we deduce from δs ≥ 1 that

√
δs ≤ δs ≤ δ0 = 1 + r and

1 = δn ≤
√
δs. These two results with the first inequality in (6) (δ0c1 ≤ δncn) implies

that

∀s ∈ {1, . . . , n− 2},
√

δsc1 ≤
√

δs+2cn (7)

Second, for any s ∈ {0, . . . , n− 1} we have δs−δs+1 = r/n. From the strict monotonicity
and strict convexity of function f : R++ −→ R++ which assigns to every x ∈ R++ the
positive real number f(x) = 1/

√
x, it follows that

∀s ∈ {1, . . . , n− 2},
(

1√
δ1

+
1√
δ3

− 2√
δ2

)

≤
(

1√
δs

+
1

√

δs+2

− 2
√

δs+1

)

(8)

Third, for any s ∈ {1, . . . , n} it holds that δs < 1 + r. Hence we deduce from
V ≥ (1 + r)cn that for every coalition S ∈ 2N , we have V > δscS . Thus, the worth of
every coalition S ∈ 2N is given by point 2 of Remark 3.2.

We want to prove that (1) holds in vβ ∈ GN
o .

First assume that S = ∅ and consider any firms i, j ∈ N such that cj ≤ ci without loss
of generality. It follows from δ2 < δ1 and cj ≤ ci that vβ({i}) + vβ({j}) < vβ({i, j}).
Then assume that S 6= ∅ and define the TU-game ṽβ ∈ GN which assigns to every
coalition S ∈ 2N , the worth ṽβ(S) = (4/s)vβ(S) = (V − δscS)

2/δs with ṽβ(∅) = 0. For
every coalition S ∈ 2N , it follows from the monotonicity4 of ṽβ that inequality in (1) is
passed from ṽβ to vβ so that we focus on the TU-game ṽβ . Consider any firms i, j ∈ N ,
take any coalition S ∈ 2N\{i,j} and without loss of generality assume that cj ≤ ci. For any
α1, α2 ∈ R+ and any a, b ∈ R it holds that α1a

2−α2b
2 = (

√
α1a+

√
α2b)(

√
α1a−

√
α2b).

In the TU-game ṽβ the marginal contribution of firm i to coalition S is then given by

4A TU-game v ∈ GN is monotonic if

∀S ∈ 2N , ∀T ∈ 2N : S ⊆ T, v(S) ≤ v(T ).
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ṽβ(S ∪ {i})− ṽβ(S) =
(V − δs+1cS∪{i})

2

δs+1
− (V − δscS)

2

δs

= Ai(S)×Bi(S),

where

Ai(S) =

(

1
√

δs+1

+
1√
δs

)

V −
√

δs+1cS∪{i} −
√

δscS

and

Bi(S) =

(

1
√

δs+1

− 1√
δs

)

V −
√

δs+1cS∪{i} +
√

δscS .

We want to show that Ai(S)×Bi(S) ≤ Ai(S ∪ {j})×Bi(S ∪ {j}).
First, we show that Ai(S) < Ai(S ∪ {j}). Since cj ≤ ci we have cS∪{i,j} = cS∪{j} ≤
cS∪{i} ≤ cS . Moreover, for any s ∈ {1, . . . , n− 2} it holds that 1 ≤ δs+2 < δs+1 < δs

and so
√

δs+2 <
√

δs+1 <
√
δs. These two results permit to conclude that Ai(S) <

Ai(S ∪ {j}).
Then, we show that Bi(S) ≤ Bi(S ∪ {j}) which is equivalent with cj ≤ ci to prove the
following inequality

√

δscS −
√

δs+1cS∪{i} − (
√

δs+1 −
√

δs+2)cS∪{j} ≤ V

(

1√
δs

+
1

√

δs+2

− 2
√

δs+1

)

.

By (7), the second inequality of (6) and (8) it follows that

√

δscS −
√

δs+1cS∪{i} − (
√

δs+1 −
√

δs+2)cS∪{j} ≤
√

δscn −
√

δs+2c1

≤ (
√

δs +
√

δs+2)(cn − c1)

≤ (
√

δ1 +
√

δ3)(cn − c1)

≤ V

(

1√
δ1

+
1√
δ3

− 2√
δ2

)

≤ V

(

1√
δs

+
1

√

δs+2

− 2
√

δs+1

)

,

which concludes the proof. �

Note that condition (6) does not depend on all firms’ marginal costs in the industry but
only those of the less and most efficient firms. Moreover, for any heterogeneity level of
the marginal costs cn − c1 satisfying (1 + r)c1 ≤ cn, the second inequality in (6) ensures
that the convexity property holds if the intercept of demand is sufficiently large.
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Although the core can not be always fully characterized, a subset of payoff vectors with
a symmetric geometric structure can be identified. Given a Bertrand oligopoly situation
(N,V, r, (ci)i∈N ), let wβ ∈ GN

o be the Bertrand oligopoly TU-games with the most

efficient technology corresponding to the Bertrand oligopoly situation (N,V, r, (ĉi)i∈N )
where for all i ∈ N , ĉi = c1. Since firms operate at the constant and identical marginal
cost c1, it holds that wβ is convex (Lardon 2014).

Theorem 4.3 Let vβ ∈ GN
o be a Bertrand oligopoly TU-game with transferable tech-

nologies corresponding to the Bertrand oligopoly situation (N,V, r, (ci)i∈N ). Then it

holds that

conv({mσ(wβ) : σ ∈ ΠN}) ⊆ C(vβ),

where wβ ∈ GN
o is the associated Bertrand oligopoly TU-game with the most efficient

technology.

Proof: We know from the convexity of wβ that conv({mσ(wβ) : σ ∈ ΠN}) = C(wβ).
It remains to prove that C(wβ) ⊆ C(vβ). For both TU-games vβ and wβ the worths of
any coalition S are given by vβ(S) = πS(pS , pN\S) and wβ(S) = πS(pS,wβ

, pN\S,wβ
).

We distinguish two cases:

1. take any coalition S ∈ 2N such that 1 ∈ S. Then, by (4) and (5) it holds that
for all i ∈ S, pi = pi,wβ

and
∑

j∈N\S pj =
∑

j∈N\S pj,wβ
which implies that

vβ(S) = wβ(S). In particular, we have vβ(N) = wβ(N).

2. take any coalition S ∈ 2N such that 1 6∈ S. We distinguish three cases:

- if V ≤ δsc1 then by point 1 of Remark 3.2, it holds that pi = cS and pi,wβ
= c1

which implies that vβ(S) = wβ(S) = 0.

- if δsc1 < V ≤ δscS then by points 1 and 2 of Remark 3.2, it holds that pi = cS
and pi,wβ

> c1 which implies that vβ(S) = 0 < wβ(S).

- if δscS < V then by point 2 of Remark 3.2, we deduce from δsc1 ≤ δscS that
vβ(S) ≤ wβ(S).

In all cases, for every coalition S ∈ 2N\{N} we have vβ(S) ≤ wβ(S) and vβ(N) =
wβ(N)5 which implies that C(wβ) ⊆ C(vβ). �

The following example shows that C(wβ) may be a large subset of C(vβ) and is easy to
compute due to its symmetric geometric structure.

5Since vβ(∅) = wβ(∅) = 0, this proves that wβ is an efficient convex cover of vβ (Rulnick and Shapley
1997).
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Example 4.4 Consider the Bertrand oligopoly situation (N,V, r, (ci)i∈N ) where N =
{1, 2, 3}, V = 10, r = 3, c1 = 1, c2 = 3 and c3 = 5. For every coalition S ∈ 2N , the
worths vβ(S) and wβ(S) are given in the following table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vβ(S) 4.08 0.08 0 16 16 4 60.75

wβ(S) 4.08 4.08 4.08 16 16 16 60.75

The core C(vβ) contains all payoff vectors x ∈ R
3
+ such that

∑

i∈N xi = 60.75, 4.08 ≤
x1 ≤ 56.75, 0.08 ≤ x2 ≤ 44.75 and x3 ≤ 44.75. The included core C(wβ) contains all
payoff vectors x ∈ R

3
+ such that

∑

i∈N xi = 60.75 and for all i ∈ {1, 2, 3}, 4.08 ≤ xi ≤
44.75. The 2-simplex below represents these two core configurations.

x2 = 44.75

x2 = 4.08

x1 = 44.75

x1 = 4.08

x3 = 44.75

x3 = 4.08

x2 = 0.08

x1 = 56.75

Firm 2

Firm 1 Firm 3

(0, 60.75, 0)

(60.75, 0, 0) (0, 0, 60.75)

C(vβ)

C(wβ)

We see that the core C(wβ) is a large subset of the core C(vβ). Moreover, since wβ

is symmetric6 by definition, the set of marginal vectors {mσ(wβ) : σ ∈ ΠN} is easy to
compute. �

5 Concluding remarks

A natural question would be whether the results in this article remain valid for convex
cost functions. Insofar as the convexity property does not hold in this more general case,

6A TU-game v ∈ GN is symmetric if there exists a function f : N −→ R such that for every coalition
S ∈ 2N , v(S) = f(s).
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it seems difficult to provide an appealing sufficient condition which guarantees such a
property is verified.
Other approaches as the γ-approach discussed in the introduction can be considered.
The computation of the worth of any coalition then requires to consider a competition
setting in which cooperating firms face external ones acting individually. Unlike the α and
β-approaches in which only the coalition profit function is considered, outsiders’ profit
functions must be taken into account. This interesting but difficult subject is left for
further research.
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