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We compare different modes of pseudo almost automorphy and variants for stochastic processes: in probability, in quadratic mean, or in distribution in various senses. We show by a counterexample that squaremean (pseudo) almost automorphy is a property which is too strong for stochastic differential equations (SDEs). Finally, we consider two semilinear SDEs, one with almost automorphic coefficients and the second one with pseudo almost automorphic coefficients, and we prove the existence and uniqueness of a mild solution which is almost automorphic in distribution in the first case, and pseudo almost automorphic in distribution in the second case.

Introduction

Almost automorphic functions, introduced by Bochner, are an important generalization of almost periodic functions. Almost automorphy is a property of regularity and recurrence of functions, which has been studied in the context of differential equations and dynamical systems, and in other contexts. The question of studying the concept of almost automorphic stochastic processes arises naturally in connection with stochastic differential equations.

As can be seen in Tudor's survey [START_REF] Tudor | Almost periodic stochastic processes[END_REF], almost periodicity forks into many different notions when applied to stochastic processes: almost periodicity in probability, in p-mean, in one-dimensional distributions, in finite dimensional distributions, in distribution, almost periodicity of moments, etc. These notions are not all comparable: for example, almost periodicity in distribution does not imply almost periodicity in probability, and the converse implication is false too [START_REF] Bedouhene | Bochneralmost periodicity for stochastic processes[END_REF]. The situation for almost automorphy is no different.

Furthermore, things become even more complicated if one takes into account different generalizations of almost automorphy (which have their analogue in almost periodicity): on the one hand, changing the mode of convergence in the definition leads to the notions of Stepanov-like, Weyl-like and Besicovitch-like almost automorphy. On the other hand, for the study of asymptotic properties of functions, it is natural to consider functions which are the sum of an almost automorphic function and of a function vanishing in some sense at infinity. In this way, one gets the notions of asymptotically almost automorphic functions and of pseudo almost automorphic functions and their weighted variants.

Each of these notions can be interpreted in different manners for stochastic processes, exactly in the same way as for "plain" almost periodicity and almost automorphy. It is an objective of this paper to clarify the hierarchy of those various concepts. We did not try to list all possible variants, one can imagine many other extensions and combinations, as the reader will probably do. This is rather a preliminary groundwork, in which we investigate some notions we think particularly useful. For example, when we describe the different modes of pseudo almost automorphy in distribution, we concentrate on a stronger notion, which is not purely "distributional" but seems to be the relevant one for stochastic differential equations.

As we have in view applications in spaces of probability measures, which do not have a vector space structure and whose topology can be described by different non-uniformly equivalent metrics, we are especially interested in the properties of almost automorphy and pseudo almost automorphy which are purely topological, i.e. which do not depend on a vector structure or on a particular metric, but only on the topology of the underlying space.

A natural application of these concepts is the study of stochastic differential equations with almost automorphic or more general coefficients. We provide two examples of stochastic semilinear evolution equations, with almost automorphic coefficients for the first one, and with pseudo almost automorphic coefficients for the second one, whose unique bounded solution is almost automorphic (respectively pseudo almost automorphic) in distribution. It is another objective of this paper to point out a common error in many papers which claim the existence of nontrivial solutions which are almost automorphic in quadratic mean. We show by a counterexample borrowed from [START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF] that this claim is false, even for several extensions of almost automorphy.

Historical comments These comments are not intended to provide a full historical account, only to highlight some steps in the history of almost automorphic stochastic processes and their generalizations.

The study of almost periodic random functions has a relatively long story, starting from Slutsky [START_REF] Slutsky | Sur les fonctions aléatoires presque périodiques et sur la décomposition des fonctions aléatoires stationnaires en composantes[END_REF] in 1938, who focused on conditions for weakly stationary random processes to have almost periodic trajectories in Besicovitch's sense.

The investigation of almost periodicity in probability was initiated later by the Romanian school [START_REF] Onicescu | Istrȃtescu. Approximation theorems for random functions[END_REF][START_REF] Gh | Some properties of random functions almost periodic in probability[END_REF][START_REF] Precupanu | On the almost periodic functions in probability[END_REF].

It is only in the late eighties that almost periodicity in distribution was considered, again by the Romanian school (mainly by Constantin Tudor), in connection with the study of stochastic diferential equations with almost periodic coefficients [START_REF] Halanay | Periodic and almost periodic solutions to affine stochastic systems[END_REF][START_REF] Halanay | Tracking almost periodic signals under white noise perturbations[END_REF][START_REF] Morozan | Almost periodic solutions of affine Itô equations[END_REF][START_REF] Tudor | Almost periodic solutions of affine stochastic evolution equations[END_REF][START_REF] Arnold | Stationary and almost periodic solutions of almost periodic affine stochastic differential equations[END_REF][START_REF] Da Prato | Periodic and almost periodic solutions for semilinear stochastic equations[END_REF].

Starting from 2007, many papers appeared, claiming the existence of squaremean almost periodic solutions to almost periodic semilinear stochastic evolution equations, using a fixed point method. Despite the counterexamples given in [START_REF] Mellah | Étude des solutions presque périodiques des équations différentielles stochastiques[END_REF][START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF], new papers in this vein continue to be published.

The story of almost automorphy and its generalizations is much shorter. Almost automorphic functions were invented by Bochner since 1955 [START_REF] Bochner | Curvature and Betti numbers in real and complex vector bundles[END_REF][START_REF] Bochner | Uniform convergence of monotone sequences of functions[END_REF][START_REF] Bochner | A new approach to almost periodicity[END_REF] (the terminology stems from the fact that they were first encountered in [START_REF] Bochner | Curvature and Betti numbers in real and complex vector bundles[END_REF] in the context of differential geometry on real or complex manifolds). Almost automorphic stochastic processes and their generalizations seem to have been investigated only since 2010, starting with [START_REF] Fu | Square-mean almost automorphic solutions for some stochastic differential equations[END_REF], which was followed by many other papers. Most of these papers claim almost automorphy (or one of its generalizations) in square mean for solutions to stochastic equations. There are only few papers we are aware of [START_REF] Fu | Almost automorphic solutions for nonautonomous stochastic differential equations[END_REF][START_REF] Fu | Almost automorphic solutions for some stochastic differential equations[END_REF][START_REF] Liu | Almost automorphic solutions for stochastic differential equations driven by Lévy noise[END_REF] which investigate almost automorphy in a distributional sense.

Recently, the notion of almost automorphic random functions in probability has been introduced by Ding, Deng and N'Guérékata [START_REF] Ding | Almost automorphic random functions in probability[END_REF].

Organization of the paper In Section 2, we present the concept of almost automorphy and some of its generalizations: µ-pseudo almost automorphy, Stepanov-like, Weyl-like and Besicovitch-like µ-pseudo almost automorphy. Our setting is that of functions of a real variable with values in a metrizable space. Metrizability seems a sufficiently general frame to investigate almost automorphy in many useful spaces of probability measures, while avoiding complications. An extension to uniformizable spaces would be useful for applications in locally convex vector spaces, this could be done using projective limits of metrizable spaces as in [START_REF] Bedouhene | Bochneralmost periodicity for stochastic processes[END_REF]. We show that almost automorphy and a slightly generalized notion of pseudo almost automorphy can be defined in a topological way, without any reference to a metric nor to a vector structure.

In Section 3, we investigate several notions of almost automorphy and pseudo almost automorphy for stochastic processes. First, we investigate almost automorphy and its variants in pth mean: the stochastic processes are seen as almost automorphic (or, more generally, µ-pseudo almost automorphic) functions from 2 Weighted pseudo almost automorphy in Banach spaces and in metric spaces

Notations and definitions

In the sequel, X and Y are metrizable topological spaces. When no confusion may arise, we denote by d a distance on X (respectively on Y) which generates the topology of X (respectively Y). Most of our results depend only on the topology of those spaces, not on the choice of particular metrics. When X and Y are Banach spaces, their norms are indistinctly denoted by . , and d is assumed to result from . . We denote by C(X, Y) the space of continuous functions from X to Y. When this space is endowed with the topology of uniform convergence on compact subsets of X, it is denoted by C k (X, Y).

For a continuous function f : R → X, we define its translation mapping

f : R → C(R, X) t → f (t + .).

Almost periodicity and almost automorphy

Almost periodicity We say that a continuous function f : R → X is almost periodic if, for any ε > 0, there exists l(ε) > 0 such that any interval of length l(ε) contains at least an ε-almost period, that is, a number τ for which

d (f (t + τ ), f (t)) ≤ ε, for all t ∈ R.
We denote by AP(R, X) the space of X-valued almost periodic functions. By a result of Bochner [START_REF] Bochner | A new approach to almost periodicity[END_REF] 

f (t + t n + s n ), (2.1) 
exist and are equal. This very useful criterion shows that the set AP(R, X) depends only on the topology of X, i.e. it does not depend on any uniform structure on X, in particular it does not depend on the choice of any norm (if X is a vector space) or any distance on X.

Almost automorphy Almost automorphic functions were introduced by Bochner [START_REF] Bochner | A new approach to almost periodicity[END_REF] and studied in depth by Veech [START_REF] Veech | Almost automorphic functions on groups[END_REF], see also the monographs [START_REF] Shen | Almost automorphic and almost periodic dynamics in skew-product semiflows[END_REF][START_REF] Gaston | Almost automorphic and almost periodic functions in abstract spaces[END_REF][START_REF] Gaston | Topics in almost automorphy[END_REF] for applications to differential equations. A continuous mapping f : R → X is said to be almost automorphic if, for every sequence (t ′ n ) in R, there exists a subsequence (t n ) such that, for every t ∈ R, the limit

g(t) = lim n→∞ f (t + t n ) (2.2)
exists and lim

n→∞ g(t -t n ) = f (t). (2.3)
The range R f of f is then relatively compact, because we can extract from every sequence (f

(t n )) in R f a convergent subsequence.
Clearly, the space of almost automorphic X-valued functions depends only on the topology of X.

Almost automorphic functions generalize almost periodic functions in the sense that f is almost periodic if, and only if, the above limits are uniform with respect to t.

Note that, in (2.2) and (2.3), the limit function g is not necessarily continuous. Let us consider the following property:

(C) For any choice of (t ′ n ) and (t n ), the function g of (2.2) and (2.3) is continuous.

Functions satisfying (C) are called continuous almost automorphic functions in [START_REF] Veech | Almost automorphic functions on groups[END_REF]. They were re-introduced by Fink [START_REF] Fink | Almost automorphic and almost periodic solutions which minimize functionals[END_REF] under the name of compact almost automorphic functions. This terminology is now generally adopted, so we stick to it.

It has been shown by Veech in [51, Lemma 4.1.1] (see also [START_REF] Gaston | Comments on almost automorphic and almost periodic functions in Banach spaces[END_REF]Theorem 2.6] and [START_REF] Gaston | Stepanov-like almost automorphic functions and monotone evolution equations[END_REF][START_REF] Lizama | Bounded mild solutions for semilinear integro differential equations in Banach spaces[END_REF]) that, if f satifies (C), f is uniformly continuous. The proof of Veech is given in the case when X is the field of complex numbers, but it extends to any metric space. Furthermore, f satifies (C) if, and only if, the convergence in (2.2) and (2.3) is uniform on the compact intervals. We denote by AA c (R, X) the subspace of functions satisfying (C).

We have the inclusions

AP(R, X) ⊂ AA c (R, X) ⊂ AA(R, X).
All these spaces depend only on the topological structure of X and not on its metric.

Almost automorphic functions depending on a parameter Following [START_REF] Liang | Composition of pseudo almost automorphic and asymptotically almost automorphic functions[END_REF], we say that a function f : R × Y → X is almost automorphic with respect to the first variable, uniformly with respect to the second variable in bounded subsets of Y (respectively in compact subsets of Y) if, for every sequence (t ′ n ) in R, there exists a subsequence (t n ) such that, for every t ∈ R and every y ∈ Y, the limit g(t, y) = lim n→∞ f (t + t n , y) exists and, for every bounded (respectively compact) subset B of Y, the convergence is uniform with respect to y ∈ B, and if the convergence

lim n→∞ g(t -t n , y) = f (t, y)
holds uniformly with respect to y ∈ B. We denote by AAU b (R × Y, X) and AAU c (R × Y, X) respectively the spaces of such functions. Similarly, one can define the spaces of functions f : R × Y → X which are compact almost automorphic with respect to the first variable, uniformly with respect to the second variable in bounded (or in compact) subsets of Y. We denote these spaces by AA

c U c (R × Y, X) and AA c U b (R × Y, X) respectively.
These notions are different from the notion of functions almost automorphic uniformly in y defined in [START_REF] Blot | Superposition operators between various almost periodic function spaces and applications[END_REF][START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF].

Proposition 2.1 Let f ∈ AA c U c (R × Y, X).
Assume that f is continuous with respect to the second variable. Then f is continous on R × Y, and, for every compact subset K of Y, f is uniformly continuous on R × K.

Proof For simplicity, we use the same notation d for distances on Y and X which generate the topologies of Y and X respectively.

First step Let us show that f is jointly continuous. Let (t, x) ∈ R × Y, and let (t n , x n ) be a sequence in R × Y which converges to (t, x). Let ε > 0. The set K = {x n ; n ∈ N} ∪ {x} is compact, thus there exists

N 1 ∈ N such that, for any y ∈ K, n, m ≥ N 1 ⇒ d(f (t n , y), f (t m , y)) < ε/3. Now, there exists N 2 ∈ N such that n ≥ N 2 ⇒ d(f (t N1 , x n ), f (t N1 , x)) < ε/3. We deduce, for n ≥ (N 1 ∨ N 2 ), d(f (t n , x n ), f (t, x)) ≤ d(f (t n , x n ), f (t N1 , x n )) + d(f (t N1 , x n ), f (t N1 , x)) + d(f (t N1 , x), f (t, x)) < ε/3 + ε/3 + ε/3 = ε,
which proves the continuity of f .

Second step Let (t ′ n ) be a sequence in R. Let (t n ) be a subsequence of (t ′ n ) such that, for every y ∈ Y, and for every t ∈ R, the limit

g(t, y) = lim n→∞ f (t + t n , y)
exists, uniformly with respect to y in compact subsets of Y, and lim n→∞ g(tt n , y) = f (t, y).

By our hypothesis, for each y ∈ Y, the function g(., y) is continuous. A similar reasoning to that of the first step shows that g is continuous on R × Y. Indeed, let (t, x) ∈ R × Y, and let (s k , x k ) be a sequence in R × Y such that (t + s k , x k ) converges to (t, x). Let ε > 0. The set K = {x n ; n ∈ N} ∪ {x} is compact, thus there exists an integer N such that, for every y ∈ K,

n ≥ N ⇒ d g(t, y), f (t + t n , y) < ε/3.
By continuity of f at the point (t + t N , x), there exists

N ′ ∈ N such that k ≥ N ′ ⇒ d f (t + s k + t N , x k ), f (t + t N , x) < ε/3. We have thus, for k ≥ N ′ , d g(t + s k , x k ), g(t, x) ≤d g(t + s k , x k ), f (t + s k + t N , x k ) + d f (t + s k + t N , x k ), f (t + t N , x) + d f (t + t N , x), g(t, x) <ε/3 + ε/3 + ε/3 = ε.
Third step Let K be a compact subset of Y. Assume that f is not uniformly continuous on R × K. We can find two sequences (s n , x n ) and (t n , y n ) in R × K such that (s n -t n )+d(x n , y n ) converges to 0 and d f (s n , x n ), f (t n , y n ) > 2δ for some δ > 0 and for all n ∈ N. By compactnes of K, and extracting if necessary a subsequence, we can assume that (x n ) and (y n ) converge to a common limit x ∈ K. We have thus lim inf

n→∞ d f (s n , x n ), f (s n , x) + lim inf n→∞ d f (t n , y n ), f (t n , x) ≥ lim inf n→∞ d f (s n , x n ), f (t n , y n ) > 2δ,
which implies that at least one term in the left hand side is greater than δ. So, we can assume, without loss of generality, that lim inf

n→∞ d f (t n , y n ), f (t n , x) > δ.
(

Extracting if necessary a further subsequence, we can assume also that there exists a function g : R × Y → X such that lim n→∞ f (t n , y) = g(0, y)

uniformly with respect to y ∈ K. We have proved in the second step that g is continuous. But, then, we have lim sup

n→∞ d f (t n , y n ), f (t n , x) ≤ lim sup n→∞   d f (t n , y n ), g(0, y n ) + d g(0, y n ), g(0, x) + d g(0, x), f (t n , x)   = 0,
which contradicts (2.4).

(Weighted) pseudo almost automorphy

Pseudo almost periodic functions were invented by Zhang [START_REF] Yi | Integration of vector-valued pseudo-almost periodic functions[END_REF][START_REF] Yi | Pseudo-almost-periodic solutions of some differential equations[END_REF][START_REF] Yi | Pseudo almost periodic solutions of some differential equations[END_REF][START_REF] Zhang | Almost periodic type functions and ergodicity[END_REF]. The generalization of this concept to pseudo almost automorphic functions was investigated in [START_REF] Liang | Composition of pseudo almost automorphic and asymptotically almost automorphic functions[END_REF]. To define pseudo almost automorphy, we need another class of functions. Assume for the moment that X is a Banach space. Let

E(R, X) = f ∈ BC(R, X); lim r→∞ 1 2r [-r,r] f (t) dt = 0 ,
where BC(R, X) denotes the space of bounded continuous functions from R to X. We say that a continuous function f : R → X is pseudo almost automorphic if it has the form

f = g + Φ, g ∈ AA(R, X), Φ ∈ E(R, X). (2.5)
The space of X-valued pseudo almost automorphic functions is denoted by PAA(R, X).

Weighted pseudo almost automorphic functions were introduced by Blot et al. in [START_REF] Blot | Weighted pseudo almost automorphic functions and applications to abstract differential equations[END_REF] and later generalized in [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]. They generalize the weighted pseudo almost periodic functions introduced by Diagana [START_REF] Diagana | Weighted pseudo almost periodic functions and applications[END_REF][START_REF] Diagana | Pseudo almost periodic functions in Banach spaces[END_REF][START_REF] Diagana | Weighted pseudo-almost periodic solutions to some differential equations[END_REF], see also [START_REF] Blot | New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[END_REF]. Let µ be a Borel measure on R such that µ(R) = ∞ and µ(I) < ∞ for every bounded interval I.

(2.6)

We define the space E(R, X, µ) of µ-ergodic X-valued functions by

E(R, X, µ) = f ∈ BC(R, X); lim r→∞ 1 µ([-r, r]) [-r,r] f (t) dµ(t) = 0 .
The space PAA(R, X, µ) of µ-pseudo almost automorphic functions with values in X is the space of continuous functions f : R → X of the form

f = g + Φ, g ∈ AA(R, X), Φ ∈ E(R, X, µ). (2.7) 
The space PAA(R, X, µ) contains the asymptotically almost automorphic functions, that is, the functions of the form

f = g + Φ, g ∈ AA(R, X), lim |t|→∞ Φ(t) = 0, see [7, Corollary 2.16].
Note that, contrarily to (2.5), the decomposition (2.7) is not necessarily unique [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]Remark 4.4 and Theorem 4.7], even in the case of weighted almost periodic functions [START_REF] Liang | Decomposition of weighted pseudoalmost periodic functions[END_REF][START_REF] Blot | New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[END_REF]. A sufficient condition of uniqueness of the decomposition is that E(R, X, µ) be translation invariant. This is the case in particular if Condition (H) of [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF] is satisfied: (H) For every τ ∈ R, there exist β > 0 and a bounded interval I such that

µ(A + τ ) ≤ βµ(A) whenever A is a Borel subset of R such that A ∩ I = ∅.
The following elementary lemma will prove useful.

Lemma 2.2 Let f ∈ E(R, X, µ), with µ satisfying (2.6). There exists a sequence

(t n ) in R such that (|t n |) converges to ∞ and (f (t n )) converges to 0. If furthermore lim inf r→∞ µ([0, r]) µ([-r, r]) > 0, (2.8) 
one can choose (t n ) converging to +∞.

Proof Observe first that, for every bounded interval I, the function f satisfies

lim r→∞ 1 µ([-r, r] \ I) [-r,r]\I f (t) dµ(t) = 0
(see [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]Theorem 2.14] for a stronger result). Assume that the first part of the lemma is false. There exist ε > 0 and R > 0 such that, for |t| ≥ R, f (t) ≥ ε.

Then we have

0 = lim r→∞ 1 µ([-r, r] \ [-R, R]) [-r,r]\[-R,R] f (t) dµ(t) ≥ lim r→∞ ε µ([-r, r] \ [-R, R]) µ([-r, r] \ [-R, R]) = ε, a contradiction.
In the case when (2.8) is satisfied, we have lim sup

r→∞ 1 µ([0, r] \ [0, R]) [0,r]\[0,R] f (t) dµ(t) ≤ lim sup r→∞ µ([-r, r] \ [-R, R]) µ([0, r] \ [0, R]) 1 µ([-r, r] \ [-R, R]) [-r,r]\[-R,R] f (t) dµ(t) = lim sup r→∞ µ([-r, r]) µ([0, r]) 1 µ([-r, r] \ [-R, R]) [-r,r]\[-R,R] f (t) dµ(t) ≤ 0.
Then we only need to reproduce the reasoning of the first part of the lemma, replacing [-r, r] by [0, r].

Pseudo almost automorphic functions depending on a parameter Let µ be a Borel measure on R satisfying (2.6). We say that a continuous function f : R × Y → X is µ-ergodic with respect to the first variable, uniformly with respect to the second variable in bounded subsets of Y (respectively in compact subsets of Y) if, for every x ∈ Y, f (., x) is µ-ergodic, and the convergence of 1/µ([-r, r]) r -r f (t, x) dµ(t) is uniform with respect to x in bounded subsets of Y (respectively compact subsets of Y). The space of such functions is denoted by

EU b (R × Y, X, µ) (respectively EU c (R × Y, X, µ)). Remark 2.3 If for each x ∈ Y, f (., x) ∈ E(R, X, µ) and f (t, x) is continuous with respect to x, uniformly with respect to t, then f ∈ EU c (R × Y, X, µ).
Indeed, let K be a compact subset of Y, and let ε > 0. Let d be any distance on Y which generates the topology of Y. There exists η > 0 such that, for all x, y ∈ K satisfying d (x, y) < η, we have f (t, x)f (t, y) < ε for every t ∈ R. Let x 1 , . . . , x m be a finite sequence in K such that K ⊂ ∪ m i=1 B(x i , η). We have, for every r > 0,

sup x∈K 1 µ([-r, r]) r -r f (t, x) dµ(t) ≤ max 1≤i≤m sup x∈B(xi,η)     1 µ([-r, r]) r -r f (t, x) -f (t, x i ) dµ(t) + 1 µ([-r, r]) r -r f (t, x i ) dµ(t)     ≤ε + max 1≤i≤m 1 µ([-r, r]) r -r f (t, x i ) dµ(t), which shows that f ∈ EU c (R × Y, X, µ).
We say that a continuous function f : R × Y → X is µ-pseudo almost automorphic with respect to the first variable, uniformly with respect to the second variable in bounded subsets of Y (respectively in compact subsets of Y) if it has the form

f = g + Φ, g ∈ AAU b (R × Y, X), Φ ∈ EU b (R × Y, X, µ) (respectively f = g + Φ, g ∈ AAU c (R × Y, X), Φ ∈ EU c (R × Y, X, µ)).

The space of such functions is denoted by PAAU

b (R × Y, X, µ) (respectively PAAU c (R × Y, X, µ)).

Stepanov, Weyl and Besicovitch-like pseudo almost automorphy

Stepanov-like pseudo almost automorphy and variants The notion of Stepanov-like almost automorphy was proposed by Casarino in [START_REF] Casarino | Almost automorphic groups and semigroups[END_REF]. Then Stepanov-like pseudo almost automorphy was first studied by Diagana [START_REF] Diagana | Existence of pseudo-almost automorphic solutions to some abstract differential equations with S p -pseudo-almost automorphic coefficients[END_REF].

Stepanov-like weighted pseudo almost automorphy seems to have been investigated first and simultaneously in [START_REF] Xia | Weighted Stepanov-like pseudo almost automorphy and applications[END_REF] and [START_REF] Zhang | New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations[END_REF].

Let p > 0. We say that a locally p-integrable function f : R → X is S palmost automorphic, or Stepanov-like almost automorphic if, for every sequence (t n ) in R, there exists a subsequence (t ′ n ) and a locally p-integrable function g : R → X such that, for all t ∈ R,

lim n→∞ |f (. + t ′ n ) -g| S p (t) = 0 and lim n→∞ |g(. -t ′ n ) -f | S p (t) = 0,
where, for any locally p-integrable function h : R → X,

|h| S p (t) = t+1 t h(s) p ds 1/p
, and assuming also that

f S p := sup{|f | S p (t); t ∈ R} < ∞. The space of S p -almost automorphic X-valued functions is denoted by AA S p (R, X).
The Bochner transform1 of a function f : R → X is the function

f b : R → X [0,1] t → f (t + .).
We have

AA S p (R, X) = f ; f b ∈ AA(R, L p ([0, 1], dt, X)) .
We define the Stepanov-like µ-ergodic functions in a similar way:

E S p (R, X, µ) = f ; f b ∈ E(R, L p ([0, 1], dt, X), µ) .
Let µ be a Borel measure on R satisfying (2.6). We say that f : R → X is S p -pseudo almost automorphic, or Stepanov-like weighted pseudo almost automorphic if f has the form

f = g + Φ, g ∈ AA S p (R, X), Φ ∈ E S p (R, X, µ).
A further extension has been imagined by Diagana [START_REF] Diagana | Evolution equations in generalized Stepanov-like pseudo almost automorphic spaces[END_REF]: it consists in adding a weight in the Stepanov seminorms |.| S p and . S p . Let p and µ as before, and let ν be a Borel measure on the interval [0, 1] such that

0 < ν([0, 1]) < +∞.
(2.9) ν , one defines in the obvious way the space AA S p ν (R, X) of S p ν -almost automorphic X-valued functions, the space E S p ν (R, L p (Ω, P, R), µ) of S p ν -µ-ergodic functions, and the space PAA S p ν (R, X) of S p ν -pseudo almost automorphic functions.

Set |h| S p ν (t) = 1 0 h(t + s) p dν(s)

Weyl-like and Besicovitch-like pseudo almost automorphy The concept of Weyl-like pseudo almost automorphy has been recently explored by

Abbas [START_REF] Syed | A note on Weyl pseudo almost automorphic functions and their properties[END_REF]. The definition is similar to that of Stepanov-like pseudo almost automorphy, replacing |.| S p and . S p by the weaker seminorms |.| W p and . W p , defined by

|h| W p (x) = lim r→+∞ 1 2r x+r x-r h(t) p dt 1/p and h W p = lim r→+∞ sup x∈R 1 2r x+r x-r h(t) p dt 1/p .
A further weakening leads to the Besicovitch seminorm, which does not seem to have been investigated in the context of almost automorphy:

h B p = lim sup r→+∞ 1 2r r -r h(t) p dt 1/p (here, |h| B p (x) = h B p for all x ∈ R).
We shall briefly consider this seminorm in Example 3.1.

Weighted pseudo almost automorphy in topological spaces

We have seen that, to define the space of almost automorphic functions, as well as that of almost periodic functions, on a space X, there is no need to assume that X is a vector space, nor a metric space, these spaces depend only on the topological structure of X. We prove in this section that the definition of PAA(R, X, µ) is metric (independent of the vector structure of X but dependent on the metric), and that it can be made purely topological if one allows for a slight change of the definition. This leads to two topological concepts of µpseudo almost automorphy: in C. and M. Tudor's sense, and in the wide sense.

In this section, unless otherwise stated, X is only assumed to be a topological space, not necessarily metrizable.

Remark 2.4 Assume that X is a Banach space. By definition, the space

E(R, X, µ) consists of continuous functions f : R → X satisfying (i) f is bounded, (ii) lim r→∞ 1 µ([-r, r]) [-r,r] f (t) dµ(t) = 0.
Condition (i) is of metric nature. By [7, Theorem 2.14], Condition (ii) implies Condition (2.10) below, and the converse implication is true if we assume (i) :

For any ε > 0, lim

r→∞ µ{t ∈ [-r, r]; f (t) > ε} µ([-r, r]) = 0. (2.10)
Thus f satisfies (2.10) if, and only if,

lim r→∞ 1 µ([-r, r]) [-r,r]   f (t) ∧ 1   dµ(t) = 0.

Condition (2.10) can be reformulated as

For any neighbourhood U of 0, lim

r→∞ µ{t ∈ [-r, r]; f (t) ∈ U } µ([-r, r]) = 0. (2.11)
The vector structure of X is still involved in (2.11) through the vector 0. But we use E(R, X, µ) only in order to ensure that a function is close in a certain sense to AA(R, X). To that end, as AA(R, X) contains the constant functions, we can allow a generalization of E(R, X, µ) by replacing 0 in (2.11) by any other fixed point x 0 of X. 2An elegant metric definition of µ-pseudo almost periodic functions has been proposed by Constantin and Maria Tudor in [START_REF] Tudor | Pseudo almost periodic solutions of some stochastic differential equations[END_REF]. If we adapt their definition, a continuous function f : R → X is µ-pseudo almost automorphic in C. and M. Tudor's sense if f has relatively compact range and there exists g ∈ AA(R, X) such that the function

t → d(f (t), g(t)) is in E(R, R, µ).
This definition is more restrictive than the standard one because the metric condition (i) is replaced by the stronger topological condition that f have relatively compact range (note that a subset A of X is relatively compact if, and only if, it is bounded for every metric which generates the topology of X, see [START_REF] Engelking | General topology, volume 6 of Sigma Series in Pure Mathematics[END_REF]Problem 4.3

.E.(c)]).

Let us say that a continuous function f : R → X is µ-pseudo almost automorphic in the wide sense if there exists g ∈ AA(R, X) such that the function

t → d(f (t), g(t)) ∧ 1 is in E(R, R, µ).
We can get rid of the distance d in this definition by using the fact that the closure of the range of any function in AA(R, X) is compact. On a compact space K, there is one and only one uniform structure, a basis of entourages of which consists of all sets of the form [START_REF] Bourbaki | Éléments de mathématique. Topologie générale[END_REF] or [START_REF] Engelking | General topology, volume 6 of Sigma Series in Pure Mathematics[END_REF]. In this way, we obtain (ii) below, which shows that the space of functions which are µ-pseudo almost automorphic in the wide sense depends only on the topology of X.

V = ∪ m i=1 (U i × U i ), where U 1 , . . . , U m is a finite open cover of K, see e.g.
We have thus two possible topological definitions of µ-pseudo almost automorphy: in C. and M. Tudor's sense, and in the wide sense. The former is stronger than (2.7), while the latter is weaker. Proposition 2.5 (Topological characterization of µ-pseudo almost automorphy in the wide sense) Let f : R → X be continuous. Let µ be a Borel measure on R satisfying (2.6). If X is a metric space, the following propositions are equivalent.

(i) f is µ-pseudo almost automorphic in the wide sense, i.e. there exists a function g ∈ AA(R, X) such that

lim r→∞ 1 µ([-r, r]) [-r,r]   d (f (t), g(t)) ∧ 1   dµ(t) = 0.
(ii) There exists a function g ∈ AA(R, X) such that, for any finite open cover

U 1 , . . . , U m of the closure K of {g(t); t ∈ R}, lim r→∞ µ{t ∈ [-r, r]; (f (t), g(t)) ∈ V } µ([-r, r]) = 0, where V = ∪ m i=1 (U i × U i ). Proof (i) ⇒ (ii). Recall that K is compact because g ∈ AA(R, X). Let V = ∪ m i=1 (U i × U i ) be as in (ii). Then V is an open neighborhood in X × X of the diagonal ∆ = {(x, x); x ∈ K}. Define the distance d 2 on X × X by d 2 (x, y), (x ′ , y ′ ) = d(x, x ′ ) + d(y, y ′ ). As ∆ is compact, the distance ε = d 2 (∆, X × X \ V ) is positive. Let B ε := {(y, z) ∈ X × X; d 2 (y, z), ∆ < ε} ⊂ V. For each (y, z) ∈ B ε , there exists x ∈ K such that d 2 (y, z), (x, x) < ε, thus d(y, z) ≤ d(y, x) + d(x, z) < ε.
On the other hand, if z ∈ K and d(y, z) < ε, we have

d 2 (y, z), (z, z) = d(y, z) < ε, thus (y, z) ∈ B ε . Applying this to (f (t), g(t)), we get, for every r > 0, µ{t ∈ [-r, r]; (f (t), g(t)) ∈ V } µ([-r, r]) ≤ µ{t ∈ [-r, r]; d (f (t), g(t)) ≥ ε} µ([-r, r]) . But (i) means that the function t → d(f (t), g(t)) ∧ 1 is in E(R, R, µ)
, thus, by [7, Theorem 2.14], the latter term goes to 0 when r goes to ∞.

(ii) ⇒ (i). Let ε > 0. Let U 1 , . . . , U m be a finite open cover of K such that Diam(U i ) > ε, i = 1, . . . , m, and let V = ∪ m i=1 (U i × U i ). We have µ{t ∈ [-r, r]; d (f (t), g(t)) > ε} µ([-r, r]) ≤ µ{t ∈ [-r, r]; (f (t), g(t)) ∈ V } µ([-r, r]) ,
where the latter term goes to 0 when r goes to ∞. 

V = ∪ m i=1 Ûi × Ûi . Then U 1 = ϕ -1 ( Û1 ), . . . , U m = ϕ -1 ( Ûm ) form a finite open cover of K. Let V = ∪ m i=1 (U i × U i ). We have µ{t ∈ [-r, r]; (ϕ • f (t), ϕ • g(t)) ∈ V } µ([-r, r]) ≤ µ{t ∈ [-r, r]; (f (t), g(t)) ∈ V } µ([-r, r]) .
Thus, by Proposition 2.5,

ϕ • f is in PAA(R, R, µ) and the function ϕ • f -ϕ • g is in E(R, R, µ). By [7, Theorem 4.1], we have {ϕ • g(t); t ∈ R} ⊂ {ϕ • f (t); t ∈ R},
and, by the uniqueness of the decomposition of vector-valued µ-pseudo almost automorphic functions [7, Theorem 4.7] if g ′ ∈ AA(R, X) satisfies the same condition as g, we have ϕ • g ′ = ϕ • g. As ϕ is arbitrary, we deduce g ′ = g.

Weighted pseudo almost automorphy for stochastic processes

From now on, X and Y are assumed to Polish spaces, i.e. separable metrizable topological spaces whose topology is generated by a complete metric.

Weighted pseudo almost automorphy in pth mean

We assume here that X is a Banach space. Let X = (X t ) t∈R be a continuous stochastic process with values in X, defined on a probability space (Ω, F , P). Let µ be a Borel measure on R satisfying (2.6). Let p > 0. We say that X is almost automorphic in pth mean (respectively µ-pseudo almost automorphic in pth mean) if the mapping t → X(t) is in AA(R, L p (Ω, P, X)) (respectively in PAA(R, L p (Ω, P, X), µ), i.e., if it has the form X = Y + Z, where Y ∈ AA(R, L p (Ω, P, X)) and Z ∈ E(R, L p (Ω, P, X), µ)). When p = 2, we say that X is square-mean almost automorphic (respectively square-mean µ-pseudo almost automorphic).

The process X is said to be almost automorphic in probability if the mapping X : t → L 0 (Ω, P, X) is almost automorphic, where L 0 (Ω, P, X) is the space of measurable mappings from Ω to X, endowed with the topology of convergence in probability. Recall that the topology of L 0 (Ω, P, X) is induced by e.g. the distance

d Prob (U, V ) = E ( U -V ∧ 1) , which is complete.
The process X is said to be µ-pseudo almost automorphic in probability, and we write X ∈ PAA(R, L 0 (Ω, P, X), µ), if the mapping t → X(t), R → L 0 (Ω, P, X) is µ-pseudo almost automorphic in the wide sense (or, equivalently, if it is µpseudo almost automorphic when L 0 (Ω, P, X) is endowed with d Prob ), i.e. if it has the form X = Y + Z where Y ∈ AA(R, L 0 (Ω, P, X)) and Z satisfies lim

r→∞ 1 µ([-r, r]) [-r,r] E   Z(t) ∧ 1   dµ(t) = 0. (3.1)
We denote by E(R, L 0 (Ω, P, X), µ) the set of stochastic processes Z satisfying (3.1). Note that, for p ≥ 0, the previous decompositions of X ∈ PAA(R, L p (Ω, P, X), µ) are unique under the condition (H).

Clearly, for 0 ≤ p ≤ q, we have AA(R, L q (Ω, P, X)) ⊂ AA(R, L p (Ω, P, X))

and PAA(R, L q (Ω, P, X), µ) ⊂ PAA(R, L p (Ω, P, X), µ).

Conversely, if the set { X(t) q ; t ∈ R} is uniformly integrable, we have the implications   X ∈ AA(R, L p (Ω, P, X))   ⇒   X ∈ AA(R, L q (Ω, P, X))   ,   X ∈ PAA(R, L p (Ω, P, X), µ)   ⇒   X ∈ PAA(R, L q (Ω, P, X), µ)   .
A process X is Stepanov-like almost automorphic in pth mean if X is in AA S p (R, L p (Ω, P, X)). We define in the same way the processes which are Stepanov-like µ-pseudo almost automorphic in pth mean, Weyl-like (µ-pseudo) almost automorphic in pth mean, Besicovitch-like (µ-pseudo) almost automorphic in pth mean.

Explicit counterexample to square-mean pseudo almost automorphy

At the time of the submission of this paper, there are at least 24 papers listed in Mathematical Reviews related to almost automorphy of solutions to stochastic differential equations, which all have been published in 2010 or later. To our knowledge, except for [START_REF] Fu | Almost automorphic solutions for nonautonomous stochastic differential equations[END_REF][START_REF] Fu | Almost automorphic solutions for some stochastic differential equations[END_REF][START_REF] Liu | Almost automorphic solutions for stochastic differential equations driven by Lévy noise[END_REF], all other papers claim the existence of squaremean pseudo almost automorphic solutions to stochastic differential equations with coefficients having similar properties.

We show that a very simple counterexample from [START_REF] Mellah | Étude des solutions presque périodiques des équations différentielles stochastiques[END_REF][START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF] contradicts these claims. The other counterexamples given in [START_REF] Mellah | Étude des solutions presque périodiques des équations différentielles stochastiques[END_REF][START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF] also contradict these claims.

Example 3.1 (Stationary Ornstein-Uhlenbeck process) Let W = (W (t)) t∈R be a standard Brownian motion on the real line. Let α, σ > 0, and let X be the stationary Ornstein-Uhlenbeck process (see [START_REF] Lindgren | Lectures on stationary stochastic processes[END_REF]) defined by

X(t) = √ 2ασ t -∞ e -α(t-s) dW (s). (3.2)
Then X is the only L 2 -bounded solution of the following SDE, which is a particular case of Equation (3.1) in [START_REF] Bezandry | Existence of almost periodic solutions to some stochastic differential equations[END_REF]:

dX(t) = -αX(t) dt + √ 2ασ dW (t).
The process X is Gaussian with mean 0, and we have, for all t ∈ R and τ ≥ 0, Cov(X(t), X(t

+ τ )) = σ 2 e -ατ .
Assume that X is square-mean µ-pseudo almost automorphic, for some Borel measure µ on R satisfying (2.6) and (2.8). Then we can decompose X as

X = Y + Z, Y ∈ AA(R, L 2 (Ω, R)), Z ∈ E(R, L 2 (Ω, R), µ).
By Lemma 2.2, we can find an increasing sequence (t n ) of real numbers which converges to +∞ such that (Z(t n )) converges to 0 in L 2 (Ω, R). Then, we can extract a sequence (still denoted by (t n ) for simplicity) such that (Y (t n )) converges in L 2 to a random variable Y . Thus (X(t n )) converges in L 2 to Y . Necessarily Y is Gaussian with law N (0, 2ασ 2 ), and Y is G-measurable, where G = σ (X tn ; n ≥ 0). Moreover (X(t n ), Y ) is Gaussian for every n, and we have, for any integer n,

Cov(X(t n ), Y ) = lim m→∞ Cov(X(t n ), X(t n+m )) = 0, because (X 2 (t)) t∈R is uniformly integrable. This proves that Y is independent of X(t n ) for every n, thus Y is independent of G. Thus Y is constant, a contra- diction. Thus (3.
2) has no square-mean µ-pseudo almost automorphic solution.

Let us show that X is not Weyl-like nor Besicovitch-like square-mean pseudo almost automorphic. It is enough to disprove the Besicovitch sense. Assume that X is Besicovitch-like square-mean pseudo almost automorphic. As before, using Lemma 2.2, we can find a sequence (t n ) converging to +∞ and a process Y such that lim n→∞

X(t n ) -Y B 2 = 0.
In particular, (X(t n )) is Cauchy for . B 2 , thus, for every ε > 0, there exists N (ε) ∈ N, such that, for all n, m ∈ N,

(n ≥ N (ε)) ⇒ X(t n ) -X(t n+m ) B 2 ≤ ε. (3.3) 
But we have

X(t n ) -X(t n+m ) 2 B 2 = lim sup r→+∞ 1 2r r -r E X(t n + s) -X(t n+m + s) 2 ds = lim sup r→+∞ 1 2r r -r E X 2 (t n + s) + X 2 (t n+m + s) -2X(t n + s)X(t n+m + s) ds = lim sup r→+∞ 1 2r r -r σ 2 + σ 2 -2σ 2 e -α(tn+m-tn) ds =2σ 2 1 -e -α(tn+m-tn) .
For m large, the last term is arbitrarily close to 2σ 2 , which contradicts (3.3) for ε < 2σ 2 . A similar calculation shows that, for any Borel measure µ on R satisfying (2.6) and (2.8), and for any Borel measure ν on [0, 1] satisfying (2.9), the process X is not square-mean S 2 ν -µ-pseudo almost automorphic.

Weighted pseudo almost automorphy in distribution

We denote by law (X) the law (or distribution) of a random variable X. For any topological space X, we denote by M 1,+ (X) the set of Borel probability measures on X, endowed with the topology of narrow (or weak) convergence, i.e. the coarsest topology such that the mappings µ → µ(ϕ), M 1,+ (X) → R are continuous for all bounded continuous ϕ : X → R.

If τ : X → Y is a Borel measurable mapping and µ is a Borel measure on X, we denote by τ ♯ µ the Borel measure on Y defined by

τ ♯ µ(B) = µ(τ -1 (B))
for every Borel set of Y.

Let BC(X, R) denote the space of bounded continuous functions from X to R, which we endow with the norm

ϕ ∞ = sup x∈X |ϕ(x)| .
For a given distance d on X, and for ϕ ∈ BC(X, R) we define

ϕ L = sup ϕ(x) -ϕ(y) d(x, y) ; x = y ϕ BL = max{ ϕ ∞ , ϕ L }. We denote BL(X, R) = ϕ ∈ BC(X, R); ϕ BL < ∞ .
The bounded Lipschitz distance d BL associated with d on M 1,+ (X) is defined by

d BL (µ, ν) = sup ϕ∈BL(X,R) ϕ BL ≤1 X ϕ d(µ -ν).
This metric generates the narrow (or weak) topology on M 1,+ (X). Let p ≥ 0, and let (X n ) be a sequence in L p (Ω, P, X). We say that (X n ) converges in p-distribution (or simply converges in distribution if p = 0) to a random vector X if (i) the sequence (law (X n )) converges to law (X) for the narrow topology on M 1,+ (X), (ii) if p > 0, the sequence ( X n p ) is uniformly integrable.

Almost automorphy in distribution If X is continuous with values in X, we denote by X(t) the random variable X(t + .) with values in C(R, X).

We say that X is almost automorphic in one-dimensional distributions if the mapping t → law (X(t)), R → M 1,+ (X) is almost automorphic. Remark 3.2 One-dimensional distributions of a process reflect poorly its properties. For example, let X be the Ornstein-Uhlenbeck process of Example 3.1, and set Y (t) = X(0), t ∈ R. The processes X and Y have the same onedimensional distributions with completely different trajectories and behaviors. The trajectories of Y are constant, whereas the covariance Cov(X(t + τ ), X(t)) converges to 0 when τ goes to ∞.

We say that X is almost automorphic in finite dimensional distributions if, for every finite sequence t 1 , . . . , t m ∈ R, the mapping t → law (X(t + t 1 ), . . . , X(t

+ t m )), R → M 1,+ (X m ) is almost automorphic.
We say that X is almost automorphic in distribution if the mapping t → law X(t) , R → M 1,+ (C k (R, X)) is almost automorphic, where C k (R, X) denotes the space C(R, X) endowed with the topology of uniform convergence on compact subsets. The Ornstein-Uhlenbeck process X of Example 3.1 is almost automorphic in distribution because the mapping t → law X(t) is constant.

Remark 3.3 If X is a deterministic process R → X, we have the equivalences X ∈ AA(R, X) ⇔X is almost automorphic in one-dimensional distributions
⇔X is almost automorphic in finite dimensional distributions and

X ∈ AA c (R, X) ⇔X is almost automorphic in distribution.
Actually, as Remark 3.3 suggests, the definition of almost automorphy in distribution implies a stronger property for the mapping t → law X(t) . We need first some notations. For simplicity, we set C k = C k (R, X). For every t ∈ R, we define a continuous operator on C k :

τ t : C k → C k x → x(t + .) = x(t). Proposition 3.4 If X is almost automorphic in distribution, the mapping t → law X(t) is in AA c (R, M 1,+ (C k (R, X)))
. Furthermore, for any sequence (t n ) in R such that, for every t ∈ R, (law X(t + t n ) ) converges to a limit g(t) ∈ M 1,+ (C k ), the function g satisfies, for every t ∈ R, the consistency relation

g(t) = (τ t ) ♯ g(0). (3.4)
Proof Let us denote f (t) = law X(t) . We have, for every t ∈ R,

f (t) = law (τ t • X) = (τ t ) ♯ f (0).
Let (t n ) be a sequence in R such that, for each t ∈ R, the sequence (f (t + t n )) converges to some g(t) ∈ M 1,+ (C k ). Then, for every t ∈ R, (3.4) is satisfied by continuity of the operator (τ t ) ♯ . To prove the continuity of g, let us endow C k with the distance

d(x, y) = k≥1 2 -k sup -k≤t≤k d x(t), y(t) ∧ 1 , (3.5) 
and let d BL be the associated bounded Lipschitz distance on M 1,+ (C k ). Let us show that the convergence of (f (. + t n )) is uniform for d BL on compact intervals. Let r ≥ 1 be an integer. For every t ∈ [-r, r], and for all x, y ∈ C k , we have

d (τ t (x), τ t (y)) = k≥1 2 -k sup -k≤s≤k d x(s + t), y(s + t) ∧ 1 ≤ k≥1 2 -k sup -k-r≤s≤k+r d x(s), y(s) ∧ 1 ≤2 r d(x, y).
Thus, for any 1-Lipschitz mapping ϕ : C k → R, the mapping ϕ • τ t is 2 r -Lipschitz. We deduce that, if ϕ BL ≤ 1, we have ϕ • τ t BL ≤ 1 + 2 r . We have thus

d BL f (t + t n ), f (t + t n+m ) = sup ϕ BL ≤1 E ϕ • τ t • X(t n ) -ϕ • τ t • X(t n+m ) ≤(1 + 2 r ) sup ϕ BL ≤1 E ϕ • X(t n ) -ϕ • X(t n+m ) =(1 + 2 r )d BL f (t n ), f (t n+m ) ,
which shows that (f (.+t n )) is uniformly Cauchy on [-r, r]. Thus g is continuous, and

f ∈ AA c (R, M 1,+ (C k (R, X))).
We denote by

• AAD 1 (R, X) the set of X-valued processes which are almost automorphic in one-dimensional distributions,

• AAD f (R, X) the set of X-valued processes which are almost automorphic in finite dimensional distributions,

• AAD(R, X) the set of X-valued processes which are almost automorphic in distribution.

(In these notations, we omit the probability space (Ω, F , P), as there is no ambiguity here.) We have the inclusions

AAD(R, X) ⊂ AAD f (R, X) ⊂ AAD 1 (R, X).
The following result is in the line of [3, Theorem 2.3].

Theorem 3.5 Let X be an X-valued stochastic process, and let d be a distance on X which generates the topology of X. Asume that X satisfies the tightness condition

∀[a, b] ⊂ R, ∀ε > 0, ∀η > 0, ∃δ > 0, ∀r ∈ R, P sup |t-s|<δ t,s∈[a,b] d (X(r + t), X(r + s)) > η < ε. (3.6)
Then the following properties are equivalent:

(a) X ∈ AAD f (R, X). (b) X ∈ AAD(R, X).
Proof Clearly (b)⇒(a). Assume that X ∈ AAD f (R, X). Let (γ ′ n ) be a sequence in R, and, for t 1 , t 2 , . . . , t k , t ∈ R define (using notations of [START_REF] Tudor | Almost periodic stochastic processes[END_REF]) µ t1,...,t k t := law (X(t 1 + t), . . . , X(t k + t)) .

By a diagonal procedure we can find a subsequence (γ n ) of (γ ′ n ) such that, for every k ≥ 1, for all q 1 , q 2 , . . . , q k ∈ Q R (where Q is the set of rational numbers), and for every t ∈ R, lim n lim m µ q1,...,q k t+γn-γm = µ q1,...,q k t .

Let d k be the distance on X k defined by

d k (x 1 , . . . , x k ), (y 1 , . . . , y k ) = max 1≤i≤k d(x i , y i ),
and let d BL the associated bounded Lipschitz distance on M 1,+ X k . We have, for all t 1 , t 2 , . . . , t k , t ∈ R, for all q 1 , q 2 , . . . , q k ∈ Q R, and for all n, m ∈ N, d BL µ q1,...,q k t+γn-γm , µ t1,...,t k t+γn-γm = sup

f BL≤1 X k f d µ q1,...,q k t+γn-γm -µ t1,...,t k t+γn-γm ≤ max 1≤i≤k Ω d X(q i + t + γ n -γ m ), X(t i + t + γ n -γ m ) d P,
so that, by (3.6), if (q 1 , . . . , q k ) → (t 1 , . . . , t k ), then d BL µ q1,...,q k t+γn-γm , µ t1,...,t k t+γn-γm → 0 uniformly with respect to t ∈ R and n, m ∈ N. By a classical result on inversion of limits, we deduce that, for all k ≥ 1 and t 1 , . . . , t k , t ∈ R, lim n lim m µ t1,...,t k t+γn-γm = µ t1,...,t k t .

Therefore, to show that lim

n lim m law X(t + γ n -γ m ) = law X(t) ,
it is enough to prove that ( X(t)) t∈R is tight in C k (R, X). Since X ∈ AAD f (R, X), the family (X(t)) t∈R = ( X(t)(0)) t∈R is tight, by Prokhorov's theorem for relatively compact sets of probability measures on Polish spaces. By (3.6) and the Arzelà-Ascoli-type characterization of tight subsets of M 1,+ (X) (see e.g. the proof of [5, Theorem 7.3] or [52, Theorem 4]), we conclude that ( X(t)) t∈R is tight in C k (R, X), which proves our claim.

Remark 3.6 Assume that X is a vector space. The spaces AAD(R, X), AAD f (R, X), and AAD 1 (R, X) are not vector spaces. Indeed, let X be the Ornstein-Uhlenbeck process of Example 3.1. For each t ∈ R, let Y (t) = X(0). The processes X and Y are stationary in the strong sense, thus they are in AAD(R, X). For each

t ∈ R, the variable Z(t) = X(t) + Y (t) is Gaussian centered with variance Var Z(t) = E X 2 (t) + E Y 2 (t) + 2 Cov X(t), Y (t) = 2σ 2 + 2σ 2 exp (-α |t|) → 2σ 2 when |t| → ∞. Thus law (Z(t)) is the Gaussian distribution N (0, 2σ 2 (1 + exp (-α |t|))), which converges when |t| → ∞ to N (0, 2σ 2 ). Set m(t) = N (0, 2σ 2 ), t ∈ R. For each t ∈ R, we have lim n→∞ law (Z(t + n)) = m(t) lim n→∞ m(t -n) = m(t) = law (Z(t)) .
Thus Z ∈ AAD 1 (R, X). This contradicts [START_REF] Fu | Almost automorphic solutions for nonautonomous stochastic differential equations[END_REF]Lemma 2.3].

Almost automorphy in p-distribution A useful variant of almost automorphy in distribution takes into account integrability of order p. Let p ≥ 0. We say that a continuous X-valued stochastic process is almost automorph in p-distribution if

(i) X ∈ AAD(R, X),
(ii) if p > 0, the family ( X(t) p ) t∈R is uniformly integrable.

These conditions imply that the mapping t → X(t), R → L p (Ω, P, X), is continuous.

We denote by AAD p (R, X) the set of X-valued processes which are almost automorphic in p-distribution, in particular we have AAD 0 (R, X) = AAD(R, X). Similarly, for p ≥ 0, one defines the sets AAD p f (R, X) and AAD p 1 (R, X) of processes which are respectively almost automorphic in one-dimensional p-distributions and almost automorphic in finite dimensional p-distributions.

Weighted pseudo almost automorphy in distribution and variants

As usual, we assume that µ is a Borel measure on R satisfying (2.6).

C. and M. Tudor proposed in [START_REF] Tudor | Pseudo almost periodic solutions of some stochastic differential equations[END_REF] a very natural and elegant notion of pseudo almost periodicity in (one-dimensional) distribution that can easily be extended to weighted µ-pseudo almost automorphy: X is µ-pseudo almost periodic in one-dimensional distributions in C. and M. Tudor's sense if it satisfies (TT 1 ) The mapping t → law (X(t)) is continuous with relatively compact range in M 1,+ (X), and there exists an almost automorphic function m : R → M 1,+ (X) such that

lim r→∞ 1 µ([-r, r]) r -r d BL (law (X(t)) , m(t))dµ(t) = 0. (3.7)
Similar definitions are easy to write for µ-pseudo almost automorphy in finite distributions or in distribution.

Recall that d BL is bounded. If we remove the condition of relatively compact range (as in Proposition 2.5), we get three distributional notions of µ-pseudo almost automorphy in the wide sense: in one-dimensional distributions, in finite dimensional distributions, and in distribution.

We propose three stronger notions of µ-pseudo almost automorphy in a distributional sense, that seem to be particularly useful for stochastic equations.

Assume that X is a vector space. Let p ≥ 0. We say that X is µ-pseudo almost automorphic in p-distribution if X can be written

X = Y + Z, where Y ∈ AAD p (R, X) and Z ∈ E(R, L p (Ω, P, X), µ).
The set of X-valued processes which are µ-pseudo almost automorphic in pdistribution is denoted by PAAD p (R, X). Similar definitions hold for the spaces PAAD p 1 (R, X, µ) and PAAD p f (R, X, µ) of processes which are µ-pseudo almost automorphic in one-dimensional p-distributions and in finite dimensional pdistributions respectively. Remark 3.7 The definitions we propose for µ-pseudo almost automorphy in distribution, or in finite dimensional distributions, or in one-dimensional distributions, are in a way stronger and less natural than those in the wide distributional sense, because they involve (at least, apparently) not only the distribution of the process, but the probability space (Ω, F , P). For example, a random process X is in PAAD 0 1 (R, X, µ) if, and only if, there exists a process Y defined on the same probability space such that m(.) := law (Y (.)) is in AA(R, M 1,+ (X)) and satisfies (3.7). Note also that, in our definition, the ergodic part is ergodic in pth mean. Our definitions are thus intermediate between µ-pseudo almost automorphy in a purely distributional sense and µ-pseudo almost automorphy in pth mean.

However, our definitions seem to be convenient for calculations, and Theorem 4.4 shows that, for some stochastic differential equations with µ-pseudo almost automorphic coefficients, the process Y appears naturally: it is the solution of the corresponding SDE where the coefficients are the almost automorphic parts of the coefficients of the original SDE.

Almost automorphy in distribution and some of its variants enjoy some stability properties, as shows the following superposition lemma. Similar results could be proved by the same method for one-dimensional or for finite dimensional distributions.

Theorem 3.8 (Superposition lemma) Let X be a continuous X-valued stochastic process, and let f : R × X → Y be a continuous mapping.

1. If X is almost periodic in distribution and f is almost periodic with respect to the first variable, uniformly with respect to the second variable in compact subsets of X, then f (., X(.)) is almost periodic in distribution.

2. If X is almost automorphic in distribution and f is compact almost automorphic with respect to the first variable, uniformly with respect to the second variable in compact subsets of X, then f (., X(.)) is almost automorphic in distribution.

3. Let µ be a Borel measure on R satisfying (2.6), and let p ≥ 0. Assume that f is µ-pseudo compact almost automorphic with respect to the first variable, uniformly with respect to the second variable in compact subsets of X, i.e.

f = g + h, with g ∈ AA c U c (R × X, Y) and h ∈ EU c (R × X, Y, µ).
Assume that g is continuous with respect to the second variable. Assume furthermore that f is uniformly continuous in the second variable in compact subsets of X, uniformly with respect to the first variable, that is, for every ε > 0, and for every compact subset K of X, there exists η > 0 such that, for all x, y ∈ K,

x -y ≤ η ⇒ sup t∈R f (t, x) -f (t, y) ≤ ε. (3.8)
If p > 0, assume also that f and g satisfy the growth condition

f (t, x) + g(t, x) ≤ C(1 + x ) (3.9)
for all (t, x) ∈ R × X and for some constant C, and that f is Lipschitz with respect to the second variable, uniformly with respect to the first one. If X is µ-pseudo almost automorphic in p-distribution, then f (., X(.)) is µ-pseudo almost automorphic in p-distribution.

Proof We only prove the second and third items, the first one can be proved in the same way as 2, using, for example, Bochner's double sequence criterion.

2. For each t ∈ R, for each x ∈ C k (R, X), and for each s ∈ R, let us denote

f (t, x)(s) = f (s + t, x(s))
.

By continuity of f on R × X, f (t, .) maps C k (R, X) to C k (R, Y).
Let K be a compact subset of C k (R, X). By the Arzelà-Ascoli Theorem (see e.g. [START_REF] Engelking | General topology, volume 6 of Sigma Series in Pure Mathematics[END_REF]Theorems 8.2.10 and 8.2.11]), this means that K is closed in C k (R, X) and equicontinuous, and that, for every compact interval I of R, the set {x(t); x ∈ K, t ∈ I} has compact closure in X. Let t ∈ R, and let (t n ) be a sequence in R converging to t. Let I be a compact interval of R, and let K be the closure of {x(s); x ∈ K, s ∈ I}. We have, for any y ∈ K, and for any s ∈ R,

lim n f (t n + s, y) = f (t + s, y)
where the convergence is uniform with respect to y ∈ K and s ∈ I, because f is compact almost automorphic uniformly with respect to the second variable in compact subsets of X. In particular we have, uniformly with respect to x ∈ K and s ∈ I,

lim n f (t n , x)(s) = lim n f (t n + s, x(s)) = f (t + s, x(s)) = f (t, x)(s),
which proves that the mapping f (., x) : R → C k (R, X), is continuous, uniformly with respect to x in compact subsets of C k (R, X).

Let us check that f :

R × C k (R, X) → C k (R, X
) is compact almost automorphic with respect to the first variable, uniformly with respect to the second variable in compact subsets of C k (R, X). Let (t ′ n ) be a sequence in R. There exists a subsequence (t n ) such that, for every t ∈ R and every y ∈ X,

lim n lim m f (t + t n -t m , y) = f (t, y),
where the convergence is uniform with respect to y in compact subsets of X and t in compact intervals of R. For each t ∈ R, and for each s ∈ R, we have

lim n lim m f (t + t n -t m , x)(s) = lim n lim m f (s + t + t n -t m , x(s)) =f (s + t, x(s)) = f (t, x)(s),
and these convergences are uniform with respect to t and s in compact intervals, and with respect to x ∈ K, which proves our claim.

Let ϕ : C k (R, Y) → R be bounded Lipschitz, with ϕ BL ≤ 1, where . BL is taken relatively to a distance d which generates the topology of C k (R, Y), for example the distance defined by (3.5). Let (t ′ n ) be a sequence in R. Let (t n ) be a subsequence such that, for every t ∈ R and every y ∈ X,

lim n lim m f (t + t n -t m , y) = f (t, y), lim n lim m law X(t + t n -t m ) = law X(t) . Let ε > 0. We can find a compact subset K ε of C k (R, X) such that, for every t ∈ R, P X(t) ∈ K ε ≥ 1 -ε.
Let t ∈ R be fixed, and, for all n, m, let Ω ε,n,m be the measurable subset of Ω on which X(t + t nt m ) ∈ K ε . We have

E   ϕ • f (t + t n -t m , X(t + t n -t m )) -ϕ • f (t, X(t))   ≤ E   ϕ • f (t + t n -t m , X(t + t n -t m )) -ϕ • f (t, X(t + t n -t m ))   + E   ϕ • f (t, X(t + t n -t m )) -ϕ • f (t, X(t))   ≤ E   1l Ωε,n,m d f (t + t n -t m , X(t + t n -t m )), f (t, X(t + t n -t m ))   + E   1l Ω c ε,n,m ϕ • f (t + t n -t m , X(t + t n -t m )) -ϕ • f (t, X(t + t n -t m )))   + E   ϕ • f (t, X(t + t n -t m )) -ϕ • f (t, X(t))   =A n,m + B n,m + C n,m .
We have

A n,m ≤ E   1l Ωε,n,m sup x∈Kε d f (t+t n -t m , x), f (t, x)   ≤ sup x∈Kε d f (t+t n -t m , x), f (t, x)
thus by the almost automorphy property of f , we have lim

n lim m A n,m = 0. Furthermore, B n,m ≤ 2 P(Ω c ε,n,m ) ≤ 2ε because ϕ BL ≤ 1. Finally, lim n lim m C n,m = 0 by boundedness and continuity of f (t, .) : C k (R, X) → C k (R, X
) and the convergence in distribution of X(t + t nt m ) to X(t) for each t ∈ R. As ε and ϕ are arbitrary, we have proved that

lim n lim m law f (t + t n -t m , X(t + t n -t m )) = law f (t, X(t)) ,
thus the mapping t → law f (t, X(t)) is almost automorphic in distribution.

3. We use ideas of the proof of [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]Theorem 5.7]. Let (Y, Z) be a decomposition of X, namely,

X = Y + Z, Y ∈ AAD p (R, X), Z ∈ E(R, L p (Ω, P, X), µ).
The function f (., X(.)) can be decomposed as

f (t, X(t)) = g(t, Y (t)) + f (t, X(t)) -f (t, Y (t)) + h(t, Y (t)). Let G(t) = g(t, Y (t)) and H(t) = f (t, X(t)) -f (t, Y (t)) + h(t, Y (t))
. By using 2. and (3.9), we see that t → G(t) is in AAD p (R, Y). Furthermore, by (3.9), the continuity of f and the µ-pseudo almost automorphy in p-distribution of X, we have, using Vitali's theorem, that f (., X(.)) is a continuous L p (Ω, P, Y)valued function. Indeed, if t n → t, then the sequence ( X(t n ) p is uniformly integrable, by continuity of the mapping t → X(t), R → L p (Ω, P, X), and this entails that (f (t n , X(t n ))) is uniformly integrable. To show that f (., X(.

)) is in PAAD p (R, Y), it is enough to prove that H ∈ E(R, L p (Ω, P, Y), µ).
Clearly H is in C(R, L p (Ω, P, Y)), and bounded in L p (Ω, P, X) (when p > 0), by (3.9). As Y is in AAD(R, X), the family ( Ỹ (t)) t∈R = (Y (t+.)) t∈R is uniformly tight in C k (R, X). For each ε > 0, there exists a compact subset K ε of C k (R, X) such that, for every t ∈ R,

P Ỹ (t) ∈ K ε ≥ 1 -ε.
By the Arzelà-Ascoli Theorem (see e.g. [24, Theorems 8.2.10 and 8.2.11]), this implies that, for every ε > 0, and for every compact interval I of R, there exists a compact subset K ε,I such that, for every t ∈ R;

P {(∀s ∈ I) Y (t + s) ∈ K ε,I } ≥ 1 -ε.
In particular, the family (Y (t)) t∈R is tight, i.e., denoting

K ε = K ε,{0} , we have, for every t ∈ R, P {Y (t) ∈ K ε } ≥ 1 -ε.
Let Ω ε,t be the measurable subset of Ω on which Y (t) ∈ K ε . The function g is uniformly continuous on R × K ε by Proposition 2.1. We deduce by (3.8) that there exists η(ε) > 0 such that, for all y 1 , y 2 ∈ K ε ,

y 1 -y 2 ≤ η(ε) ⇒ sup t∈R h(t, y 1 ) -h(t, y 2 ) ≤ ε.
We can find a finite sequence (y i ) 1≤i≤m in K ε such that

K ε ⊂ m i=1 B(y i , η(ε)).
We have, for every t ∈ R,

E h(t, Y (t)) ∧ 1 ≤ E min 1≤i≤m 1l Ωε,t h(t, Y (t)) -h(t, y i ) ∧ 1 + max 1≤i≤m h(t, y i ) + E 1l Ω c ε,t h(t, Y (t)) ∧ 1 ≤ε + max 1≤i≤m h(t, y i ) ∧ 1 + P Ω c ε,t ≤ max 1≤i≤m h(t, y i ) + 2ε.
Since for all i ∈ {1, . . . , m}, the function t → h(t, y i ) satisfies

lim r→∞ 1 µ([-r, r]) [-r,r] h(t, y i ) dµ(t) = 0,
we deduce that, for every ε > 0, lim sup

r→∞ 1 µ([-r, r]) [-r,r] E h(t, Y (t)) ∧ 1 dµ(t) ≤ 2ε.
This shows that t → h(t, Y (t)) is in E(R, L 0 (Ω, P, Y), µ).

For p > 0, let δ > 0. From the uniform integrability of h(t, Y (t))

p t∈R (thanks to (3.9) and the uniform integrability of ( Y (t) p ) t∈R ), we can choose ε small enough such that, for any measurable A ⊂ Ω such that P(A) < ε,

sup t∈R E ( 1l A h(t, Y (t) p ) < δ.
Note also that, for p < 1, the mapping U → (E U p ) 1/p , L p → R, does not satisfy the triangular inequality. However, the mapping (

U 1 , U 2 ) → E U 1 -U 2 p is a distance on L p . We deduce that, for all U 1 , U 2 , U 3 ∈ L p , (E U 1 + U 2 + U 3 p ) 1/p ≤ 3 1/p-1   (E U 1 p ) 1/p + (E U 2 p ) 1/p + (E U 3 p ) 1/p   .
To cover simultaneously the cases p < 1 and p ≥ 1, we set κ = max(1, 3 1/p-1 ).

Using the same method as in the case when p = 0, we get

E h(t, Y (t)) p ) 1/p ≤κ E min 1≤i≤m 1l Ωε,t h(t, Y (t)) -h(t, y i ) p 1/p + κ max 1≤i≤m h(t, y i ) + κ E 1l Ω c ε,t h(t, Y (t)) p 1/p ≤κ max 1≤i≤m h(t, y i ) + ε + δ .
We conclude, using the ergodicity of h(t, y i ) for all i ∈ {1, . . . , m}, that t → h(t, Y (t)) is in E(R, L p (Ω, P, Y), µ).

Secondly, we show that F (.

) := f (., X(.))-f (., Y (.)) is in E(R, L 0 (Ω, P, Y), µ). Let Φ : X → C(R, Y) x → f (., x).
Let us endow C(R, Y) with the distance d ∞ (ϕ, ψ) = sup t∈R ϕ(t)ψ(t) . By the uniform continuity assumption, Φ is continuous. By [7, Lemma 5.6], for each ε > 0, there exists η > 0 such that, for all x, y ∈ X,

  x ∈ K ε and d(x, y) ≤ η   ⇒ d ∞ Φ(x), Φ(y) ≤ ε. (3.10) 
For each t ∈ R, let Ω ε,t be the subset of Ω on which

Y (t) ∈ K ε . Since Z(t) = X(t) -Y (t)
, we obtain, the following inequalities, with the help of (3.10) and Chebyshev's inequality:

µ t ∈ [-r, r]; E F (t) ∧ 1 > 3ε µ([-r, r]) ≤ µ t ∈ [-r, r]; E 1l Ωε,t 1l { Z(t) >η} ( F (t) ∧ 1) > ε µ([-r, r]) + µ t ∈ [-r, r]; E 1l Ωε,t 1l { Z(t) ≤η} ( F (t) ∧ 1) > ε µ([-r, r]) + µ t ∈ [-r, r]; E 1l Ω c ε,t ( F (t) ∧ 1) > ε µ([-r, r]) = µ t ∈ [-r, r]; E 1l Ωε,t 1l { Z(t) >η} ( F (t) ∧ 1) > ε µ([-r, r]) + µ t ∈ [-r, r]; E 1l Ω c ε,t ( F (t) ∧ 1) > ε µ([-r, r]) ≤ µ {t ∈ [-r, r]; P{ Z(t) > η} > ε} µ([-r, r]) + µ t ∈ [-r, r]; P(Ω c ε,t ) > ε µ([-r, r]) ≤ µ t ∈ [-r, r]; 1 η E Z(t) > ε µ([-r, r])
.

Since Z is in E(R, L 0 (Ω, P, X), µ), we have, for the above ε,

lim r→∞ µ t ∈ [-r, r]; E Z(t) > εη µ([-r, r]) = 0,
which implies, using [7, Theorem 2.14] (see Remark 2.4), lim sup

r→∞ 1 µ([-r, r]) [-r,r] E f (t, X(t)) -f (t, Y (t)) ∧ 1 dµ(t) = 0. Therefore t → f (t, X(t)) -f (t, Y (t)) is in E(R, L 0 (Ω, P, Y), µ).
Assume now that p > 0. If f is Lipschitz with respect to the second variable, uniformly with respect to the first one, then F (t) ≤ K Z(t) for some constant K, thus, trivially, F ∈ E(R, L p (Ω, P, Y), µ).

Pseudo-almost automorphy in p-mean vs in p-distribution

Let X = (X t ) t∈R be a continuous stochastic process with values in X, defined on a probability space (Ω, F , P). Let µ be a Borel measure on R satisfying (2.6). Clearly, we have for all p ≥ 0,

  X ∈ AA(R, L p (Ω, P, X))   ⇒   X ∈ AAD p f (R, X)   .
Using Theorem 3.5, we can get more: if X satisfies (3.6), we deduce, for every

p ≥ 0,   X ∈ AA(R, L p (Ω, P, X))   ⇒   X ∈ AAD p (R, X)   ,   X ∈ PAA(R, L p (Ω, P, X), µ)   ⇒   X ∈ PAAD p (R, X, µ)   .
The converse implications are false. Indeed, Example 3.1 shows that a process which is almost automorphic in distribution is not necessarily almost automorphic in probability or in p-mean, see also [START_REF] Bedouhene | Bochneralmost periodicity for stochastic processes[END_REF]Counterexample 2.16] 3 .

The same counterexample also shows that a process which is µ-pseudo almost automorphic in p-distribution is not necessarily µ-pseudo almost automorphic in probability or in p-mean.

Pseudo almost automorphic solutions to stochastic differential equations

In the sequel, if X and Y are metric spaces, we denote CUB(X, Y) the space of bounded uniformly continuous functions from X to Y.

We are given two separable Hilbert spaces H 1 and H 2 , and we consider the semilinear stochastic differential equation,

dX t = AX(t) dt + f (t, X(t)) dt + g(t, X(t)) dW (t), t ∈ R (4.1) 
where A : Dom(A) ⊂ H 2 → H 2 is a densely defined closed (possibly unbounded) linear operator, and f : R×H 2 → H 2 , and g : R×H 2 → L(H 1 , H 2 ) are continuous functions. In this section, we assume that:

(i) W (t) is an H 1 -valued Wiener process with nuclear covariance operator Q (we denote by tr Q the trace of Q), defined on a stochastic basis (Ω, F , (F t ) t∈R , P).

(ii) A : Dom(A) → H 2 is the infinitesimal generator of a C 0 -semigroup (S(t)) t≥0 such that there exists a constant δ > 0 with S(t) L(H2) ≤ e -δt , t ≥ 0.

(iii) There exists a constant K such that the mappings f : R × H 2 → H 2 and g : R

× H 2 → L(H 1 , H 2 ) satisfy f (t, x) H2 + g(t, x) L(H1,H2) ≤ K(1 + x H2 ).
(iv) The functions f and g are Lipschitz, more precisely there exists a constant K such that f (t, x)f (t, y) H2 + g(t, x)g(t, y) L(H1,H2) ≤ K xy H2 for all t ∈ R and x, y

∈ H 2 . (v) f ∈ PAAU b (R × H 2 , H 2 , µ) and g ∈ PAAU b (R × H 2 , L(H 1 , H 2 ), µ)
for some given Borel measure µ on R which satisfies (2.6) and Condition (H).

By [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]Theorem 3.5], Condition (H) implies that E(R, X, µ) and PAA(R, X, µ) are translation invariant.

In order to study the weighted pseudo almost automorphy property of solutions of SDEs, we need a result on almost automorphy. Theorem 4.1 (Almost automorphic solution an equation with almost automorphic coefficients) Let the assumptions (i) -(iv) be fulfilled, and assume furthermore the following condition, which is stronger than (v) :

(v') f ∈ AAU b (R × H 2 , H 2 ) and g ∈ AAU b (R × H 2 , L(H 1 , H 2 )). Assume further that θ := K 2 δ 1 2δ + tr Q < 1.
Then there exists a unique mild solution X to (4.1) in the space CUB R, L 2 (P, H 2 ) of bounded uniformly continuous mappings from R to L 2 (P, H 2 ). Furthermore, X has a.e. continuous trajectories, and X(t) satisfies, for each t ∈ R:

X(t) = t -∞ S(t -s)f s, X(s) ds + t -∞
S(ts)g s, X(s) dW (s). (4.2)

If furthermore θ ′ := 4K 2 δ 1 δ + tr Q < 1, then X is almost automorphic in 2-distribution.
The proof of this theorem is very similar to that of [START_REF] Kamenski | Weak Averaging of Semilinear Stochastic Differential Equations with Almost Periodic Coefficients[END_REF]Theorem 3.1], which is the analogous result for SDEs with almost periodic coefficients. Only the almost automorphy part needs to be adapted. Such an adaptation is provided in [START_REF] Liu | Almost automorphic solutions for stochastic differential equations driven by Lévy noise[END_REF], for SDEs driven by Lévy processes, but only for one-dimensional almost automorphy. We give the proof of this part for the convenience of the reader.

Let us first recall the following result, which is given in a more general form in [START_REF] Da Prato | Periodic and almost periodic solutions for semilinear stochastic equations[END_REF]:

Proposition 4.2 ([17, Proposition 3.1-(c)]) Let τ ∈ R. Let (ξ n ) 0≤n≤∞ be a sequence of square integrable H 2 -valued random variables. Let (f n ) 0≤n≤∞
and (g n ) 0≤n≤∞ be sequences of mappings from R × H 2 to H 2 and L(H 1 , H 2 ) respectively, satisfying (iii) and (iv) (replacing f and g by f n and g n respectively, and the constant K being independent of n). For each n, let X n denote the solution to

X n (t) = S(t -τ )ξ n + t τ S(t -s)f n s, X n (s) ds + t τ S(t -s)g n s, X n (s) dW (s).
Assume that, for every

(t, x) ∈ R × H 2 , lim n→∞ f n (t, x) = f ∞ (t, x), lim n→∞ g n (t, x) = g ∞ (t, x), lim n→∞ d BL (law (ξ n , W ) , law (ξ ∞ , W )) = 0, (the last equality takes place in M 1,+ (H 2 × C(R, H 1 ))). Then we have in C([τ, T ]; H 2 ), for any T > τ , lim n→∞ d BL (law (X n ) , law (X ∞ )) = 0.
We need also a variant of Gronwall's lemma. 

0 ≤ g(t) ≤ α(t) + β 1 t -∞ e -δ1(t-s) g(s) ds + • • •+ β n t -∞
e -δn(t-s) g(s) ds, (

for some locally integrable function α : R → R, and for some constants β 1 , . . . , β n ≥ 0, and some constants δ 1 , . . . , δ n > β, where β := n i=1 β i . We assume that the integrals in the right hand side of (4.3) are convergent. Let δ = min 1≤i≤n δ i . Then, for every γ ∈]0, δβ] such that 0 -∞ e γs α(s) ds converges, we have, for every t ∈ R,

g(t) ≤ α(t) + β t -∞
e -γ(t-s) α(s) ds.

In particular, if α is constant, we have

g(t) ≤ α δ δ -β .
Proof of Theorem 4.1 The proof of the existence and uniqueness of a mild solution to (4.1) in CUB R, L 2 (P, H 2 ) is the same as that of Theorem 3.1 in [START_REF] Kamenski | Weak Averaging of Semilinear Stochastic Differential Equations with Almost Periodic Coefficients[END_REF] or Theorem 3.3.1 in [START_REF] Mellah | Étude des solutions presque périodiques des équations différentielles stochastiques[END_REF].

For the almost automorphy part, let (γ ′ n ) be a sequence in R. Since f and g are almost automorphic, there exists a subsequence (γ n ) and functions

f : R × H 2 → H 2 and g : R × H 2 → L(H 1 , H 2 ) such that lim n→∞ f (t + γ n , x) = f (t, x), lim n→∞ f (t -γ n , x) = f (t, x) (4.4) lim n→∞ g(t + γ n , x) = g(t, x), lim n→∞ g(t -γ n , x) = g(t, x). (4.5) 
These limits are taken uniformly with respect to x in bounded subsets of H 2 .

For each fixed integer n, we consider

X n (t) = t -∞ S(t -s)f (s + γ n , X n (s)) ds + t -∞ S(t -s)g(s + γ n , X n (s)) dW (s)
the mild solution to

dX n (t) = AX n (t)dt + f (t + γ n , X n (t)) dt + g(t + γ n , X n (t)) dW (t)
and

X(t) = t -∞ S(t -s) f (s, X(s)) ds + t -∞ S(t -s) g(s, X(s)) dW (s) the mild solution to d X(t) = A(t) X(t)dt + f (t, X(t)) dt + g(t, X(t)) dW (t).
Make the change of variable σ + γ n = s, the process

X(t + γ n ) = t+γn -∞ S(t + γ n -s)f (s, X(s)) ds + t+γn -∞ S(t + γ n -s)g(s, X(s)) dW (s) satisfies X(t + γ n ) = t -∞ S(t -s)f (s + γ n , X(s + γ n ))ds + t -∞ S(t -s)g(s + γ n , X(s + γ n ))d Wn (s),
where Wn (s) = W (s + γ n ) -W (γ n ) is a Brownian motion with the same distribution as W (s). Thus the process X(. + γ n ) has the same distribution as X n .

Let us show that X n (t) converges in quadratic mean to X(t) for each fixed t ∈ R. We have

E X n (t) -X(t) 2 = E t -∞ S(t -s) f (s + γ n , X n (s)) -f (s, X(s)) ds + t -∞ S(t -s) g(s + γ n , X n (s)) -g(s, X(s)) dW (s) 2 ≤2 E t -∞ S(t -s) f (s + γ n , X n (s)) -f (s, X(s)) ds 2 + 2 E t -∞ S(t -s) g(s + γ n , X n (s)) -g(s, X(s)) dW (s) 2 ≤4 E t -∞ S(t -s) f (s + γ n , X n (s)) -f (s + γ n , X(s)) ds 2 + 4 E t -∞ S(t -s) f (s + γ n , X(s)) -f (s, X(s)) ds 2 + 4 E t -∞ S(t -s) g(s + γ n , X n (s)) -g(s + γ n , X(s)) dW (s) 2 + 4 E t -∞ S(t -s) g(s + γ n , X(s)) -g(s, X(s)) dW (s) 2 ≤I 1 + I 2 + I 3 + I 4 .
Now, using (ii), (iv) and the Cauchy-Schwartz inequality, we obtain

I 1 = 4 E t -∞ S(t -s) f (s + γ n , X n (s)) -f (s + γ n , X(s)) ds 2 ≤ 4 E t -∞ S(t -s) f (s + γ n , X n (s)) -f (s + γ n , X(s)) ds 2 ≤ 4 E t -∞ e -δ(t-s) f (s + γ n , X n (s)) -f (s + γ n , X(s)) ds 2 ≤ 4 t -∞ e -δ(t-s) ds t -∞ e -δ(t-s) E f (s + γ n , X n (s)) -f (s + γ n , X(s)) 2 ds ≤ 4K 2 δ t -∞ e -δ(t-s) E X n (s) -X(s) 2 ds.
Then we have

I 2 = 4 E t -∞ S(t -s)[f (s + γ n , X(s)) -f (s, X(s))]ds 2 ≤ 4 E t -∞ e -δ(t-s) f (s + γ n , X(s)) -f (s, X(s)) ds 2 ≤ 4 E t -∞ e -δ(t-s) ds t -∞ e -δ(t-s) f (s + γ n , X(s)) -f (s, X(s)) 2 ds ≤ 4 t -∞ e -δ(t-s) ds 2 sup s E f (s + γ n , X(s)) -f (s, X(s)) 2 ≤ 4 δ 2 sup s E f (s + γ n , X(s)) -f (s, X(s)) 2 ,
which converges to 0 as n → ∞ because sup t∈R E X(t) 2 < ∞ which implies that ( X(t)) t is tight relatively to bounded sets. Applying Itô's isometry, we get

I 3 = 4 E t -∞ S(t -s) g(s + γ n , X n (s)) -g(s + γ n , X(s)) dW (s) 2 ≤ 4 tr Q E t -∞ S(t -s) 2 g(s + γ n , X n (s)) -g(s + γ n , X(s)) 2 ds ≤ 4 tr Q t -∞ e -2δ(t-s) E g(s + γ n , X n (s)) -g(s + γ n , X(s)) 2 ds ≤ 4K 2 tr Q t -∞ e -2δ(t-s) E X n (s) -X(s) 2 ds, and 
I 4 = 4 E t -∞ S(t -s) g(s + γ n , X(s)) -g(s, X(s)) dW (s) 2 ≤ 4 tr Q E t -∞ S(t -s) 2 g(s + γ n , X(s)) -g(s, X(s)) 2 ds ≤ 4 tr Q t -∞ e -2δ(t-s) ds sup s∈R E g(s + γ n , X(s)) -g(s, X(s)) 2 ≤ 2 tr Q δ sup s∈R E g(s + γ n , X(s)) -g(s, X(s)) 2 .
For the same reason as for I 2 , the right hand term goes to 0 as n → ∞. We thus have

E X n (t) -X(t) 2 ≤ α n + 4K 2 δ t -∞ e -δ(t-s) E X n (s) -X(s) 2 ds + 4K 2 tr Q t -∞ e -2δ(t-s) E X n (s) -X(s) 2 ds
for a sequence (α n ) such that lim n→∞ α n = 0. Furthermore, β := 4K 2 δ + 4K 2 tr Q < δ. We conclude by Lemma 4.3 that lim n→∞ E X n (t) -X(t) 2 = 0, hence X n (t) converges in distribution to X(t). But, since the distribution of X n (t) is the same as that of X(t + γ n ), we deduce that X(t + γ n ) converges in distribution to X(t). By analogy and using (4.4), (4.5) we can easily prove that X(tγ n ) converges in distribution to X(t).

Note that the sequence ( X n (t) 2 ) is uniformly integrable, thus ( X(t + γ n ) 2 ) is uniformly integrable too. As (γ ′ n ) is arbitrary, this implies that the family ( X(t)

2 ) t∈R is uniformly integrable, because, if not, there would exist a sequence (γ ′ n ) and t ∈ R such that no subsequence of ( X(t + γ ′ n )

2 ) is uniformly integrable.

We have thus proved that X has almost automorphic one-dimensional 2distributions. To prove that X is almost automorphic in 2-distribution, apply Proposition 4.2: for fixed

τ ∈ R, let ξ n = X(τ + γ n ), f n (t, x) = f (t + γ n , x), g n (t, x) = g(t + γ n , x)
. By the foregoing, (ξ n ) converges in distribution to some variable Y (τ ). We deduce that (ξ n ) is tight, and thus (ξ n , W ) is tight also. We can thus choose a subsequence (still noted (γ n ) for simplicity) such that (ξ n , W ) converges in distribution to (Y (τ ), W ). Then, by Proposition 4.2, for every T ≥ τ , X(.

+ γ n ) converges in distribution on C([τ, T ]; H 2 ) to the (unique in distribution) solution to Y (t) = S(t -τ )Y (τ ) + t τ S(t -s)f s, Y (s) ds + t τ S(t -s)g s, Y (s) dW (s).
Note that Y does not depend on the chosen interval [τ, T ], thus the convergence takes place on C(R; H 2 ). Similarly,

Y n := Y (. -γ n ) converges in distribution on C(R; H 2 ) to X. Thus X is almost automorphic in 2-distribution.
We are now ready to prove our main result. Theorem 4.4 (Weighted pseudo almost automorphic solution of an equation with weighted pseudo almost automorphic coefficients) Let the assumptions (i) -(v) be fulfilled. Let (f 1 , g 1 ) and (f 2 , g 2 ) be respectively the decompositions of f and g, namely,

f = f 1 + f 2 , g = g 1 + g 2 , f 1 ∈ AAU b (R × H 2 , H 2 ), f 2 ∈ EU b (R × H 2 , H 2 , µ), g 1 ∈ AAU b (R × H 2 , L(H 1 , H 2 )), g 2 ∈ EU b (R × H 2 , L(H 1 , H 2 ), µ).
Assume that f 1 and g 1 satisfy the same growth and Lipschitz conditions (iii) -(v) as f and g respectively, with same coefficient K. Assume furthermore that

θ ′ := 4K 2 δ 1 δ + tr Q < 1.
Then there exists a unique mild solution X to (4.1) in the space CUB R, L 2 (P, H 2 ) of bounded uniformly continuous mappings from R to L 2 (P, H 2 ), X has a.e. continuous trajectories, and X satisfies (4.2) for every t ∈ R. Furthermore, X is µ-pseudo almost automorphic in 2-distribution. More precisely, let Y ∈ CUB R, L 2 (P, H 2 ) be the unique almost automorphic in distribution mild solution to

dY (t) = AY (t) dt + f 1 (t, Y (t)) dt + g 1 (t, Y (t)) dW (t), t ∈ R. (4.6)
Then X has the decomposition

X = Y + Z, Z ∈ E R, L 2 (P, H 2 ), µ .
The following technical lemma will be used several times.

Lemma 4.5 Let h ∈ E(R, R, µ). Then the function t → t -∞ e -2δ(t-s) h 2 (s) ds 1/2 is also in E(R, R, µ).
Proof by Condition (H) and [7, Theorem 3.9], we have, for every u ∈ R,

lim r→+∞ 1 µ([-r, r]) [-r,r] |h(t -u)| dµ(t) = 0.
We deduce, by Lebesgue's dominated convergence theorem,

1 µ([-r, r]) [-r,r] t -∞ e -2δ(t-s) h 2 (s) ds 1/2 dµ(t) ≤ 1 µ([-r, r]) 1/2 [-r,r] t -∞ e -2δ(t-s) h 2 (s) ds dµ(t) 1/2 = 1 µ([-r, r]) 1/2 [-r,r] +∞ 0 e -2δu h 2 (t -u) du dµ(t) 1/2 = 1 µ([-r, r]) 1/2 +∞ 0 e -2δu [-r,r] h 2 (t -u) dµ(t) du 1/2 ≤ +∞ 0 e -2δu h ∞ [-r,r] |h(t -u)| dµ(t) µ([-r, r]) du 1/2
→ 0 when r → +∞.

Proof of Theorem 4.4 The existence and the properties of Y are guaranteed by Theorem 4.1.

As in Theorem 4.1, the existence and uniqueness of the mild solution X to (4.1) are proved as in [31, Theorem 3.1], using the classical method of the fixed point theorem for the contractive operator L on CUB R, L 2 (P, H 2 ) defined by

LX(t) = t -∞ S(t -s)f s, X(s) ds + t -∞
S(ts)g s, X(s) dW (s).

The solution X defined by (4.2) is thus the limit in CUB R, L 2 (P, H 2 ) of a sequence (X n ) with arbitrary X 0 and, for every n, X n+1 = L(X n ). To prove that X is µ-pseudo almost automorphic in 2-distribution we choose a special sequence. Set

X 0 = Y, X n+1 = L(X n ), Z n = X n -Y, n ∈ N.
Let us prove that each Z n is in E R, L 2 (P, H 2 ), µ . We use some arguments of the proof of [START_REF] Blot | Measure theory and pseudo almost automorphic functions: new developments and applications[END_REF]Theorem 5.7]. We have, for every n ∈ N and every t ∈ R, Assume that Z n ∈ E R, L 2 (P, H 2 ), µ . By the Lipschitz condition (iv), E f (t, X n (t))f (t, Y (t))

Z n+1 (t) = LX n (t) -Y (t) =
2 1/2 ≤ K E Z n (t)

2 1/2
thus the mapping

f : t → E f (t, X n (t)) -f (t, Y (t)) 2 1/2
is in E(R, R, µ). The same conclusion holds for g : t → E g(t, X n (t))g(t, Y (t)) 2 1/2 .

We get, using Lemma 4. e -2δ(t-s) g 2 (s) ds To prove that Z n+1 is in E R, L 2 (P, H 2 ), µ , there only remains to show that the process t -∞ S(ts)f 2 (s, Y (s)) ds + t -∞ S(ts)g 2 (s, Y (s)) dW (s) belongs to E R, L 2 (P, H 2 ), µ . As Y is almost automorphic in distribution, the family ( Ỹ (t)) = (Y (t + .)) t∈R is uniformly tight in C k (R, H 2 ). In particular, for each ε > 0 there exists a compact subset K ε of C k (R, H 2 ) such that, for every t ∈ R,

P Ỹ (t) ∈ K ε ≥ 1 -ε.
By the Arzelà-Ascoli Theorem (e.g. [START_REF] Engelking | General topology, volume 6 of Sigma Series in Pure Mathematics[END_REF]Theorems 8.2.10 and 8.2.11]), this implies that, for every ε > 0, and for every compact interval I of R, there exists a compact subset K ε,I of H 2 such that, for every t ∈ R, P {(∀s ∈ I) Y (t + s) ∈ K ε,I } ≥ 1ε.

In particular, the family (Y (t)) t∈R is tight, i.e., denoting K ε = K ε,{0} , we have, for every t ∈ R, P {Y (t) ∈ K ε } ≥ 1ε.

By the uniform continuity property of f 2 and g 2 on K ε , there exists η(ε) > 0 such that, for all x, y ∈ K ε ,

xy ≤ η(ε) ⇒ sup t∈R max f 2 (t, x)f 2 (t, y) , g 2 (t, x)g 2 (t, y) ≤ ε.

We can find a finite sequence y 1 , . . . , y m such that

K ε ⊂ m i=1
B(y i , η(ε)).

By [START_REF] Kamenski | Weak Averaging of Semilinear Stochastic Differential Equations with Almost Periodic Coefficients[END_REF]Remark 3.6]), the condition θ ′ < 1 ensures that Y is bounded in L p (P, H 2 ) for some p > 2 (the same result holds for X, but we do not need it). Note that f 2 = ff 1 and g 2 = gg 1 satisfy a condition similar to (iii), which implies that f 2 (., Y (.)) and g 2 (., Y (.)) are bounded in L p (P, H 2 ) and L p P, L(H 

E(ε) = ε + ε 1/q M p , f ε (t) = max 1≤i≤m f 2 (s, y i ) , g ε (t) = max 1≤i≤m g 2 (s, y i ) .
Thanks to the ergodicity of f 2 and g 2 , the functions f ε and g ε are in E(R, R, µ). In the right hand side of the last inequality, the last term is arbitrarily small and both other terms converge to 0 when r goes to +∞, thanks to Lemma 4.5. We have thus proved that Z n+1 is in E R, L 2 (P, H 2 ), µ . We deduce by induction that the sequence (Z n ) lies in E R, L 2 (P, H 2 ), µ . Now, the sequence (X n ) converges to X in CUB R, L 2 (P, H 2 ) , thus (Z n ) converges to Z := X -Y in CUB R, L 2 (P, H 2 ) . Let ε > 0, and let n such that sup t∈R E Z(t) -Z n (t) 2 1/2 ≤ ε.

We have 1 µ([-r, r]) [-r,r] E Z(t) 

Lemma 4 . 3 (

 43 [START_REF] Kamenski | Weak Averaging of Semilinear Stochastic Differential Equations with Almost Periodic Coefficients[END_REF] Lemma 3.3]) Let g : R → R be a continuous function such that, for every t ∈ R,

  s) f (s, X n (s))f (s, Y (s)) ds + t -∞ S(ts) g(s, X n (s))g(s, Y (s)) dW (s) + t -∞ S(ts) f (s, Y (s))f 1 (s, Y (s)) ds + t -∞ S(ts) g(s, Y (s))g 1 (s, Y (s)) dW (s) = t -∞ S(ts) f (s, X n (s))f (s, Y (s)) ds + t -∞ S(ts) g(s, X n (s))g(s, Y (s)) dW (s) + t -∞ S(ts)f 2 (s, Y (s)) ds + t -∞S(ts)g 2 (s, Y (s)) dW (s).

  s) f (s, X n (s))f (s, Y (s)) ds (t-s) f 2 (s) ds

  s) g(s, X n (s))g(s, Y (s)) dW (s)

  r → +∞.

2 +

 2 s)f 2 (s, Y (s)) ds + t -∞ S(ts)g 2 (s, Y (s)) dW (s) -r, r]) [-r,r] t -∞ e -2δ(t-s) E f 2 (s, Y (s)) 2 ds 1/(tr Q) 1/2 t -∞ e -2δ(t-s) E g 2 (s, Y (s)) -r, r]) [-r,r] t -∞ e -2δ(t-s) (f ε (s) + E(ε)) -r, r]) [-r,r] t -∞ e -2δ(t-s) (g ε (s) + E(ε)) -r, r]) [-r,r] t -∞e -2δ(t-s) f 2 ε (s) ds

  Q) 1/2 1 µ([-r, r]) [-r,r] t -∞ e -2δ(t-s) g 2 ε (s) ds

Theorem 4 . 7 (

 47 Weighted pseudo almost periodic solution of an equation with weighted pseudo almost periodic coefficients) Assume the same hypothesis as in Theorem 4.4, and that f 1 and g 1 are almost periodic with respect to the first variable, uniformly with respect to the second variable in bounded sets. Then (with obvious definitions) the process Y of Theorem 4.4 is almost periodic in 2-distribution, thus the process X is µ-pseudo almost periodic in 2-distribution. Proof The proof is exactly the same as that of Theorem 4.4, replacing Theorem 4.1 by [31, Theorem 3.1].

  1 , H 2 ) respectively. Let M p = sup t∈R max E f 2 (., Y (.)) p , E g 2 (., Y (.)) p 2/p . Let q = p/(p -2). Let t ∈ R, and let Ω ε,t be the measurable subset of Ω on which Y (t) ∈ K ε . We have E f 2 (t, Y (t)) Ωε,t f 2 (t, Y (t))f (t, y i )

	2	1/2			
	≤ min					2	1/2	+ max 1≤i≤m	f 2 (t, y i )
	+ E 1l Ω c ε,t	f 2 (t, Y (t))	2	1/2
	≤ε + max 1≤i≤m	f 2 (t, y i ) + P Ω c ε,t	1/q E f 2 (t, Y (t))	p	2/p
	≤ε + max			

1≤i≤m E 1l 1≤i≤m f 2 (t, y i ) + ε 1/q M p .

A similar result holds for E g 2 (t, Y (t))

2 . Let us denote

  As ε is arbitrary, this proves that Z ∈ E R, L 2 (P, H 2 ), µ .Remark 4.6We did not use in the proof of Theorem 4.4 the hypothesis thatf 2 ∈ EU b (R × H 2 , H 2 , µ) and g 2 ∈ EU b (R × H 2 , L(H 1 , H 2 ), µ).Actually, we needed only to assume that, for each x ∈ H 2 , f 2 (., x) ∈ E(R, H 2 , µ) and g 2 (., x) ∈ E(R, L(H 1 , H 2 ), µ). By Remark 2.3 and the Lipschitz condition, this is equivalent to assume that f 2 ∈ EU c (R×H 2 , H 2 , µ) and g 2 ∈ EU c (R×H 2 , L(H 1 , H 2 ), µ).

	2 1/2 dµ(t)
	≤	1 µ([-r, r]) [-r,r]	E Z(t) -Z n (t) 2 1/2 dµ(t)
		+	1 µ([-r, r]) [-r,r]	E Z n (t)	2 1/2 dµ(t)
	≤ε +	1 µ([-r, r]) [-r,r]	E Z n (t)	2 1/2 dµ(t).

The terminology is due to the fact that Bochner was the first to use this transform, for Stepanov almost periodicity, in[START_REF] Bochner | Abstrakte Fastperiodische Funktionen[END_REF].

Actually, the terminology "ergodic" is misleading but it has the advantage of shortness. It would be more appropriate to follow Zhang's terminology (e.g.[START_REF] Yi | Pseudo-almost-periodic solutions of some differential equations[END_REF][START_REF] Zhang | Almost periodic type functions and ergodicity[END_REF]), and call µ-ergodic perturbations the elements of E(R, X, µ), and call ergodic the functions f such that 1/µ([-r, r]) r -r f (t) dµ(t) converges to some limit, not necessarily 0.

Let us here point out an infortunate error in[START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF]: it is mistakenly said at the end of Section 1 of[START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF] that almost periodicity in square mean implies almost periodicity in distribution, and that the converse is true under a tightness condition. The first claim is true under the tightness condition (3.6), whereas Example 3.1, which is also Example 2.1 of[START_REF] Mellah | Counterexamples to mean square almost periodicity of the solutions of some SDEs with almost periodic coefficients[END_REF], disproves the second claim.
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