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Large deviations for clocks of self-similar

processes

Nizar Demni, Alain Rouault and Marguerite Zani

In memoriam, Marc Yor

Abstract The Lamperti correspondence gives a prominent role to two random

time changes: the exponential functional of a Lévy process drifting to ∞ and its

inverse, the clock of the corresponding positive self-similar process. We describe

here asymptotical properties of these clocks in large time, extending the results of

[27].

1 Introduction

This problem is an extension of a question raised by Marc Yor during the de-

fense of the thesis of Marguerite, under the supervision of Alain, long time ago

in 2000. The last part of this thesis was dedicated to the study of large deviations

principles (LDP) for Maximum Likelihood Estimates of diffusion coefficients (for

squared-radial Ornstein–Uhlenbeck processes, squared Bessel processes and Jacobi

processes). The main tool there was a convenient Girsanov change of probability.

This method allowed to convert the computation of Laplace transform of some ad-

ditive functionals into the computation of Laplace transform of a single variable.

This trick was used before in [25] page 26, or [19], page 30, where Marc Yor called
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it ”reduction method”. In those times, Marc was interested in exponential function-

als of Brownian motion, Lamperti transform and Asian options and he guessed that

this LDP could be applied to the Bessel clock and solved effectively the problem

with Marguerite in [27] a couple of weeks later. Marc suggested to extend it to

the Cauchy clock and gave a sketch of proof, but a technical difficulty stopped the

project. Meanwhile, Marguerite and Nizar published a paper [12] on Jacobi diffu-

sions where the reduction method is again crucial. Recently, the three of us felt the

need to revisit the problem of Cauchy clock with the hope of new ideas.

We planned to discuss with Marc, and promised him we would keep him in-

formed of our progress. We did not have the time...

In this paper, we extend the methods and results of [27] to a large class of clocks

issued from positive self-similar Markov processes. In Section 2 we recall some

basic results about the Lamperti correspondence between these processes and Lévy

processes and we give the definition of the clocks. We also define a generalized

Ornstein-Uhlenbeck process which will be useful in the sequel. In Section 3 and

Section 4, we present the main results: Law of Large Numbers and Large Deviations

for the clocks. In Section 5 we show some examples illustrating our main theorems.

2 Positive self-similar Markov processes and Lamperti

transformation

In [17] Lamperti defined (positive) semi-stable process which are nowadays called

positive self-similar Markov process.

Definition 1. For α > 0, a positive self-similar Markov process (pssMp) of index α ,

is a [0,∞)-valued strong Markov process (X ,Qa),a > 0 with càdlàg paths, fulfilling

the scaling property

({bXb−α t , t ≥ 0},Qa)
(law)
= ({Xt , t ≥ 0},Qba) (1)

for every a,b > 0.

Lamperti [17] has shown that these processes can be connected to Lévy processes

by a one-to-one correspondence, that we develop below. We refer to Kyprianou

[15] especially Chapter 13 for properties of Lévy processes and pssMp. One can

also see [4] for the Lamperti’s correspondence. One can notice that there is a little

confusion in the notion of index of these processes. In [17], [3] and [2], the index is

1/α , and in [4], [5] and [15], the index is α . We take this latter convention. These

processes have a natural application in the theory of self-similar fragmentations :

see [1], references therein, and [6]. For other areas of application, such as diffusions

in random environments, see Section 6 of [4].
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2.1 From X to ξ

Any pssMp X which never reaches the boundary state 0 may be expressed as the

exponential of a Lévy process not drifting to −∞, time changed by the inverse of its

exponential functional. More formally, if (X ,(Qa)a>0) is a pssMp of index α which

never reaches 0, set

T (X)(t) =
∫ t

0

ds

Xα
s

, (t ≥ 0) (2)

and let A(X) be its inverse, defined by

A(X)(t) = inf{u ≥ 0 : T (X)(u)≥ t} , (3)

and let ξ be the process defined by

ξt = logX
A(X)(t)− logX0 , (t ≥ 0) . (4)

Then, for every a > 0, the distribution of (ξt , t ≥ 0) under Qa does not depend on a

and is the distribution of a Lévy process starting from 0.

Moreover, if we set

A
(ξ )(t) =

∫ t

0
eαξs ds (5)

and τ(ξ ) its inverse defined by

τ(ξ )(t) = inf{u ≥ 0 : A
(ξ )(u)≥ t} (6)

we have

τ(ξ )(t) = T (X)(tXα
0 ) . (7)

Let us remark that the self-similarity property (1) leads to the following relation:

the law of T (X)(. b−α) under Qa is the law of T (X)(.) under Qba . (8)

2.2 From ξ to X

Let ξt be a Lévy process starting from 0 and let P and E denote the underlying prob-

ability and expectation, respectively. Fix α > 0. Let A (ξ ) be its exponential func-

tional defined by (5). When ξ drifts to −∞, this functional is very popular in math-

ematical finance (see [26]), with important properties of the perpetuity A (ξ )(∞).
Here, we rather assume that ξ does not drift to −∞ i.e. satisfies, limsupt↑∞

ξt = ∞.

We define the inverse process τ(ξ ) of A (ξ ) by (6).

For every a > 0, let Qa be the law under P of the time-changed process

Xt = aexpξτ(ξ )(ta−α ) , (t ≥ 0) , (9)
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then (X ,(Qa)a>0) is a pssMp of index α which never reaches 0 and we have the

fundamental relation (7).

2.3 Index and starting point

If (X ,(Qa)a>0) is an pssMa of index α , then the process Y = (Xα ,(Qaα )a>0), is

a pssMp of index 1. Conversely if (Y,(Qa)a>0) is a pssMp if index 1 then, for

any α > 0, the process (X = Y 1/α ,(Q
a1/α )a>0) is a pssMp of index α . Hence

we may and will assume without loss of generality, that α = 1, except some exam-

ples in Section 5.

Let us stress also the fact that the distribution of T (X) is considered under Qa for

a > 0, and the distribution of τ(ξ ) is considered under P.

2.4 Ornstein-Uhlenbeck process

Having defined the above pair of associated processes (ξ ,X) it is usual to consider a

third process, very useful in the sequel. To introduce it, we need additional properties

on the pssMp X . In Theorem 1 of [3], Bertoin and Yor have shown that whenever the

support of ξ is not arithmetic and E(ξ1)> 0, then as a ↓ 0, the probability measures

Qa (defined in section 2.2) converge in the sense of finitely dimensional marginals

to a probability measure denoted by Q0. This latter measure is an entrance law for

the semigroup Qt f (x) = Ex f (Xt) and satisfies

Q0( f (Xt)) =
1

Eξ1
E[I−1

∞
f (t/I∞)] (10)

where

I∞ =
∫

∞

0
e−ξsds .

Now we define the associated generalized Ornstein-Uhlenbeck (OU) process by

U(t) := e−tX(et) .

This process has been studied in [8], and further on by [24] and [6]. It is strictly

stationary, Markovian and ergodic under E0, and its invariant measure is the law of

X1 under Q0, i.e.

µ( f ) =
1

Eξ1
E[I−1

∞
f (I∞)] .

The purpose of this paper is the study of the asymptotic behavior of the process

T (X), called the clock of the pssMp X , as t → ∞ under Qa for any a > 0, or equiva-

lently the asymptotic behavior of the process τ(ξ ) , as t →∞ under P. The two points
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of view are complementary: the clock as a functional of the pssMp or the clock as a

functional of the Lévy process. We will restrict us to the case of Eξ1 ∈ (0,∞), which

ensures a Law of Large Numbers (LLN) and a Large Deviation Principle (LDP).

3 Law of Large Numbers

The first step of our study is the a.s. convergence of our functionals.

Theorem 1. If Eξ1 is finite positive (hence = ψ ′(0) > 0), then for every a > 0, we

have
T (X)(t)

log t
→ (Eξ1)

−1 , Qa −a.s. (11)

or equivalently

τ(ξ )(t)

log t
→ (Eξ1)

−1 , P−a.s. (12)

Proof. From (7) it is enough to prove (11). Let us now repeat verbatim the trick

from [6] Section 2. By the ergodic theorem, we have that for f ∈ L1(µ):

1

t

∫ t

0
f (Us)ds → µ( f ) , Q0 − a.s.

or, by scaling
1

log t

∫ t

1
f (u−1Xu)

du

u
→ µ( f ) , Q0 − a.s. (13)

For f (x) = x−1 this yields

1

log(1+ t)

∫ 1+t

1

du

Xu

→ (Eξ1)
−1 , Q0 − a.s.

If H denotes the set where the convergence holds, the Markov property yields:

E0

[
QX1

(
T (X)(t)

log(1+ t)
→ (Eξ1)

−1

)]
= P0(H ) = 1 .

If we remember that µ is the law of X1 under Q0, we have

Qx

(
T (X)(t)

log(1+ t)
→ (Eξ1)

−1

)
= 1 , µ − a.e. .

Fixing such an x and using the scaling property (8), we get (11). ⊓⊔
It is then natural to look for a Large Deviation Principle (LDP) to characterize

the speed of this convergence.
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4 LDP

We present a LDP for the clock T (X)(t) (Theorem 2), whose proof relies on the

reduction method (Lemma 1). The remaining of the section is devoted to some il-

lustrative remarks and the proof of a technical lemma. In view of (7), the following

statements are valid when T (X) and Qa are replaced by τ(ξ ) and P, respectively.

4.1 Main result

Theorem 2. Assume1 that dom ψ = (m−,m+) ∋ 0 and that ψ ′(0)> 0. Set

m0 = inf{θ : ψ ′(θ)> 0} ,τ+ =
1

ψ ′(m+)
, τ0 =

1

ψ ′(m0)
and ∆ = (τ+,τ0) ,

where 1/ψ ′(±∞) := limm→±∞ m/ψ(m). Let a > 0.

1. Then, for every x ∈ ∆̄

lim
ε→0

lim
t→∞

1

log t
logQa

(
T (X)(t)

log t
∈ [x− ε,x+ ε]

)
=−I (x) (14)

where

I (x) = sup
m∈(m0,m+)

{m− xψ(m)} . (15)

2. Moreover

lim
A→∞

limsup
t→∞

1

log t
logQa

(
T (X)(t)

log t
> A

)
=−∞ . (16)

3. If either ∆ = (0,∞) or the complement of ∆̄ is exponentially negligible, i.e. if

∀ε > 0 limsup
t→∞

1

log t
logQa

(
inf
x∈∆̄

{∣∣∣∣∣x−
T (X)(t)

log t

∣∣∣∣∣

}
> ε

)
=−∞ (17)

then the family of distributions of T (X)(t)/ log t under Qa satisfies the LDP on

[0,∞) at scale log t with good rate function :

Ĩ (x) =

{
I (x) if x ∈ ∆̄ ,

∞ otherwise.

The following proposition describes some properties of I which are direct con-

sequences of (15). The proof is left to the reader.

1 Domains are taken open par convention
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Proposition 1. 1. If ψ∗ denotes the Fenchel-Legendre dual of ψ defined by

ψ∗(x) = sup
m∈R

mx−ψ(m) , (x ∈ R) ,

then

I (x) = xψ∗(x−1) , (x ∈ ∆) . (18)

2. Let τe = 1/Eξ1 ∈ (τ+,τ0). The function I is convex on ∆ , decreasing on

(τ+,τe) , has a minimum 0 at τe , and is increasing on (τe,τ0).
3. a. If m0 is a true minimum, i.e. if m0 >−∞ and ψ ′(m0) = 0, then τ0 = ∞, and

as x → ∞, I admits the asymptote y =−xψ(m0)+m0.

b. If m0 = −∞ and ψ ′(m0) ∈ (0,∞) , set limm→m0
ψ(m)−mψ ′(m0) = −b ∈

[−∞,0). Then τ0 < ∞ and I (τ0) = bτ0 and I ′(τ0) =−ψ(m0) = ∞.

c. If m0 = −∞ and −∞ < ψ(m0) < 0, hence ψ ′(m0) = 0, then τ0 = ∞ and

I (x)/x →−ψ(m0) and I (x)+ψ(m0)x →−∞, as x → ∞.

4. a. If m+ < ∞ and ψ(m+) = ∞, then ψ ′(m+) = ∞. We get τ+ = 0 and I (0) =
m+ with I ′(0) = ∞.

b. If m+ = ∞ and ψ ′(m+) < ∞, set limm→m+ ψ(m)− mψ ′(m+) = −b ∈
[−∞,0). Then τ+ > 0, I (τ+) = bτ+ ≤ ∞ and I ′(τ+) =−ψ(m+) =−∞.

c. If m+ = ∞, with ψ(m+) = ∞ and ψ ′(m+) = ∞ then τ+ = 0 and I (τ+) =
m+ = ∞.

Proof. of Theorem 2

1) A slight adaptation of the Gärtner-Ellis method ([11] Th. 2.3.6) allows to de-

duce (14) from the asymptotic behaviour of the normalized log-Laplace transform

of T (X)(t), given by the following lemma. Recall that ψ is increasing on (m0,m+).

Lemma 1. For θ ∈ (−ψ(m+),−ψ(m0)), set Lt(θ) = logEa exp(θT (X)(t)). Then as

t → ∞ we have
1

log t
Lt(θ)→ L(θ) (19)

where

L(θ) =−m ⇐⇒ θ =−ψ(m) . (20)

The function L is differentiable on (−ψ(m+),−ψ(m0)) and satisfies L′(θ) =
1/ψ ′(m), so that the range of L′ is precisely ∆ . Then the left-hand-side of (14)

admits the limit I (x) = xθ −L(θ) where θ is the unique solution of L′(θ) = x i.e.,

thanks to (20), I (x) =−xψ(m)+m which is exactly the right-hand-side of (14).

Proof. of Lemma 1

To compute the Laplace transform of T (X)(t), we use a Girsanov type change of

probability.

For m ∈ (m−,m+) let

ψm(θ) = ψ(m+θ)−ψ(m) ,

and let {(ξt , t ≥ 0);P(m)} be a Lévy process starting from 0 whose exponent is ψm

(Esscher transform). Finally let {(Xt , t ≥ 0);(Qm
a )a>0} be the associated pssMp.
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Besides, from [10] the following relation between the infinitesimal generators Lξ

of ξ and LX of X under Qa:

LX f (x) =
1

x
Lξ ( f ◦ exp)(logx) ,

implies (see (2.7) in [10]),

LX fm = ψ(m) fm−1

for fm(x) = xm so that

Qm
a |Ft

=

(
Xt

a

)m

exp

(
−ψ(m)

∫ t

0

ds

Xs

)
. Qa|Ft

, (t ≥ 0) . (21)

We deduce that

Ea exp

(
−ψ(m)

∫ t

0

ds

Xs

)
= amEm

a (Xt)
−m (22)

and, owing to the scaling property

Ea exp

(
−ψ(m)

∫ t

0

ds

Xs

)
= amt−mEm

a/t(X1)
−m . (23)

Let us choose m such that ψ ′(m)> 0.

We can know use the results on entrance boundary, for example [3]. Since the

new Lévy process ξ (m) has a positive mean

Eξ (m) = ψ ′
m(0) = ψ ′(m)> 0

then Theorem 1 i) therein entails that

lim
t↑∞

Em
a/t(X1)

−m = Em
0 (X1)

−m . (24)

Lemma 2. With the notations of Theorem 2, the quantity F(m) :=Em
0 (X1)

−m is finite

for m ∈ (m0,m
+).

From (23)

Lt(θ) =−m log t +m loga+ logEm
a/t(X1)

−m

and then, as t → ∞, thanks to Lemma 2:

Lt(θ)

log t
→ L(θ) =−m . (25)

This ends the proof of Lemma 1 and consequently the proof of part 1) in Theorem

2, up to the result of Lemma 2 whose proof is postponed.

2) The statement is a consequence of the Chernov inequality. Indeed for fixed

θ ∈ (0,−ψ(m0))
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logQa

(
T (X)(t)

log t
>−A

)
≤−θA+L(θ)

for every θ ∈ (0,−ψ(m0)).

3) Let us assume that ∆ = (0,∞). To get a full LDP, it is enough to prove that

lim
A→∞

lim
t→∞

1

log t
logP

(
τ(t)

log t
> A

)
=−∞ ,

(exponential tightness) but it is a consequence of the Chernov inequality:

logQa

(
T (X)(t)

log t
>−A

)
≤−θA+L(θ)

for every θ ∈ (0,−ψ(m0)).
Assume now that the condition (17) is satisfied. For every x in the complement

of ∆̄ we have

lim
δ→0

lim
t→∞

1

log t
logQa

(
T (X)(t)

log t
∈ [x−δ ,x+δ ]

)
=−∞ ,

so that a weak LDP is satisfied on [0,∞). To strenghten it is enough to apply the

above reasoning. ⊓⊔

4.2 Remarks

Remark 1. (Reciprocal pairs) The relation (18) between two rate functions is known

to hold for pairs of inverse processes. This problem arose historically when people

deduced a LDP for renewal processes whose interrival times have sums satisfying

a LDP. It was extended to more general processes, see [13] and the bibliography

therein.

If (ξt) is a spectrally negative Lévy process with Laplace exponent ψ , then t−1ξt

satisfies the LDP at scale t with rate function ψ∗. The subordinator

τ̂(u) = inf{t > 0 : ξt > u} (26)

has a Laplace exponent which is exactly L defined by he relation (20)

ψ(m) =−θ , L(θ) =−m . (27)

Then t−1τ̂(t) satisfies the LDP at scala t with rate function x → xψ∗ ( 1
x

)
. This can

be seen as an application of Theorem 1 of [13]).

The relation (6) between A
(ξ )

u and τ(ξ )(t):
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τ(ξ )(t) = inf{u ≥ 0 : A
(ξ )

u =
∫ u

0
eξs ds ≥ t} , (t ≥ 0)

is more involved than (26). An alternative proof of our Theorem 2 about LDP for

(log t)−1τ(ξ )(t), in the spirit of Theorem 1 of [13]), would require an LDP for

t−1 logA
(ξ )

t which is far from obvious. At first glance, the lower bound of large

deviations seems accessible since we have for convenient x and δ ,

(ξs/s ∈ [x−δ ,x+δ ] ∀s ∈ [0,u])⇒
(

A
(ξ )

u ∈
[

e(x−δ )u −1

(x−δ )
,

e(x+δ )u −1

(x+δ )

])
.

Conversely, we can apply Theorem 1 of [13] to get

Proposition 2. The family of distributions of t−1 logA
(ξ )

t (under P) satisfies the

LDP at scale t, with good rate function ψ∗.

To end this first remark, let us add two more comments:

• The statement of Lemma 1, viewed in terms of ξ can be rephrased as the

striking relation

lim
t→∞

1

log t
Eexpθτ(ξ )(t) = logEexpθ τ̂(1) .

• The relation (27) is also well known in the study of exponential families

(inverse families or reciprocal pairs) , see [14] Section 5.4 and [18] Section 5A.

Remark 2. (Another approach for the LDP) We saw in a previous section that the

core of the proof of the LLN is the convergence of the occupation measure

1

t

∫ t

0
δUs ds → µ

followed by a scaling and by the choose of f (x) = x−1 as a test function. It could

be natural to look for a LDP according the same line of reasoning. Such a proof

would consist of three steps. First establish an LDP for the law of the occupation

measure under Q0. The rate functional is expressed with the help of the infinitesimal

generator of U . Then apply the contraction by the (non-continous) mapping ν 7→
ν( f ), hence solve a variational problem. This would give an LDP for the law of

1

t

∫ t

0

ds

Us

=
1

t

∫ et

1

ds

Xs

,

under Q0. It would remain to convert it into an LDP under Qa. In the Appendix of

[27], the authors give the first rate functional and solved the variational problem,

but with the lack of justification for the contraction principle. The result fits with the

rate function of Theorem 2.
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Remark 3. (Functional LDP) In the Bessel clock, a functional LDP was stated ([27]

Th. 4.1). Here it is possible to consider the same problem, i.e. the study of the LDP

for the sequence of processes

u ∈ [0,1] 7→ 1

n
T (X)(enu)

under Qa. The rate function involves an action functional built on I and a recession

function which will be x 7→ rx where r =−ψ(m0) (when it is finite).

Remark 4. (Central Limit Theorem) It is known for the Bessel clock (Theorem 1.1

in [27]) but seems unknown otherwise. We can conjecture that

√
log t

(
T (X)(t)

log t
− 1

Eξ1

)
=⇒ N (0;ψ ′′(0)/ψ ′(0)3) (28)

as soon as E(ξ1)
2 < ∞ (or ψ ′′(0)< ∞).

4.3 Proof of Lemma 2

From (10) applied to the Esscher transform we have for m > m0

F(m) = E(m)(Im−1
∞

) .

The finiteness of F(m) is a consequence of the following Lemma summarizing prop-

erties of the moments of the exponential functionals of Lévy processes which we

detail for completeness.

Lemma 3. Let ζ be a Lévy process of Laplace exponent ϕ given by

Eexp(λζt) = exp(tϕ(λ ))

such that ϕ ′(0) ∈ (0,∞) and let

I∞ =
∫

∞

0
e−ζsds .

Then

1)

EIs
∞
< ∞ for all s ∈ [−1,0] and all s > 0 : ϕ(−s)< 0 . (29)

2) For r > 0, if ϕ(r)< ∞ and EI−r
∞

< ∞, then

EI−r−1
∞

=
ϕ(r)

r
EI−r

∞
. (30)
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Proof. of Lemma 3

The statement 1) comes from a rephrased part of a lemma in Maulik and Zwart

on the existence of moments of exponential functionals (see [20] Lemma 2.1).

The statement 2) comes from a a recursive argument due to Bertoin and Yor (see [4],

Theorem 2 (i) and Theorem 3), which we detail here for the sake of completeness.

Set, for t ≥ 0

Jt =
∫

∞

t
e−ζs ds (t ≥ 0) ; J0 = I∞ =

∫
∞

0
e−ζsds

For all r > 0 we have

J−r
t − J−r

0 = r

∫ t

0
e−ζsJ−r−1

s ds (31)

Besides, from the properties of Lévy processes, we deduce

Js = e−ζs Î(s)

and

Î(s) =
∫

∞

0
e−(ζs+u−ζs)du

(law)
= I∞

with Î(s) independent of Js. Plugging into (31) we get

erζt Î(t)−r − I−r
∞

= r

∫ t

0
erζs Î(s)−r−1ds (32)

Assume that ϕ(r) < ∞ and EI−r−1 = ∞, taking expectations on both sides of the

inequality

erζt Î(t)−r > r

∫ t

0
erζs Î(s)−r−1ds

we would get EI−r = ∞. Consequently, if EI−r < ∞, we have EI−r−1 < ∞. More-

over, taking expectations on both sides of (32) we get (30). �

Now, to end the proof of Lemma 2, we apply Lemma 3 with ϕ = ψm.

For m > 0, we choose s = m−1 hence ϕ(−s) = ψ(1)−ψ(m) which is negative if

m > 1. So from 1) of Lemma 3, F(m) is finite for m > 0.

Now, if m ∈ [m0,0], set k = ⌊−m⌋. Then m+ k ∈ [−1,0], and from 1) of Lemma

3, E(m)Im+k
∞

is finite. Besides, we have ψ(m) < ψ(− j) for all integers j such that

0 ≤ j ≤ k, hence ϕ(−m− j) = ψ(− j)−ψ(m) > 0 and applying (30) recursively,

we have

F(m) =
ϕ(−m)ϕ(−m−1) · · ·ϕ(−m− k)

(−m)(−m−1) · · ·(−m− k)
E(m)Im+k

∞
(33)

and this quantity is finite. �
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5 Examples

For all the following examples, we give the Laplace exponent ψ and the parameters

τ+, τe. In Sections 5.1, and 5.2 we obtain an explicit expression for τ0 and I . In

Section 5.3 we do not have an explicit expression for I (and sometimes for τ0). For

all examples (but one) we identify the behaviour at the boundary, according to the

classification of Proposition 1.

5.1 The Brownian process with drift (Bessel clock [27])

For ν > 0, we consider the Lévy process

ξt = 2Bt +2νt .

The pssMp (Xt) is the squared Bessel process of dimension d = 2(1+ν). Its index

is α = 1 and it is the only continuous pssMp (of index 1). The clock is related to the

scale function of a diffusion in random environment (see [26] chap. 10).

We have

ψ(m) = 2m(m+ν), m± =±∞, ψ(m±) = +∞ .

Here m0 =−ν/2 and ψ(m0) =−ν2/4, so that

τ+ = 0, τ0 = ∞, τe =
1

2ν
, ∆ = (0,∞) .

The rate function is

I (x) =
(1−2νx)2

8x
, (x > 0) .

Notice that here the function L may be obtained by explicit inversion

L(θ) =
−ν +

√
ν2 −2θ

2
, (θ < ν2/2) .

The boundary τ+ = 0 is in the situation 4c) of Proposition 1 and the boundary τ0

is in situation 3a, with asymptote y = ν2

2
x− ν

2
. The minimum of I , reached in τe,

corresponds to the LLN (Theorem 1) which is in [23] Exercise (4.23) Chap. IV and

in [27] Theorem 1.1.
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1 2 3 4

-0.5

0.5

1.0

1.5

2.0

2.5

Fig. 1 Example 5.1: The rate function I for ν = 1.

Let us now comment the change of probability. Under Pm, the processes (ξt) and

(Xt) remain in the same family as under P : they are Brownian motion with drift and

squared Bessel, respectively, but with ν replaced by ν +2m. Moreover, it is known

from [26] Chap. 8 (or equivalently [7]), that under P,

I∞

(law)
= (2Zν)

−1

where Zν is a gamma variable of parameter ν . This allows to see directly that the

assertion of Lemma 2 holds.

5.2 Lévy processes of the form ξt =±dt ±Pois(β ,γ)t

Here Pois(a,b)t is the compound Poisson process of parameter a whose jumps are

exponential r.v. of parameter b. They are studied in Section 8.4.3 of [26] (or equiv-

alently [7]), with very informative Tables. In particular, these families are invariant

by changes of probability and the law of the exponential functional I∞ is known,

which allows again to see directly that the assertion of Lemma 2 holds.

5.2.1 ξt = dt +Pois(β ,γ)t with d ≥ 0

(The particular case of the compound Poisson process corresponds to the case d =
0). We have

ψ(m) = m

(
d+

β

γ −m

)
, m− =−∞ , m+ = γ , ψ(m+) = ∞ ,
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Here m0 =−∞ and ψ(m0) =−∞ so that

τ+ = 0 , τ0 = d−1 , τe =
γ

γd+β
, ∆ = (0,d−1) .

The rate function is

I (x) =
(√

γ(1−dx)−
√

βx
)2

, (0 ≤ x ≤ d−1) .

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Fig. 2 Example 5.2.1: The rate function I for β = 2,γ = 1,d = 1.

To check the assumption (17) we go back to the process ξ . Notice that ξs ≥ ds

for every s ≥ 0, so that τ(ξ )(t)≤ d−1 log(1+dt), whence, for every ε > 0

P

(
τ(ξ )(t)

log t
> τ0 + ε

)
= 0

for t large enough, which is equivalent to (17) thanks to (7).

The boundary τ+ is in situation 4a and τ0 in situation 3b, i.e. vertical tangents.

In the following examples, with no loss of generality we may and will assume

that d = 1, since (with obvious notations)

τ(ξ ;d,β )(t)
(law)
= d−1τ(ξ ;1,β/d)(d t) .

5.2.2 ξt =−t +Pois(β ,γ)t with 0 < γ < β

We have
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ψ(m) = m

(
−1+

β

γ −m

)
,m− =−∞ , m+ = γ , ψ(m+) = ∞ .

Here

m0 = γ −
√

βγ , ψ(m0) =−(
√

γ −
√

β )2 ,

so that

τ+ = 0 , τ0 = ∞ , τe =
γ

β − γ
, ∆ = (0,∞) .

The rate function is

I (x) =
(√

γ(1+ x)−
√

βx
)2

(x > 0) .

The boundary τ+ is in situation 4a and τ0 in situation 3a with asymptote y = (
√

β −√
γ)2x+ γ −

√
βγ .

2 4 6 8

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Fig. 3 Example 5.2.2: The rate function I for β = 2,γ = 1.

5.2.3 The saw-tooth process

It is a particular case of the Cramer-Lundberg risk process ([15] Section 1.3.1).

0 < β < γ . The Lévy process ξ is defined by

ξt = t −Pois(β ,γ)t . (34)

The self-similar process Xt is described precisely in ([9] p. 327).

The Lévy exponent of (ξt) is given by:
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ψ(m) := m
γ −β +m

γ +m
, m− =−γ , m+ = ∞ , ψ(m+) = ∞ , ψ ′(m+) = 1 . (35)

We have easily

m0 =−γ +
√

βγ , ψ(m0) =−
(√

γ −
√

β
)2

so that

τ+ = 1 , τ0 = ∞ , τe =
γ

γ −β
, ∆ = (1,∞) .

The rate function is

I (x) =
(√

γ(x−1)−
√

βx
)2

, (x ≥ 1) .

The condition (17) is fulfilled since by definition ξt ≤ t for all t > 0, so we have

τ(ξ )(t) ≥ log t for all t > 0. The minimum of the rate function I is reached at

x = γ
γ−β in accordance with the law of large numbers ([9], Theorem 4.7 ii)).

The boundary τ+ = 1 is in situation 4b and the boundary τ0 in situation 3a, with

an asymptote of equation y = (
√

γ −
√

β )2x+
√

βγ − γ .

2 3 4 5 6 7 8

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4 Example 5.2.3: The rate function I for β = 1,γ = 3.

5.3 Three more examples

The first and the second may be seen for instance in [21]. The third one is a general

class (see [16]).
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5.3.1 First

For α ∈ (1,2), let X↑ be the spectrally negative regular α-stable Lévy process con-

ditioned to stay positive. It is a pssMp of index α and its associated Lévy process

ξ ↑ has Laplace exponent

ψ(m) = c
Γ (m+α)

Γ (m)

and

m− =−α , m+ = ∞ , ψ(m+) = ∞ , ψ ′(m+) = ∞

where c is a positive constant. We have

ψ ′(m)

ψ(m)
=Ψ(m+α)−Ψ(m)

where Ψ is the Digamma function. Then m0 = γα where γα is the (unique) solution

in (−1,0) of the equation

Ψ(γ +α) =Ψ(γ) ,

and then ψ(γα) = c
Γ (γα+α)

Γ (γα )
< 0. We have

τ+ = 0 , τ0 = ∞ ,τe =
1

cΓ (α)
, ∆ = (0,∞) .

The boundary τ+ is in situation 4c and τ0 in situation 3a with asymptote.

Notice that when α ↑ 2 we end up with the Laplace exponent of a Brownian

motion with drift 1/2.

5.3.2 Second

Let κ ∈ (0,1] and δ > κ/(1+κ). Let X be the continuous state branching process

with immigration whose branching mechanism (see [21] Lemma 4.8.) is

ϕ(u) =− c

κ
uκ+1

and immigration mechanism is

χ(u) = cδ
κ +1

κ
uκ .

It is a pssMp of index κ and the associated Lévy process has Laplace exponent

ψ(m) = c(κ − (κ +1)δ −m)
Γ (−m+κ)

Γ (−m)
, m− =−∞ , m+ = κ ,ψ(m+) = ∞ .
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First, we see that ψ ′(0) = limψ(m)/m = c((κ + 1)δ − κ)Γ (κ) > 0 and τe =
1/ψ ′(0). Since as m → −∞ we have ψ(m) ∼ c(−m)κ → ∞, we deduce the exis-

tence of m0 > −∞ such that ψ ′(m0) = 0 (and ψ(m0) < 0). Besides, when m ↑ κ or

h = κ −m ↓ 0 then

ψ ′(m)∼ (κ +1)δΓ ′(h)
Γ (−κ)

↑ ∞ .

We have then

τ+ = 0 , τ0 = ∞ , ∆ = (0,∞) .

The boundary τ+ = 0 is in situation 4c and τ0 is in situation 3a with asymptote.

5.3.3 Hypergeometric-stable process

The modulus of a Cauchy process in Rd for d > 1 is a pssMp of index 1 with infinite

lifetime. Actually the associated Lévy process is a particular case of hypergeometric-

stable process of index α as defined in [5], with α < d.

The characteristic exponent is given therein by Theorem 7, hence the Laplace

exponent is :

ψ(m) =−2α Γ ((−m+α)/2)

Γ (−m/2)

Γ ((m+d)/2)

Γ ((m+d −α)/2)

and

m− =−d , m+ = α , ψ(m+) = ∞ .

Since mΓ (−m/2) =−2Γ ((2−m)/2) we have

ψ ′(0) = lim
m→0

ψ(m)/m = 2α−1 Γ (α/2)Γ (d/2)

Γ ((d −α)/2)
> 0 .

Moreover, for m 6= 0

ψ ′(m)

ψ(m)
=−Ψ(((−m+α)/2))+Ψ((m+d)/2)+Ψ(−m/2)−Ψ(m+d −α)/2) ,

where Ψ is the digamma function.

It is then easy to see that ψ ′ vanishes at m = m0 := (α −d)/2 and

ψ(m0) =−2α

(
Γ ((d +α)/4)

Γ ((d −α)/4)

)2

.

We have then

τ+ = 0 , τ0 = ∞ , ∆ = (0,∞) .

In the particular case α = 1 and d = 3, applying the identity
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Γ (x)Γ (1− x) =
π

sinπx

we have

ψ(m) = (m+1) tan
πm

2
(36)

with m− =−3 , m+ = 1 and ψ(−1) =−2/π by continuity. A direct computation

gives

ψ ′(m) =
sinπm+πm+π

2cos2 πm
2

so that

ψ ′(0) = π/2 , m0 =−1 , θ0 =−ψ(m0) = 2/π and ∆ = (0,∞)

We have no close expression for the rate function. The asymptote as x → ∞ is the

line y = 2x
π +1.

1 2 3 4 5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 5 Example 5.3.3: The rate function I (x) for α = 1, d = 3.

Notice that in [10], the authors announced a study of the modulus of a multidi-

mensional Cauchy process. They found the expression (36) but never published it

([22]).

Acknowledgements: The authors want to thank Frédérique Petit for valuable con-

versations on the Cauchy clock.
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