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Almost automorphy and various extensions for

stochastic processes

Fazia Bedouhene∗, Nouredine Challali†, Omar Mellah ‡,

Paul Raynaud de Fitte §, and Mannal Smaali¶,

March 10, 2015

Abstract

We compare different modes of pseudo almost automorphy and vari-
ants for stochastic processes: in probability, in quadratic mean, or in
distribution in various senses. We show by a counterexample that square-
mean (pseudo) almost automorphy is a property which is too strong for
stochastic differential equations (SDEs). Finally, we consider two semilin-
ear SDEs, one with almost automorphic coefficients and the second one
with pseudo almost automorphic coefficients, and we prove the existence
and uniqueness of a mild solution which is almost automorphic in distri-
bution in the first case, and pseudo almost automorphic in distribution in
the second case.

Keywords. Weighted pseudo almost automorphic; square-mean almost au-
tomorphic; pseudo almost automorphic in quadratic mean; pseudo almost au-
tomorphic in distribution; Stepanov; Weyl; Besicovitch; Ornstein-Uhlenbeck;
semilinear stochastic differential equation; stochastic evolution equation
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1 Introduction

Almost automorphic functions, introduced by Bochner, are an important gen-
eralization of almost periodic functions. Almost automorphy is a property of
regularity and recurrence of functions, which has been studied in the context of
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differential equations and dynamical systems, and in other contexts. The ques-
tion of studying the concept of almost automorphic stochastic processes arises
naturally in connection with stochastic differential equations.

As can be seen in Tudor’s survey [49], almost periodicity forks into many
different notions when applied to stochastic processes: almost periodicity in
probability, in p-mean, in one-dimensional distributions, in finite dimensional
distributions, in distribution, almost periodicity of moments, etc. These notions
are not all comparable: for example, almost periodicity in distribution does not
imply almost periodicity in probability, and the converse implication is false too
[3]. The situation for almost automorphy is no different.

Furthermore, things become even more complicated if one takes into account
different generalizations of almost automorphy (which have their analogue in
almost periodicity): on the one hand, changing the mode of convergence in the
definition leads to the notions of Stepanov-like, Weyl-like and Besicovitch-like
almost automorphy. On the other hand, for the study of asymptotic properties
of functions, it is natural to consider functions which are the sum of an almost
automorphic function and of a function vanishing in some sense at infinity. In
this way, one gets the notions of asymptotically almost automorphic functions
and of pseudo almost automorphic functions and their weighted variants.

Each of these notions can be interpreted in different manners for stochastic
processes, exactly in the same way as for “plain” almost periodicity and almost
automorphy. It is an objective of this paper to clarify the hierarchy of those
various concepts. We did not try to list all possible variants, one can imagine
many other extensions and combinations, as the reader will probably do. This is
rather a preliminary groundwork, in which we investigate some notions we think
particularly useful. For example, when we describe the different modes of pseudo
almost automorphy in distribution, we concentrate on a stronger notion, which
is not purely “distributional” but seems to be the relevant one for stochastic
differential equations.

As we have in view applications in spaces of probability measures, which
do not have a vector space structure and whose topology can be described
by different non uniformly equivalent metrics, we are especially interested in
the properties of almost automorphy and pseudo almost automorphy which
are purely topological, i.e. which do not depend on a vector structure or on a
particular metric, but only on the topology of the underlying space.

A natural application of these concepts is the study of stochastic differential
equations with almost automorphic or more general coefficients. We provide two
examples of stochastic semilinear evolution equations, with almost automorphic
coefficients for the first one, and with pseudo almost automorphic coefficients
for the second one, whose unique bounded solution is almost automorphic (re-
spectively pseudo almost automorphic) in distribution. It is another objective
of this paper to point out a common error in many papers which claim the exis-
tence of nontrivial solutions which are almost automorphic in quadratic mean.
We show by a counterexample borrowed from [38] that this claim is false, even
for several extensions of almost automorphy.
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Historical comments These comments are not intended to provide a full
historical account, only to highlight some steps in the history of almost auto-
morphic stochastic processes and their generalizations.

The study of almost periodic random functions has a relatively long story,
starting from Slutsky [47] in 1938, who focused on conditions for weakly sta-
tionary random processes to have almost periodic trajectories in Besicovitch’s
sense.

The investigation of almost periodicity in probability was initiated later by
the Romanian school [44, 16, 45].

It is only in the late eighties that almost periodicity in distribution was
considered, again by the Romanian school (mainly by Constantin Tudor), in
connection with the study of stochastic diferential equations with almost peri-
odic coefficients [29, 30, 39, 48, 2, 17].

Starting from 2007, many papers appeared, claiming the existence of square-
mean almost periodic solutions to almost periodic semilinear stochastic evolu-
tion equations, using a fixed point method. Despite the counterexamples given
in [37, 38], new papers in this vein continue to be published.

The story of almost automorphy and its generalizations is much shorter.
Almost automorphic functions were invented by Bochner since 1955 [13, 11, 12]
(the terminology stems from the fact that they were first encountered in [13]
in the context of differential geometry on real or complex manifolds). Almost
automorphic stochastic processes and their generalizations seem to have been
investigated only since 2010, starting with [28], which was followed by many
other papers. Most of these papers claim almost automorphy (or one of its
generalizations) in square mean for solutions to stochastic equations. There are
only few papers we are aware of [26, 27, 35] which investigate almost automorphy
in a distributional sense.

Recently, the notion of almost automorphic random functions in probability
has been introduced by Ding, Deng and N’Guérékata [23].

Organization of the paper In Section 2, we present the concept of al-
most automorphy and some of its generalizations: µ-pseudo almost automorphy,
Stepanov-like, Weyl-like and Besicovitch-like µ-pseudo almost automorphy. Our
setting is that of functions of a real variable with values in a metrizable space.
Metrizability seems a sufficiently general frame to investigate almost automor-
phy in many useful spaces of probability measures, while avoiding complications.
An extension to uniformizable spaces would be useful for applications in locally
convex vector spaces, this could be done using projective limits of metrizable
spaces as in [3]. We show that almost automorphy and a slightly generalized no-
tion of pseudo almost automorphy can be defined in a topological way, without
any reference to a metric nor to a vector structure.

In Section 3, we investigate several notions of almost automorphy and pseudo
almost automorphy for stochastic processes. First, we investigate almost auto-
morphy and its variants in pth mean: the stochastic processes are seen as almost
automorphic (or, more generally, µ-pseudo almost automorphic) functions from
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R to Lp, p ≥ 0 (p = 0 corresponds to almost automorphy and its variants in
probability). We show with the simple counterexample of Ornstein-Uhlenbeck
process that even a one-dimensional linear equation with constant coefficients
has no nontrivial solution which is almost automorphic (in any of the variants
considered) in pth mean.

Then we move to almost automorphy in distribution and its variants. There
are at least three kinds of almost automorphy in distribution: in one-dimensional
distributions, in finite dimensional distributions, and in distribution of the whole
process. In the deterministic case, the first two notions are equivalent to almost
automorphy, the third one is equivalent to compact automorphy, a stronger
notion. For p > 0, we introduce also the notion of almost automorphy in p-
distribution, which is obtained by adding to the preceding notions a condition of
p-uniform integrability. For µ-pseudo almost automorphy, the situation becomes
even more complicated, because there are several ways to take into account the
ergodic part. We introduce the notion of processes which are µ-pseudo almost
automorphic in p-distribution, which are the sum of a process which is almost
automorphic in p-distribution and a process which is µ-ergodic in pth mean. We
use this notion in the next section. We do not address the notions of Stepanov-
like, Weyl-like or Besicovitch-like (pseudo) almost automorphy for stochastic
processes, these notions would probably have to be linked to a particular choice
of a metric on a space of probability measures.

We study the superposition operator (also called Nemytskii operator) be-
tween spaces of processes which are almost periodic (compact almost automor-
phic, and µ-pseudo compact almost automorphic) in distribution.

We also carry out a comparison of the main notions of (generalized) almost
automorphy for stochastic processes: in probability, in pth mean, and in p-
distribution.

Finally, in Section 4, we consider two semilinear stochastic evolution equa-
tions in a Hilbert space. The first one has almost automorphic coefficients, and
the second one has µ-pseudo almost automorphic coefficients. We show that
each equation has a unique mild solution which is almost automorphic in 2-
distribution in the first case, and µ-pseudo almost automorphic in 2-distribution
in the second case.

2 Weighted pseudo almost automorphy in Ba-
nach spaces and in metric spaces

2.1 Notations and definitions

In the sequel, X and Y are metrizable topological spaces. When no confusion
may arise, we denote by d a distance on X (respectively on Y) which generates
the topology of X (respectively Y). Most of our results depend only on the
topology of those spaces, not on the choice of particular metrics. When X

and Y are Banach spaces, their norms are indistinctly denoted by ‖.‖, and d is
assumed to result from ‖.‖.
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We denote by C(X,Y) the space of continuous functions from X to Y. When
this space is endowed with the topology of uniform convergence on compact
subsets of X, it is denoted by Ck(X,Y).

For a continuous function f : R → X, we define its translation mapping

f̃ :

{
R → C(R,X)
t → f(t+ .).

2.2 Almost periodicity and almost automorphy

Almost periodicity We say that a continuous function f : R → X is almost
periodic if, for any ε > 0, there exists l(ε) > 0 such that any interval of length
l(ε) contains at least an ε-almost period, that is, a number τ for which

d (f(t+ τ), f(t)) ≤ ε, for all t ∈ R.

We denote by AP(R,X) the space of X-valued almost periodic functions.
By a result of Bochner [12], f : R → X is almost periodic if, and only if, the

set
{
f̃(t), t ∈ R

}
= {f(t+ .), t ∈ R} is totally bounded in the space C(R,X)

endowed with the norm ‖.‖∞ of uniform convergence.
Another very useful characterization is Bochner’s double sequence criterion

[12]: f is almost periodic if, and only if, it is continuous and, for every pair of
sequences (t′n) and (s′n) in R, there are subsequences (tn) of (t′n) and (sn) of
(s′n) respectively, with same indexes, such that, for every t ∈ R, the limits

lim
n→∞

lim
m→∞

f(t+ tn + sm) and lim
n→∞

f(t+ tn + sn), (2.1)

exist and are equal. This very useful criterion shows that the set AP(R,X)
depends only on the topology of X, i.e. it does not depend on any uniform
structure on X, in particular it does not depend on the choice of any norm (if
X is a vector space) or any distance on X.

Almost automorphy Almost automorphic functions were introduced by Bochner
[12] and studied in depth by Veech [51], see also the monographs [46, 40, 42]
for applications to differential equations. A continuous mapping f : R → X is
said to be almost automorphic if, for every sequence (t′n) in R, there exists a
subsequence (tn) such that, for every t ∈ R, the limit

g(t) = lim
n→∞

f(t+ tn) (2.2)

exists and
lim
n→∞

g(t− tn) = f(t). (2.3)

The range Rf of f is then relatively compact, because we can extract from every
sequence (f(tn)) in Rf a convergent subsequence.

Clearly, the space of almost automorphic X-valued functions depends only
on the topology of X.

5



Almost automorphic functions generalize almost periodic functions in the
sense that f is almost periodic if, and only if, the above limits are uniform with
respect to t.

Note that, in (2.2) and (2.3), the limit function g is not necessarily continu-
ous. Let us consider the following property:

(C) For any choice of (t′n) and (tn), the function g of (2.2) and (2.3) is con-
tinuous.

Functions satisfying (C) are called continuous almost automorphic functions in
[51]. They were re-introduced by Fink [25] under the name of compact almost
automorphic functions. This terminology is now generally adopted, so we stick
to it.

It has been shown by Veech in [51, Lemma 4.1.1] (see also [41, Theorem
2.6] and [43, 36]) that, if f satifies (C), f is uniformly continuous. The proof
of Veech is given in the case when X is the field of complex numbers, but it
extends to any metric space. Furthermore, f satifies (C) if, and only if, the
convergence in (2.2) and (2.3) is uniform on the compact intervals. We denote
by AAc(R,X) the subspace of functions satisfying (C).

We have the inclusions

AP(R,X) ⊂ AAc(R,X) ⊂ AA(R,X).

All these spaces depend only on the topological structure of X and not on its
metric.

Almost automorphic functions depending on a parameter Following
[33], we say that a function f : R× Y → X is almost automorphic with respect
to the first variable, uniformly with respect to the second variable in bounded
subsets of Y (respectively in compact subsets of Y) if, for every sequence (t′n) in
R, there exists a subsequence (tn) such that, for every t ∈ R and every y ∈ Y,
the limit

g(t, y) = lim
n→∞

f(t+ tn, y)

exists and, for every bounded (respectively compact) subset B of Y, the conver-
gence is uniform with respect to y ∈ B, and if the convergence

lim
n→∞

g(t− tn, y) = f(t, y)

holds uniformly with respect to y ∈ B. We denote by AAUb(R × Y,X) and
AAUc(R× Y,X) respectively the spaces of such functions.

Similarly, one can define the spaces of functions f : R × Y → X which are
compact almost automorphic with respect to the first variable, uniformly with
respect to the second variable in bounded (or in compact) subsets of Y. We
denote these spaces by AAcUc(R× Y,X) and AAcUb(R× Y,X) respectively.

These notions are different from the notion of functions almost automorphic
uniformly in y defined in [9, 7].
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Proposition 2.1 Let f ∈ AAcUc(R×Y,X). Assume that f is continuous with
respect to the second variable. Then f is continous on R × Y, and, for every
compact subset K of Y, f is uniformly continuous on R×K.

Proof For simplicity, we use the same notation d for distances on Y and X

which generate the topologies of Y and X respectively.
First step Let us show that f is jointly continuous. Let (t, x) ∈ R×Y, and

let (tn, xn) be a sequence in R × Y which converges to (t, x). Let ε > 0. The
set K = {xn; n ∈ N} ∪ {x} is compact, thus there exists N1 ∈ N such that, for
any y ∈ K,

n,m ≥ N1 ⇒ d(f(tn, y), f(tm, y)) < ε/3.

Now, there exists N2 ∈ N such that

n ≥ N2 ⇒ d(f(tN1
, xn), f(tN1

, x)) < ε/3.

We deduce, for n ≥ (N1 ∨N2),

d(f(tn, xn), f(t, x)) ≤ d(f(tn, xn), f(tN1
, xn))

+ d(f(tN1
, xn), f(tN1

, x)) + d(f(tN1
, x), f(t, x)) < ε/3 + ε/3 + ε/3 = ε,

which proves the continuity of f .

Second step Let (t′n) be a sequence in R. Let (tn) be a subsequence of (t′n)
such that, for every y ∈ Y, and for every t ∈ R, the limit

g(t, y) = lim
n→∞

f(t+ tn, y)

exists, uniformly with respect to y in compact subsets of Y, and

lim
n→∞

g(t− tn, y) = f(t, y).

By our hypothesis, for each y ∈ Y, the function g(., y) is continuous. A similar
reasoning to that of the first step shows that g is continuous on R×Y. Indeed,
let (t, x) ∈ R×Y, and let (sk, xk) be a sequence in R×Y such that (t+ sk, xk)
converges to (t, x). Let ε > 0. The set K = {xn; n ∈ N} ∪ {x} is compact, thus
there exists an integer N such that, for every y ∈ K,

n ≥ N ⇒ d
(
g(t, y), f(t+ tn, y)

)
< ε/3.

By continuity of f at the point (t+ tN , x), there exists N ′ ∈ N such that

k ≥ N ′ ⇒ d
(
f(t+ sk + tN , xk), f(t+ tN , x)

)
< ε/3.

We have thus, for k ≥ N ′,

d
(
g(t+ sk, xk), g(t, x)

)
≤d

(
g(t+ sk, xk), f(t+ sk + tN , xk)

)
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+ d
(
f(t+ sk + tN , xk), f(t+ tN , x)

)

+ d
(
f(t+ tN , x), g(t, x)

)

<ε/3 + ε/3 + ε/3 = ε.

Third step Let K be a compact subset of Y. Assume that f is not uniformly
continuous on R×K. We can find two sequences (sn, xn) and (tn, yn) in R×K
such that (sn−tn)+d(xn, yn) converges to 0 and d

(
f(sn, xn), f(tn, yn)

)
> 2δ for

some δ > 0 and for all n ∈ N. By compactnes of K, and extracting if necessary
a subsequence, we can assume that (xn) and (yn) converge to a common limit
x ∈ K. We have thus

lim inf
n→∞

d
(
f(sn, xn), f(sn, x)

)
+ lim inf

n→∞
d
(
f(tn, yn), f(tn, x)

)

≥ lim inf
n→∞

d
(
f(sn, xn), f(tn, yn)

)
> 2δ,

which implies that at least one term in the left hand side is greater than δ. So,
we can assume, without loss of generality, that

lim inf
n→∞

d
(
f(tn, yn), f(tn, x)

)
> δ. (2.4)

Extracting if necessary a further subsequence, we can assume also that there
exists a function g : R× Y → X such that

lim
n→∞

f(tn, y) = g(0, y)

uniformly with respect to y ∈ K. We have proved in the second step that g is
continuous. But, then, we have

lim sup
n→∞

d
(
f(tn, yn), f(tn, x)

)

≤ lim sup
n→∞


d

(
f(tn, yn), g(0, yn)

)

+ d
(
g(0, yn), g(0, x)

)
+ d

(
g(0, x), f(tn, x)

)
 = 0,

which contradicts (2.4).

2.3 (Weighted) pseudo almost automorphy

Pseudo almost periodic functions were invented by Zhang [54, 55, 56, 57]. The
generalization of this concept to pseudo almost automorphic functions was in-
vestigated in [33]. To define pseudo almost automorphy, we need another class
of functions. Assume for the moment that X is a Banach space. Let

E(R,X) =
{
f ∈ BC(R,X); lim

r→∞

1

2r

∫

[−r,r]

‖f(t)‖ dt = 0

}
,
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where BC(R,X) denotes the space of bounded continuous functions from R to
X. We say that a continuous function f : R → X is pseudo almost automorphic
if it has the form

f = g +Φ, g ∈ AA(R,X), Φ ∈ E(R,X). (2.5)

The space of X-valued pseudo almost automorphic functions is denoted by
PAA(R,X).

Weighted pseudo almost automorphic functions were introduced by Blot et
al. in [6] and later generalized in [7]. They generalize the weighted pseudo almost
periodic functions introduced by Diagana [18, 19, 20], see also [8]. Let µ be a
Borel measure on R such that

µ(R) = ∞ and µ(I) <∞ for every bounded interval I. (2.6)

We define the space E(R,X, µ) of µ-ergodic X-valued functions by

E(R,X, µ) =
{
f ∈ BC(R,X); lim

r→∞

1

µ([−r, r])

∫

[−r,r]

‖f(t)‖ dµ(t) = 0

}
.

The space PAA(R,X, µ) of µ-pseudo almost automorphic functions with values
in X is the space of continuous functions f : R → X of the form

f = g +Φ, g ∈ AA(R,X), Φ ∈ E(R,X, µ). (2.7)

The space PAA(R,X, µ) contains the asymptotically almost automorphic func-
tions, that is, the functions of the form

f = g +Φ, g ∈ AA(R,X), lim
|t|→∞

‖Φ(t)‖ = 0,

see [7, Corollary 2.16].
Note that, contrarily to (2.5), the decomposition (2.7) is not necessarily

unique [7, Remark 4.4 and Theorem 4.7], even in the case of weighted almost
periodic functions [32, 8]. A sufficient condition of uniqueness of the decompo-
sition is that E(R,X, µ) be translation invariant. This is the case in particular
if Condition (H) of [7] is satisfied:

(H) For every τ ∈ R, there exist β > 0 and a bounded interval I such that
µ(A+ τ) ≤ βµ(A) whenever A is a Borel subset of R such that A∩ I = ∅.

The following elementary lemma will prove useful.

Lemma 2.2 Let f ∈ E(R,X, µ), with µ satisfying (2.6). There exists a se-
quence (tn) in R such that (|tn|) converges to ∞ and (f(tn)) converges to 0. If
furthermore

lim inf
r→∞

µ([0, r])

µ([−r, r]) > 0, (2.8)

one can choose (tn) converging to +∞.
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Proof Observe first that, for every bounded interval I, the function f satisfies

lim
r→∞

1

µ([−r, r] \ I)

∫

[−r,r]\I

‖f(t)‖ dµ(t) = 0

(see [7, Theorem 2.14] for a stronger result). Assume that the first part of the
lemma is false. There exist ε > 0 and R > 0 such that, for |t| ≥ R, ‖f(t)‖ ≥ ε.
Then we have

0 = lim
r→∞

1

µ([−r, r] \ [−R,R])

∫

[−r,r]\[−R,R]

‖f(t)‖ dµ(t)

≥ lim
r→∞

ε
µ([−r, r] \ [−R,R])
µ([−r, r] \ [−R,R]) = ε,

a contradiction.
In the case when (2.8) is satisfied, we have

lim sup
r→∞

1

µ([0, r] \ [0, R])

∫

[0,r]\[0,R]

‖f(t)‖ dµ(t)

≤ lim sup
r→∞

µ([−r, r] \ [−R,R])
µ([0, r] \ [0, R])

1

µ([−r, r] \ [−R,R])

∫

[−r,r]\[−R,R]

‖f(t)‖ dµ(t)

= lim sup
r→∞

µ([−r, r])
µ([0, r])

1

µ([−r, r] \ [−R,R])

∫

[−r,r]\[−R,R]

‖f(t)‖ dµ(t) ≤ 0.

Then we only need to reproduce the reasoning of the first part of the lemma,
replacing [−r, r] by [0, r].

Pseudo almost automorphic functions depending on a parameter Let
µ be a Borel measure on R satisfying (2.6). We say that a continuous function
f : R × Y → X is µ-ergodic with respect to the first variable, uniformly with
respect to the second variable in bounded subsets of Y (respectively in compact
subsets of Y) if, for every x ∈ Y, f(., x) is µ-ergodic, and the convergence of
1/µ([−r, r])

∫ r

−r
‖f(t, x)‖ dµ(t) is uniform with respect to x in bounded subsets

of Y (respectively compact subsets of Y). The space of such functions is denoted
by EUb(R× Y,X, µ) (respectively EUc(R× Y,X, µ)).

Remark 2.3 If for each x ∈ Y, f(., x) ∈ E(R,X, µ) and f(t, x) is continuous
with respect to x, uniformly with respect to t, then f ∈ EUc(R× Y,X, µ).

Indeed, let K be a compact subset of Y, and let ε > 0. Let d be any distance
on Y which generates the topology of Y. There exists η > 0 such that, for all
x, y ∈ K satisfying d (x, y) < η, we have ‖f(t, x)− f(t, y)‖ < ε for every t ∈ R.
Let x1, . . . , xm be a finite sequence in K such that K ⊂ ∪m

i=1B(xi, η). We have,
for every r > 0,

sup
x∈K

1

µ([−r, r])

∫ r

−r

‖f(t, x)‖ dµ(t)
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≤ max
1≤i≤m

sup
x∈B(xi,η)


 1

µ([−r, r])

∫ r

−r

‖f(t, x)− f(t, xi)‖ dµ(t)

+
1

µ([−r, r])

∫ r

−r

‖f(t, xi)‖ dµ(t)



≤ε+ max
1≤i≤m

1

µ([−r, r])

∫ r

−r

‖f(t, xi)‖ dµ(t),

which shows that f ∈ EUc(R× Y,X, µ).

We say that a continuous function f : R× Y → X is µ-pseudo almost auto-
morphic with respect to the first variable, uniformly with respect to the second
variable in bounded subsets of Y (respectively in compact subsets of Y) if it has
the form

f = g +Φ, g ∈ AAUb(R× Y,X), Φ ∈ EUb(R× Y,X, µ)

(respectively f = g +Φ, g ∈ AAUc(R× Y,X), Φ ∈ EUc(R× Y,X, µ)).

The space of such functions is denoted by PAAUb(R × Y,X, µ) (respectively
PAAUc(R× Y,X, µ)).

2.4 Stepanov, Weyl and Besicovitch-like pseudo almost
automorphy

Stepanov-like pseudo almost automorphy and variants The notion of
Stepanov-like almost automorphy was proposed by Casarino in [15]. Then
Stepanov-like pseudo almost automorphy was first studied by Diagana [21].
Stepanov-like weighted pseudo almost automorphy seems to have been inves-
tigated first and simultaneously in [53] and [58].

Let p > 0. We say that a locally p-integrable function f : R → X is Sp-
almost automorphic, or Stepanov-like almost automorphic if, for every sequence
(tn) in R, there exists a subsequence (t′n) and a locally p-integrable function
g : R → R such that

lim
n→∞

‖f(t+ t′n)− g(t)‖
Sp

and
lim
n→∞

‖g(t− t′n)− f(t)‖
Sp
,

where, for any locally p-integrable function h : R → X,

‖h‖
Sp

= sup
x∈R

(∫ x+1

x

‖h(t)‖p dt
)1/p

.

The space of Sp-almost automorphicX-valued functions is denoted by AASp(R,X).
The Bochner transform1 of a function f : R → X is the function

f b :

{
R → X[0,1]

t 7→ f(t+ .).

1The terminology is due to the fact that Bochner was the first to use this transform, for
Stepanov almost periodicity, in [10].
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We have
AASp(R,X) =

{
f ; f b ∈ AA(R,Lp([0, 1], dt,X))

}
.

We define the Stepanov-like µ-ergodic functions in a similar way:

ESp(R,X, µ) =
{
f ; f b ∈ E(R,Lp([0, 1], dt,X), µ)

}
.

Let µ be a Borel measure on R satisfying (2.6). We say that f : R →
X is Sp-pseudo almost automorphic, or Stepanov-like weighted pseudo almost
automorphic if f has the form

f = g +Φ, g ∈ AASp(R,X), Φ ∈ ESp(R,X, µ).

A further extension has been imagined by Diagana [22]: it consists in adding
a weight in the Stepanov norm ‖.‖

Sp
. Let p and µ as before, and let ν be a Borel

measure on the interval [0, 1] such that

0 < ν([0, 1]) < +∞. (2.9)

Set

‖h‖
S
p
ν
= sup

x∈R

(∫ 1

0

‖h(x+ t)‖p dν(t)
)1/p

.

Then, by replacing ‖.‖
Sp

by ‖.‖
S
p
ν
, one defines in the obvious way the space

AAS
p
ν
(R,X) of Spν-almost automorphic X-valued functions, the space ESpν (R,Lp(Ω,P,R), µ)

of Spν-µ-ergodic functions, and the space PAAS
p
ν
(R,X) of Spν-pseudo almost au-

tomorphic functions.

Weyl-like and Besicovitch-like pseudo almost automorphy The con-
cept of Weyl-like pseudo almost automorphy has been recently explored by
Abbas [1]. The definition is similar to that of Stepanov-like pseudo almost
automorphy, replacing ‖.‖

Sp
by the weaker seminorm ‖.‖

Wp , defined by

‖h‖
Wp = lim

r→+∞
sup
x∈R

(
1

2r

∫ x+r

x−r

‖h(t)‖p dt
)1/p

.

A further weakening leads to the Besicovitch seminorm, which does not seem
to have been investigated in the context of almost automorphy:

‖h‖
Bp = lim sup

r→+∞

(
1

2r

∫ r

−r

‖h(t)‖p dt
)1/p

.

We shall briefly consider this seminorm in Example 3.1.

2.5 Weighted pseudo almost automorphy in topological
spaces

We have seen that, to define the space of almost automorphic functions, as
well as that of almost periodic functions, on a space X, there is no need to

12



assume that X is a vector space, nor a metric space, these spaces depend only
on the topological structure of X. We prove in this section that the definition of
PAA(R,X, µ) is metric (independent of the vector structure of X but dependent
on the metric), and that it can be made purely topological if one allows for
a slight change of the definition. This leads to two topological concepts of µ-
pseudo almost automorphy: in Tudor and Tudor’s sense, and in the wide sense.

In this section, unless otherwise stated, X is only assumed to be a topological
space, not necessarily metrizable.

Remark 2.4 Assume that X is a Banach space. By definition, the space
E(R,X, µ) consists of continuous functions f : R → X satisfying

(i) f is bounded,

(ii) lim
r→∞

1

µ([−r, r])

∫

[−r,r]

‖f(t)‖ dµ(t) = 0.

Condition (i) is of metric nature. By [7, Theorem 2.14], Condition (ii) implies
Condition (2.10) below, and the converse implication is true if we assume (i) :

For any ε > 0, lim
r→∞

µ{t ∈ [−r, r]; ‖f(t)‖ > ε}
µ([−r, r]) = 0. (2.10)

Thus f satisfies (2.10) if, and only if,

lim
r→∞

1

µ([−r, r])

∫

[−r,r]


‖f(t)‖ ∧ 1


 dµ(t) = 0.

Condition (2.10) can be reformulated as

For any neighbourhood U of 0, lim
r→∞

µ{t ∈ [−r, r]; f(t) 6∈ U}
µ([−r, r]) = 0. (2.11)

The vector structure of X is still involved in (2.11) through the vector 0. But
we use E(R,X, µ) only in order to ensure that a function is close in a certain
sense to AA(R,X). To that end, as AA(R,X) contains the constant functions,
we can allow a generalization of E(R,X, µ) by replacing 0 in (2.11) by any other
fixed point x0 of X.2

An elegant metric definition of µ-pseudo almost periodic functions has been
proposed by Constantin and Maria Tudor in [50]. If we adapt their definition,
a continuous function f : R → X is µ-pseudo almost automorphic in Tudor and
Tudor’s sense if f has relatively compact range and there exists g ∈ AA(R,X)
such that the function t 7→ d(f(t), g(t)) is in E(R,R, µ). This definition is more
restrictive than the standard one because the metric condition (i) is replaced by

2Actually, the terminology “ergodic” is misleading but it has the advantage of short-
ness. It would be more appropriate to follow Zhang’s terminology (e.g. [55, 57]), and call
µ-ergodic perturbations the elements of E(R,X, µ), and call ergodic the functions f such that
1/µ([−r, r])

∫
r

−r
f(t) dµ(t) converges to some limit, not necessarily 0.
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the stronger topological condition that f have relatively compact range (note
that a subset A of X is relatively compact if, and only if, it is bounded for every
metric which generates the topology of X, see [24, Problem 4.3.E.(c)]).

Let us say that a continuous function f : R → X is µ-pseudo almost auto-
morphic in the wide sense if there exists g ∈ AA(R,X) such that the function
t 7→ d(f(t), g(t)) ∧ 1 is in E(R,R, µ). We can get rid of the distance d in this
definition by using the fact that the closure of the range of any function in
AA(R,X) is compact. On a compact space K, there is one and only one uni-
form structure, a basis of entourages of which consists of all sets of the form
V = ∪m

i=1 (Ui × Ui), where U1, . . . , Um is a finite open cover of K, see e.g. [14] or
[24]. In this way, we obtain (ii) below, which shows that the space of functions
which are µ-pseudo almost automorphic in the wide sense depends only on the
topology of X.

We have thus two possible topological definitions of µ-pseudo almost auto-
morphy: in Tudor and Tudor’s sense, and in the wide sense. The former is
stronger than (2.7), while the latter is weaker.

Proposition 2.5 (Topological characterization of µ-pseudo almost automorphy
in the wide sense) Let f : R → X be continuous. Let µ be a Borel measure on R

satisfying (2.6). If X is a metric space, the following propositions are equivalent.

(i) f is µ-pseudo almost automorphic in the wide sense, i.e. there exists a
function g ∈ AA(R,X) such that

lim
r→∞

1

µ([−r, r])

∫

[−r,r]


d (f(t), g(t)) ∧ 1


 dµ(t) = 0.

(ii) There exists a function g ∈ AA(R,X) such that, for any finite open cover
U1, . . . , Um of the closure K of {g(t); t ∈ R},

lim
r→∞

µ{t ∈ [−r, r]; (f(t), g(t)) 6∈ V }
µ([−r, r]) = 0,

where V = ∪m
i=1 (Ui × Ui).

Proof
(i) ⇒ (ii). Recall that K is compact because g ∈ AA(R,X). Let V =

∪m
i=1 (Ui × Ui) be as in (ii). Then V is an open neighborhood in X × X of the

diagonal ∆ = {(x, x); x ∈ K}. Define the distance d2 on X× X by

d2

(
(x, y), (x′, y′)

)
= d(x, x′) + d(y, y′).

As ∆ is compact, the distance ε = d2(∆,X× X \ V ) is positive. Let

Bε := {(y, z) ∈ X× X; d2

(
(y, z),∆

)
< ε} ⊂ V.

For each (y, z) ∈ Bε, there exists x ∈ K such that d2

(
(y, z), (x, x)

)
< ε, thus

d(y, z) ≤ d(y, x) + d(x, z) < ε.
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On the other hand, if z ∈ K and d(y, z) < ε, we have

d2

(
(y, z), (z, z)

)
= d(y, z) < ε,

thus (y, z) ∈ Bε. Applying this to (f(t), g(t)), we get, for every r > 0,

µ{t ∈ [−r, r]; (f(t), g(t)) 6∈ V }
µ([−r, r]) ≤ µ{t ∈ [−r, r]; d (f(t), g(t)) ≥ ε}

µ([−r, r]) .

But (i) means that the function t 7→ d(f(t), g(t)) ∧ 1 is in E(R,R, µ), thus, by
[7, Theorem 2.14], the latter term goes to 0 when r goes to ∞.

(ii) ⇒ (i). Let ε > 0. Let U1, . . . , Um be a finite open cover of K such that
Diam(Ui) > ε, i = 1, . . . ,m, and let V = ∪m

i=1 (Ui × Ui). We have

µ{t ∈ [−r, r]; d (f(t), g(t)) > ε}
µ([−r, r]) ≤ µ{t ∈ [−r, r]; (f(t), g(t)) 6∈ V }

µ([−r, r]) ,

where the latter term goes to 0 when r goes to ∞. The conclusion follows from
[7, Theorem 2.14].

Remark 2.6 The reasoning of Proposition 2.5 can be applied without change
to give a topological characterization of µ-pseudo almost periodic functions in
the wide sense. More generally, AA(R,X) can be replaced in this reasoning by
any class of functions which have relatively compact range.

Theorem 2.7 (Uniqueness of the decompostion of pseudo almost automorphic
functions in the wide sense) Let µ be a Borel measure on R satisfying (2.6)
and Condition (H). Let f : R → X satisfying Condition (ii) of Proposition 2.5.
Then the function g ∈ AA(R,X) given by Condition (ii) is unique and satisfies

{g(t); t ∈ R} ⊂ {f(t); t ∈ R}.
Proof Let g and K as in Condition (ii). Let ϕ : X → R be a contin-
uous function. Then ϕ ◦ g ∈ AA(R,R). Let Û1, . . . , Ûm be a finite open

cover of the closure ϕ(K) of {ϕ ◦ g(t); t ∈ R}, and let V̂ = ∪m
i=1

(
Ûi × Ûi

)
.

Then U1 = ϕ−1(Û1), . . . , Um = ϕ−1(Ûm) form a finite open cover of K. Let
V = ∪m

i=1 (Ui × Ui). We have

µ{t ∈ [−r, r]; (ϕ ◦ f(t), ϕ ◦ g(t)) 6∈ V̂ }
µ([−r, r]) ≤µ{t ∈ [−r, r]; (f(t), g(t)) 6∈ V }

µ([−r, r]) .

Thus, by Proposition 2.5, ϕ ◦ f is in PAA(R,R, µ) and the function ϕ ◦ f −ϕ ◦ g
is in E(R,R, µ). By [7, Theorem 4.1], we have

{ϕ ◦ g(t); t ∈ R} ⊂ {ϕ ◦ f(t); t ∈ R},
and, by the uniqueness of the decomposition of vector-valued µ-pseudo almost
automorphic functions [7, Theorem 4.7] if g′ ∈ AA(R,X) satisfies the same
condition as g, we have ϕ ◦ g′ = ϕ ◦ g. As ϕ is arbitrary, we deduce g′ = g.
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3 Weighted pseudo almost automorphy for stochas-
tic processes

From now on, X and Y are assumed to Polish spaces, i.e. separable metrizable
topological spaces whose topology is generated by a complete metric.

3.1 Weighted pseudo almost automorphy in pth mean

We assume here that X is a Banach space. Let X = (Xt)t∈R be a continuous
stochastic process with values in X, defined on a probability space (Ω,F ,P).
Let µ be a Borel measure on R satisfying (2.6).

Let p > 0. We say that X is almost automorphic in pth mean (respec-
tively µ-pseudo almost automorphic in pth mean) if the mapping t 7→ X(t) is
in AA(R,Lp(Ω,P,X)) (respectively in PAA(R,Lp(Ω,P,X), µ), i.e., if it has the
form X = Y +Z, where Y ∈ AA(R,Lp(Ω,P,X)) and Z ∈ E(R,Lp(Ω,P,X), µ)).
When p = 2, we say that X is square-mean almost automorphic (respectively
square-mean µ-pseudo almost automorphic).

The process X is said to be almost automorphic in probability if the mapping
X : t → L0(Ω,P,X) is almost automorphic, where L0(Ω,P,X) is the space of
measurable mappings from Ω to X, endowed with the topology of convergence
in probability. Recall that the topology of L0(Ω,P,X) is induced by e.g. the
distance

dProb(U, V ) = E (‖U − V ‖ ∧ 1) ,

which is complete.
The process X is said to be µ-pseudo almost automorphic in probability, and

we writeX ∈ PAA(R,L0(Ω,P,X), µ), if the mapping t 7→ X(t), R → L0(Ω,P,X)
is µ-pseudo almost automorphic in the wide sense (or, equivalently, if it is µ-
pseudo almost automorphic when L0(Ω,P,X) is endowed with dProb), i.e. if it
has the form X = Y + Z where Y ∈ AA(R,L0(Ω,P,X)) and Z satisfies

lim
r→∞

1

µ([−r, r])

∫

[−r,r]

E

‖Z(t)‖ ∧ 1


 dµ(t) = 0. (3.1)

We denote by E(R,L0(Ω,P,X), µ) the set of stochastic processes Z satisfying
(3.1).

Note that, for p ≥ 0, the previous decompositions ofX ∈ PAA(R,Lp(Ω,P,X), µ)
are unique under the condition (H).

Clearly, for 0 ≤ p ≤ q, we have

AA(R,Lq(Ω,P,X)) ⊂ AA(R,Lp(Ω,P,X))

and
PAA(R,Lq(Ω,P,X), µ) ⊂ PAA(R,Lp(Ω,P,X), µ).

Conversely, if the set {‖X(t)‖q ; t ∈ R} is uniformly integrable, we have the
implications


X ∈ AA(R,Lp(Ω,P,X))


 ⇒


X ∈ AA(R,Lq(Ω,P,X))


,
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X ∈ PAA(R,Lp(Ω,P,X), µ)


 ⇒


X ∈ PAA(R,Lq(Ω,P,X), µ)


.

A process X is Stepanov-like almost automorphic in pth mean if X is in
AASp(R,L

p(Ω,P,X)). We define in the same way the processes which are
Stepanov-like µ-pseudo almost automorphic in pth mean, Weyl-like (µ-pseudo)
almost automorphic in pth mean, Besicovitch-like (µ-pseudo) almost automor-
phic in pth mean.

Explicit counterexample to square-mean pseudo almost automorphy
At the time of the submission of this paper, there are at least 24 papers listed in
Mathematical Reviews related to almost automorphy of solutions to stochastic
differential equations, which all have been published in 2010 or later. To our
knowledge, except for [26, 27, 35], all other papers claim the existence of square-
mean pseudo almost automorphic solutions to stochastic differential equations
with coefficients having similar properties.

We show that a very simple counterexample from [37, 38] contradicts these
claims. The other counterexamples given in [37, 38] also contradict these claims.

Example 3.1 (Stationary Ornstein-Uhlenbeck process) LetW = (W (t))t∈R

be a standard Brownian motion on the real line. Let α, σ > 0, and let X be the
stationary Ornstein-Uhlenbeck process (see [34]) defined by

X(t) =
√
2ασ

∫ t

−∞

e−α(t−s)dW (s). (3.2)

Then X is the only L2-bounded solution of the following SDE, which is a par-
ticular case of Equation (3.1) in [4]:

dX(t) = −αX(t) dt+
√
2ασ dW (t).

The process X is Gaussian with mean 0, and we have, for all t ∈ R and
τ ≥ 0,

Cov(X(t), X(t+ τ)) = σ2e−ατ .

Assume thatX is square-mean µ-pseudo almost automorphic, for some Borel
measure µ on R satisfying (2.6) and (2.8). Then we can decompose X as

X = Y + Z, Y ∈ AA(R,L2(Ω,R)), Z ∈ E(R,L2(Ω,R), µ).

By Lemma 2.2, we can find an increasing sequence (tn) of real numbers which
converges to +∞ such that (Z(tn)) converges to 0 in L2(Ω,R). Then, we can
extract a sequence (still denoted by (tn) for simplicity) such that (Y (tn)) con-

verges in L2 to a random variable Ŷ . Thus (X(tn)) converges in L2 to Ŷ .

Necessarily Ŷ is Gaussian with law N (0, 2ασ2), and Ŷ is G-measurable, where

G = σ (Xtn ; n ≥ 0). Moreover (X(tn), Ŷ ) is Gaussian for every n, and we have,
for any integer n,

Cov(X(tn), Ŷ ) = lim
m→∞

Cov(X(tn), X(tn+m)) = 0,
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because (X2(t))t∈R is uniformly integrable. This proves that Ŷ is independent

of X(tn) for every n, thus Ŷ is independent of G. Thus Ŷ is constant, a contra-
diction. Thus (3.2) has no square-mean µ-pseudo almost automorphic solution.

Let us show that X is not Weyl-like nor Besicovitch-like square-mean pseudo
almost automorphic. It is enough to disprove the Besicovitch sense. Assume
that X is Besicovitch-like square-mean pseudo almost automorphic. As before,
using Lemma 2.2, we can find a sequence (tn) converging to +∞ and a process

Ŷ such that
lim
n→∞

∥∥X(tn)− Ŷ
∥∥
B2 = 0.

In particular, (X(tn)) is Cauchy for ‖.‖
B2 , thus, for every ε > 0, there exists

N(ε) ∈ N, such that, for all n,m ∈ N,

(n ≥ N(ε)) ⇒
∥∥X(tn)−X(tn+m)

∥∥
B2 ≤ ε. (3.3)

But we have

∥∥X(tn)−X(tn+m)
∥∥2
B2

= lim sup
r→+∞

1

2r

∫ r

−r

E
∣∣X(tn + s)−X(tn+m + s)

∣∣2ds

= lim sup
r→+∞

1

2r

∫ r

−r

E
(
X2(tn + s) +X2(tn+m + s)− 2X(tn + s)X(tn+m + s)

)
ds

= lim sup
r→+∞

1

2r

∫ r

−r

(
σ2 + σ2 − 2σ2e−α(tn+m−tn)

)
ds

=2σ2
(
1− e−α(tn+m−tn)

)
.

For m large, the last term is arbitrarily close to 2σ2, which contradicts (3.3) for
ε < 2σ2.

A similar calculation shows that, for any Borel measure µ on R satisfying
(2.6) and (2.8), and for any Borel measure ν on [0, 1] satisfying (2.9), the process
X is not square-mean S2ν -µ-pseudo almost automorphic.

3.2 Weighted pseudo almost automorphy in distribution

We denote by law (X) the law (or distribution) of a random variable X . For
any topological space X, we denote by M1,+ (X) the set of Borel probability
measures on X, endowed with the topology of narrow (or weak) convergence,
i.e. the coarsest topology such that the mappings µ 7→ µ(ϕ), M1,+ (X) → R are
continuous for all bounded continuous ϕ : X → R.

If τ : X → Y is a Borel measurable mapping and µ is a Borel measure on X,
we denote by τ♯ µ the Borel measure on Y defined by

τ♯ µ(B) = µ(τ−1(B))

for every Borel set of Y.
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Let BC(X,R) denote the space of bounded continuous functions from X to
R, which we endow with the norm

‖ϕ‖∞ = sup
x∈X

|ϕ(x)| .

For a given distance d on X, and for ϕ ∈ BC(X,R) we define

‖ϕ‖
L
= sup

{ϕ(x) − ϕ(y)

d(x, y)
; x 6= y

}

‖ϕ‖
BL

= max{‖ϕ‖∞ , ‖ϕ‖
L
}.

We denote
BL(X,R) =

{
ϕ ∈ BC(X,R); ‖ϕ‖

BL
<∞

}
.

The bounded Lipschitz distance dBL associated with d on M1,+ (X) is defined by

dBL(µ, ν) = sup
ϕ∈BL(X,R)
‖ϕ‖

BL
≤1

∫

X

ϕd(µ− ν).

This metric generates the narrow (or weak) topology on M1,+ (X).
Let p ≥ 0, and let (Xn) be a sequence in Lp(Ω,P,X). We say that (Xn)

converges in p-distribution (or simply converges in distribution if p = 0) to a
random vector X if

(i) the sequence (law (Xn)) converges to law (X) for the narrow topology on
M1,+ (X),

(ii) if p > 0, the sequence (‖Xn‖p) is uniformly integrable.

Almost automorphy in distribution If X is continuous with values in X,
we denote by X̃(t) the random variable X(t+ .) with values in C(R,X).

We say that X is almost automorphic in one-dimensional distributions if the
mapping t 7→ law (X(t)), R 7→ M1,+ (X) is almost automorphic.

Remark 3.2 One-dimensional distributions of a process reflect poorly its prop-
erties. For example, let X be the Ornstein-Uhlenbeck process of Example 3.1,
and set Y (t) = X(0), t ∈ R. The processes X and Y have the same one-
dimensional distributions with completely different trajectories and behaviors.
The trajectories of Y are constant, whereas the covariance Cov(X(t+ τ), X(t))
converges to 0 when τ goes to ∞.

We say that X is almost automorphic in finite dimensional distributions if,
for every finite sequence t1, . . . , tm ∈ R, the mapping t 7→ law (X(t+ t1), . . . , X(t+ tm)),
R 7→ M1,+ (Xm) is almost automorphic.

We say that X is almost automorphic in distribution if the mapping t 7→
law

(
X̃(t)

)
, R 7→ M1,+ (Ck(R,X)) is almost automorphic, where Ck(R,X) de-

notes the space C(R,X) endowed with the topology of uniform convergence on
compact subsets. The Ornstein-Uhlenbeck process X of Example 3.1 is almost

automorphic in distribution because the mapping t 7→ law
(
X̃(t)

)
is constant.
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Remark 3.3 If X is a deterministic process R → X, we have the equivalences

X ∈ AA(R,X) ⇔X is almost automorphic in one-dimensional distributions

⇔X is almost automorphic in finite dimensional distributions

and

X ∈ AAc(R,X) ⇔X is almost automorphic in distribution.

Actually, as Remark 3.3 suggests, the definition of almost automorphy in

distribution implies a stronger property for the mapping t 7→ law
(
X̃(t)

)
. We

need first some notations. For simplicity, we set Ck = Ck(R,X). For every
t ∈ R, we define a continuous operator on Ck:

τt :

{
Ck → Ck

x 7→ x(t+ .) = x̃(t).

Proposition 3.4 If X is almost automorphic in distribution, the mapping t 7→
law

(
X̃(t)

)
is in AAc(R,M1,+ (Ck(R,X))). Furthermore, for any sequence (tn)

in R such that, for every t ∈ R, (law
(
X̃(t+ tn)

)
) converges to a limit g(t) ∈

M1,+ (Ck), the function g satisfies, for every t ∈ R, the consistency relation

g(t) = (τt)♯ g(0). (3.4)

Proof Let us denote f(t) = law
(
X̃(t)

)
. We have, for every t ∈ R,

f(t) = law (τt ◦X) = (τt)♯ f(0).

Let (tn) be a sequence in R such that, for each t ∈ R, the sequence (f(t + tn))
converges to some g(t) ∈ M1,+ (Ck). Then, for every t ∈ R, (3.4) is satisfied by
continuity of the operator (τt)♯. To prove the continuity of g, let us endow Ck

with the distance

d(x, y) =
∑

k≥1

2−k sup
−k≤t≤k

(
d
(
x(t), y(t)

)
∧ 1

)
, (3.5)

and let d
BL

be the associated bounded Lipschitz distance on M1,+ (Ck). Let us
show that the convergence of (f(.+ tn)) is uniform for d

BL
on compact intervals.

Let r ≥ 1 be an integer. For every t ∈ [−r, r], and for all x, y ∈ Ck, we have

d (τt(x), τt(y)) =
∑

k≥1

2−k sup
−k≤s≤k

(
d
(
x(s + t), y(s+ t)

)
∧ 1

)

≤
∑

k≥1

2−k sup
−k−r≤s≤k+r

(
d
(
x(s), y(s)

)
∧ 1

)

≤2rd(x, y).
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Thus, for any 1-Lipschitz mapping ϕ : Ck → R, the mapping ϕ ◦ τt is 2r-
Lipschitz. We deduce that, if ‖ϕ‖

BL
≤ 1, we have ‖ϕ ◦ τt‖BL

≤ 1 + 2r. We have
thus

d
BL

(
f(t+ tn), f(t+ tn+m)

)
= sup

‖ϕ‖
BL

≤1

E
(
ϕ ◦ τt ◦ X̃(tn)− ϕ ◦ τt ◦ X̃(tn+m)

)

≤(1 + 2r) sup
‖ϕ‖

BL
≤1

E
(
ϕ ◦ X̃(tn)− ϕ ◦ X̃(tn+m)

)

=(1 + 2r)d
BL

(
f(tn), f(tn+m)

)
,

which shows that (f(.+tn)) is uniformly Cauchy on [−r, r]. Thus g is continuous,
and f ∈ AAc(R,M1,+ (Ck(R,X))).

We denote by

• AAD1(R,X) the set of X-valued processes which are almost automorphic
in one-dimensional distributions,

• AADf (R,X) the set of X-valued processes which are almost automorphic
in finite dimensional distributions,

• AAD(R,X) the set of X-valued processes which are almost automorphic
in distribution.

(In these notations, we omit the probability space (Ω,F ,P), as there is no
ambiguity here.) We have the inclusions

AAD(R,X) ⊂ AADf (R,X) ⊂ AAD1(R,X).

The following result is in the line of [3, Theorem 2.3].

Theorem 3.5 Let X be an X-valued stochastic process, and let d be a distance
on X which generates the topology of X. Asume that X satisfies the tightness
condition

∀[a, b] ⊂ R, ∀ε > 0, ∀η > 0, ∃δ > 0, ∀r ∈ R,

P
{

sup
|t−s|<δ
t,s∈[a,b]

d (X(r + t), X(r + s)) > η
}
< ε. (3.6)

Then the following properties are equivalent:

(a) X ∈ AADf (R,X).

(b) X ∈ AAD(R,X).

Proof Clearly (b)⇒(a). Assume thatX ∈ AADf (R,X). Let (γ
′
n) be a sequence

in R, and, for t1, t2, . . . , tk, t ∈ R define (using notations of [49])

µt1,...,tk
t := law (X(t1 + t), . . . , X(tk + t)) .
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By a diagonal procedure we can find a subsequence (γn) of (γ′n) such that,
for every k ≥ 1, for all q1, q2, . . . , qk ∈ Q

⋂
R (where Q is the set of rational

numbers), and for every t ∈ R,

lim
n

lim
m
µq1,...,qk
t+γn−γm

= µq1,...,qk
t .

Let dk be the distance on Xk defined by

dk
(
(x1, . . . , xk), (y1, . . . , yk)

)
= max

1≤i≤k
d(xi, yi),

and let dBL the associated bounded Lipschitz distance on M1,+
(
Xk

)
. We have,

for all t1, t2, . . . , tk, t ∈ R, for all q1, q2, . . . , qk ∈ Q
⋂
R, and for all n,m ∈ N,

dBL

(
µq1,...,qk
t+γn−γm

, µt1,...,tk
t+γn−γm

)
= sup

‖f‖BL≤1

∫

Xk

fd
(
µq1,...,qk
t+γn−γm

− µt1,...,tk
t+γn−γm

)

≤ max
1≤i≤k

∫

Ω

d
(
X(qi + t+ γn − γm), X(ti + t+ γn − γm)

)
dP,

so that, by (3.6), if (q1, . . . , qk) → (t1, . . . , tk), then

dBL

(
µq1,...,qk
t+γn−γm

, µt1,...,tk
t+γn−γm

)
→ 0

uniformly with respect to t ∈ R and n,m ∈ N. By a classical result on inversion
of limits, we deduce that, for all k ≥ 1 and t1, . . . , tk, t ∈ R,

lim
n

lim
m
µt1,...,tk
t+γn−γm

= µt1,...,tk
t .

Therefore, to show that

lim
n

lim
m

law
(
X̃(t+ γn − γm)

)
= law

(
X̃(t)

)
,

it is enough to prove that (X̃(t))t∈R is tight in Ck(R,X). SinceX ∈ AADf (R,X),

the family (X(t))t∈R = (X̃(t)(0))t∈R is tight, by Prokhorov’s theorem for rela-
tively compact sets of probability measures on Polish spaces. By (3.6) and the
Arzelà-Ascoli-type characterization of tight subsets of M1,+ (X) (see e.g. the
proof of [5, Theorem 7.3] or [52, Theorem 4]), we conclude that (X̃(t))t∈R is
tight in Ck(R,X), which proves our claim.

Remark 3.6 Assume thatX is a vector space. The spaces AAD(R,X), AADf (R,X),
and AAD1(R,X) are not vector spaces. Indeed, letX be the Ornstein-Uhlenbeck
process of Example 3.1. For each t ∈ R, let Y (t) = X(0). The processes X and
Y are stationary in the strong sense, thus they are in AAD(R,X). For each
t ∈ R, the variable Z(t) = X(t) + Y (t) is Gaussian centered with variance

VarZ(t) = E
(
X2(t)

)
+ E

(
Y 2(t)

)
+ 2Cov

(
X(t), Y (t)

)
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= 2σ2 + 2σ2 exp (−α |t|)
→ 2σ2 when |t| → ∞.

Thus law (Z(t)) is the Gaussian distribution N (0, 2σ2(1 + exp (−α |t|))), which
converges when |t| → ∞ to N (0, 2σ2). Set m(t) = N (0, 2σ2), t ∈ R. For each
t ∈ R, we have

lim
n→∞

law (Z(t+ n)) = m(t)

lim
n→∞

m(t− n) = m(t) 6= law (Z(t)) .

Thus Z 6∈ AAD1(R,X).
This contradicts [26, Lemma 2.3].

Almost automorphy in p-distribution A useful variant of almost auto-
morphy in distribution takes into account integrability of order p. Let p ≥ 0.
We say that a continuous X-valued stochastic process is almost automorph in
p-distribution if

(i) X ∈ AAD(R,X),

(ii) if p > 0, the family (‖X(t)‖p)t∈R is uniformly integrable.

These conditions imply that the mapping t 7→ X(t), R → Lp(Ω,P,X), is con-
tinuous.

We denote by AADp(R,X) the set of X-valued processes which are almost
automorphic in p-distribution, in particular we have AAD0(R,X) = AAD(R,X).
Similarly, for p ≥ 0, one defines the sets AADp

f (R,X) and AADp
1(R,X) of pro-

cesses which are respectively almost automorphic in one-dimensional p-distribu-
tions and almost automorphic in finite dimensional p-distributions.

Weighted pseudo almost automorphy in distribution and variants As
usual, we assume that µ is a Borel measure on R satisfying (2.6).

Tudor and Tudor proposed in [50] a very natural and elegant notion of pseudo
almost periodicity in (one-dimensional) distribution that can easily be extended
to weighted µ-pseudo almost automorphy: X is µ-pseudo almost periodic in
one-dimensional distributions in Tudor and Tudor’s sense if it satisfies

(TT1) The mapping t 7→ law (X(t)) is continuous with relatively compact range
in M1,+ (X), and there exists an almost automorphic function m : R →
M1,+ (X) such that

lim
r→∞

1

µ([−r, r])

∫ r

−r

dBL(law (X(t)) ,m(t))dµ(t) = 0. (3.7)

Similar definitions are easy to write for µ-pseudo almost automorphy in finite
distributions or in distribution.
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Recall that dBL is bounded. If we remove the condition of relatively compact
range (as in Proposition 2.5), we get three distributional notions of µ-pseudo
almost automorphy in the wide sense: in one-dimensional distributions, in finite
dimensional distributions, and in distribution.

We propose three stronger notions of µ-pseudo almost automorphy in a dis-
tributional sense, that seem to be particularly useful for stochastic equations.

Assume that X is a vector space. Let p ≥ 0. We say that X is µ-pseudo
almost automorphic in p-distribution if X can be written

X = Y + Z, where Y ∈ AADp(R,X) and Z ∈ E(R,Lp(Ω,P,X), µ).

The set of X-valued processes which are µ-pseudo almost automorphic in p-
distribution is denoted by PAADp(R,X). Similar definitions hold for the spaces
PAADp

1(R,X, µ) and PAADp
f (R,X, µ) of processes which are µ-pseudo almost

automorphic in one-dimensional p-distributions and in finite dimensional p-
distributions respectively.

Remark 3.7 The definitions we propose for µ-pseudo almost automorphy in
distribution, or in finite dimensional distributions, or in one-dimensional distri-
butions, are in a way stronger and less natural than those in the wide distribu-
tional sense, because they involve (at least, apparently) not only the distribution
of the process, but the probability space (Ω,F ,P). For example, a random pro-
cess X is in PAAD0

1(R,X, µ) if, and only if, there exists a process Y defined on
the same probability space such that m(.) := law (Y (.)) is in AA(R,M1,+ (X))
and satisfies (3.7). Note also that, in our definition, the ergodic part is ergodic
in pth mean. Our definitions are thus intermediate between µ-pseudo almost
automorphy in a purely distributional sense and µ-pseudo almost automorphy
in pth mean.

However, our definitions seem to be convenient for calculations, and Theorem
4.4 shows that, for some stochastic differential equations with µ-pseudo almost
automorphic coefficients, the process Y appears naturally: it is the solution of
the corresponding SDE where the coefficients are the almost automorphic parts
of the coefficients of the original SDE.

Almost automorphy in distribution and some of its variants enjoy some sta-
bility properties, as shows the following superposition lemma. Similar results
could be proved by the same method for one-dimensional or for finite dimen-
sional distributions.

Theorem 3.8 (Superposition lemma) Let X be a continuous X-valued stochas-
tic process, and let f : R× X → Y be a continuous mapping.

1. If X is almost periodic in distribution and f is almost periodic with re-
spect to the first variable, uniformly with respect to the second variable in
compact subsets of X, then f(., X(.)) is almost periodic in distribution.

2. If X is almost automorphic in distribution and f is compact almost au-
tomorphic with respect to the first variable, uniformly with respect to the
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second variable in compact subsets of X, then f(., X(.)) is almost auto-
morphic in distribution.

3. Let µ be a Borel measure on R satisfying (2.6), and let p ≥ 0. Assume
that f is µ-pseudo compact almost automorphic with respect to the first
variable, uniformly with respect to the second variable in compact subsets
of X, i.e.

f = g + h, with g ∈ AAcUc(R× X,Y) and h ∈ EUc(R× X,Y, µ).

Assume that g is continuous with respect to the second variable. Assume
furthermore that f is uniformly continuous in the second variable in com-
pact subsets of X, uniformly with respect to the first variable, that is,

for every ε > 0, and for every compact subset K of X,

there exists η > 0 such that, for all x, y ∈ K,

‖x− y‖ ≤ η ⇒ sup
t∈R

‖f(t, x)− f(t, y)‖ ≤ ε. (3.8)

If p > 0, assume also that f and g satisfy the growth condition

‖f(t, x)‖ + ‖g(t, x)‖ ≤ C(1 + ‖x‖) (3.9)

for all (t, x) ∈ R × X and for some constant C, and that f is Lipschitz
with respect to the second variable, uniformly with respect to the first one.
If X is µ-pseudo almost automorphic in p-distribution, then f(., X(.)) is
µ-pseudo almost automorphic in p-distribution.

Proof We only prove the second and third items, the first one can be proved
in the same way as 2, using, for example, Bochner’s double sequence criterion.

2. For each t ∈ R, for each x ∈ Ck(R,X), and for each s ∈ R, let us denote

f̃(t, x)(s) = f(s+ t, x(s)).

By continuity of f on R× X, f̃(t, .) maps Ck(R,X) to Ck(R,Y).
Let K be a compact subset of Ck(R,X). By the Arzelà-Ascoli Theorem

(see e.g. [24, Theorems 8.2.10 and 8.2.11]), this means that K is closed in
Ck(R,X) and equicontinuous, and that, for every compact interval I of R, the
set {x(t); x ∈ K, t ∈ I} has compact closure in X. Let t ∈ R, and let (tn) be a
sequence in R converging to t. Let I be a compact interval of R, and let K be
the closure of {x(s); x ∈ K, s ∈ I}. We have, for any y ∈ K, and for any s ∈ R,

lim
n
f(tn + s, y) = f(t+ s, y)

where the convergence is uniform with respect to y ∈ K and s ∈ I, because f is
compact almost automorphic uniformly with respect to the second variable in
compact subsets of X. In particular we have, uniformly with respect to x ∈ K
and s ∈ I,

lim
n
f̃(tn, x)(s) = lim

n
f(tn + s, x(s)) = f(t+ s, x(s)) = f̃(t, x)(s),

25



which proves that the mapping f̃(., x) : R → Ck(R,X), is continuous, uniformly
with respect to x in compact subsets of Ck(R,X).

Let us check that f̃ : R × Ck(R,X) → Ck(R,X) is compact almost auto-
morphic with respect to the first variable, uniformly with respect to the second
variable in compact subsets of Ck(R,X). Let (t′n) be a sequence in R. There
exists a subsequence (tn) such that, for every t ∈ R and every y ∈ X,

lim
n

lim
m
f(t+ tn − tm, y) = f(t, y),

where the convergence is uniform with respect to y in compact subsets of X and
t in compact intervals of R. For each t ∈ R, and for each s ∈ R, we have

lim
n

lim
m
f̃(t+ tn − tm, x)(s) = lim

n
lim
m
f(s+ t+ tn − tm, x(s))

=f(s+ t, x(s)) = f̃(t, x)(s),

and these convergences are uniform with respect to t and s in compact intervals,
and with respect to x ∈ K, which proves our claim.

Let ϕ : Ck(R,Y) → R be bounded Lipschitz, with ‖ϕ‖
BL

≤ 1, where ‖.‖
BL

is taken relatively to a distance d which generates the topology of Ck(R,Y), for
example the distance defined by (3.5). Let (t′n) be a sequence in R. Let (tn) be
a subsequence such that, for every t ∈ R and every y ∈ X,

lim
n

lim
m
f(t+ tn − tm, y) = f(t, y),

lim
n

lim
m

law
(
X̃(t+ tn − tm)

)
= law

(
X̃(t)

)
.

Let ε > 0. We can find a compact subset Kε of Ck(R,X) such that, for every
t ∈ R,

P
{
X̃(t) ∈ Kε

}
≥ 1− ε.

Let t ∈ R be fixed, and, for all n,m, let Ωε,n,m be the measurable subset of Ω

on which X̃(t+ tn − tm) ∈ Kε. We have

∣∣∣E

ϕ ◦ f̃(t+ tn − tm, X̃(t+ tn − tm))− ϕ ◦ f̃(t, X̃(t))



∣∣∣

≤
∣∣∣E


ϕ ◦ f̃(t+ tn − tm, X̃(t+ tn − tm))− ϕ ◦ f̃(t, X̃(t+ tn − tm))



∣∣∣

+
∣∣∣E


ϕ ◦ f̃(t, X̃(t+ tn − tm))− ϕ ◦ f̃(t, X̃(t))



∣∣∣

≤E

 1lΩε,n,m

d
(
f̃(t+ tn − tm, X̃(t+ tn − tm)), f̃(t, X̃(t+ tn − tm))

)


+ E

 1lΩc

ε,n,m

∣∣∣ϕ ◦ f̃(t+ tn − tm, X̃(t+ tn − tm))− ϕ ◦ f̃(t, X̃(t+ tn − tm)))
∣∣∣



+
∣∣∣E


ϕ ◦ f̃(t, X̃(t+ tn − tm))− ϕ ◦ f̃(t, X̃(t))



∣∣∣

=An,m +Bn,m + Cn,m.
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We have

An,m ≤ E

 1lΩε,n,m

sup
x∈Kε

d
(
f̃(t+tn−tm, x), f̃(t, x)

)
 ≤ sup

x∈Kε

d
(
f̃(t+tn−tm, x), f̃(t, x)

)

thus by the almost automorphy property of f̃ , we have limn limmAn,m =
0. Furthermore, Bn,m ≤ 2P(Ωc

ε,n,m) ≤ 2ε because ‖ϕ‖
BL

≤ 1. Finally,

limn limm Cn,m = 0 by boundedness and continuity of f̃(t, .) : Ck(R,X) →
Ck(R,X) and the convergence in distribution of X̃(t+ tn − tm) to X̃(t) for each
t ∈ R. As ε and ϕ are arbitrary, we have proved that

lim
n

lim
m

law
(
f̃(t+ tn − tm, X̃(t+ tn − tm))

)
= law

(
f̃(t, X̃(t))

)
,

thus the mapping t 7→ law
(
f̃(t, X̃(t))

)
is almost automorphic in distribution.

3. We use ideas of the proof of [7, Theorem 5.7]. Let (Y, Z) be a decompo-
sition of X , namely,

X = Y + Z, Y ∈ AADp(R,X), Z ∈ E(R,Lp(Ω,P,X), µ).

The function f(., X(.)) can be decomposed as

f(t,X(t)) = g(t, Y (t)) + f(t,X(t))− f(t, Y (t)) + h(t, Y (t)).

Let G(t) = g(t, Y (t)) and H(t) = f(t,X(t))− f(t, Y (t)) + h(t, Y (t)). By using
2. and (3.9), we see that t 7→ G(t) is in AADp(R,Y). Furthermore, by (3.9),
the continuity of f and the µ-pseudo almost automorphy in p-distribution of
X , we have, using Vitali’s theorem, that f(., X(.)) is a continuous Lp(Ω,P,Y)-
valued function. Indeed, if tn → t, then the sequence (‖X(tn)‖p) is uniformly
integrable, by continuity of the mapping t 7→ X(t), R → Lp(Ω,P,X), and this
entails that (f(tn, X(tn))) is uniformly integrable. To show that f(., X(.)) is in
PAADp(R,Y), it is enough to prove that H ∈ E(R,Lp(Ω,P,Y), µ).

Clearly H is in C(R,Lp(Ω,P,Y)), and bounded in Lp(Ω,P,X) (when p > 0),
by (3.9). As Y is in AAD(R,X), the family (Ỹ (t))t∈R = (Y (t+.))t∈R is uniformly
tight in Ck(R,X). For each ε > 0, there exists a compact subset Kε of Ck(R,X)
such that, for every t ∈ R,

P
{
Ỹ (t) ∈ Kε

}
≥ 1− ε.

By the Arzelà-Ascoli Theorem (see e.g. [24, Theorems 8.2.10 and 8.2.11]), this
implies that, for every ε > 0, and for every compact interval I of R, there exists
a compact subset Kε,I such that, for every t ∈ R;

P {(∀s ∈ I) Y (t+ s) ∈ Kε,I} ≥ 1− ε.

In particular, the family (Y (t))t∈R is tight, i.e., denoting Kε = Kε,{0}, we have,
for every t ∈ R,

P {Y (t) ∈ Kε} ≥ 1− ε.
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Let Ωε,t be the measurable subset of Ω on which Y (t) ∈ Kε. The function g is
uniformly continuous on R ×Kε by Proposition 2.1. We deduce by (3.8) that
there exists η(ε) > 0 such that, for all y1, y2 ∈ Kε,

‖y1 − y2‖ ≤ η(ε) ⇒ sup
t∈R

(
‖h(t, y1)− h(t, y2)‖

)
≤ ε.

We can find a finite sequence (yi)1≤i≤m in Kε such that

Kε ⊂
m⋃

i=1

B(yi, η(ε)).

We have, for every t ∈ R,

E
(
‖h(t, Y (t))‖ ∧ 1

)

≤E

(
min

1≤i≤m

(
1lΩε,t

‖h(t, Y (t)) − h(t, yi)‖ ∧ 1
))

+ max
1≤i≤m

‖h(t, yi)‖

+ E
(
1lΩc

ε,t
‖h(t, Y (t))‖ ∧ 1

)

≤ε+ max
1≤i≤m

‖h(t, yi)‖ ∧ 1 + P
(
Ωc

ε,t

)

≤ max
1≤i≤m

‖h(t, yi)‖+ 2ε.

Since for all i ∈ {1, . . . ,m}, the function t→ h(t, yi) satisfies

lim
r→∞

1

µ([−r, r])

∫

[−r,r]

‖h(t, yi)‖ dµ(t) = 0,

we deduce that, for every ε > 0,

lim sup
r→∞

1

µ([−r, r])

∫

[−r,r]

E
(
‖h(t, Y (t))‖ ∧ 1

)
dµ(t) ≤ 2ε.

This shows that t→ h(t, Y (t)) is in E(R,L0(Ω,P,Y), µ).
For p > 0, let δ > 0. From the uniform integrability of

(
‖h(t, Y (t))‖p

)
t∈R

(thanks to (3.9) and the uniform integrability of (‖Y (t)‖p)t∈R), we can choose
ε small enough such that, for any measurable A ⊂ Ω such that P(A) < ε,

sup
t∈R

E ( 1lA ‖h(t, Y (t)‖p) < δ.

Note also that, for p < 1, the mapping U 7→ (E ‖U‖p)1/p, Lp → R, does not sat-
isfy the triangular inequality. However, the mapping (U1, U2) 7→ E ‖U1 − U2‖p
is a distance on Lp. We deduce that, for all U1, U2, U3 ∈ Lp,

(E ‖U1 + U2 + U3‖p)1/p ≤ 31/p−1

(E ‖U1‖p)1/p + (E ‖U2‖p)1/p + (E ‖U3‖p)1/p


 .

To cover simultaneously the cases p < 1 and p ≥ 1, we set κ = max(1, 31/p−1).
Using the same method as in the case when p = 0, we get
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(
E ‖h(t, Y (t))‖p)1/p

≤κ
(
E
(
min

1≤i≤m
1lΩε,t

‖h(t, Y (t))− h(t, yi)‖p
))1/p

+ κ max
1≤i≤m

‖h(t, yi)‖

+ κ

(
E
(
1lΩc

ε,t
‖h(t, Y (t))‖p

))1/p

≤κ
(
max

1≤i≤m
‖h(t, yi)‖+ ε+ δ

)
.

We conclude, using the ergodicity of h(t, yi) for all i ∈ {1, . . . ,m}, that t →
h(t, Y (t)) is in E(R,Lp(Ω,P,Y), µ).

Secondly, we show that F (.) := f(., X(.))−f(., Y (.)) is in E(R,L0(Ω,P,Y), µ).
Let

Φ :

{
X → C(R,Y)
x 7→ f(., x).

Let us endow C(R,Y) with the distance d∞(ϕ, ψ) = supt∈R ‖ϕ(t) − ψ(t)‖.
By the uniform continuity assumption, Φ is continuous. By [7, Lemma 5.6], for
each ε > 0, there exists η > 0 such that, for all x, y ∈ X,


x ∈ Kε and d(x, y) ≤ η


 ⇒ d∞

(
Φ(x),Φ(y)

)
≤ ε. (3.10)

For each t ∈ R, let Ωε,t be the subset of Ω on which Y (t) ∈ Kε. Since Z(t) =
X(t) − Y (t), we obtain, the following inequalities, with the help of (3.10) and
Chebyshev’s inequality:

µ
{
t ∈ [−r, r]; E

(
‖F (t)‖ ∧ 1

)
> 3ε

}

µ([−r, r])
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≤µ
{
t ∈ [−r, r]; E

(
1lΩε,t

1l{‖Z(t)‖>η}(‖F (t)‖ ∧ 1)
)
> ε

}

µ([−r, r])

+
µ
{
t ∈ [−r, r]; E

(
1lΩε,t

1l{‖Z(t)‖≤η}(‖F (t)‖ ∧ 1)
)
> ε

}

µ([−r, r])

+
µ
{
t ∈ [−r, r]; E

(
1lΩc

ε,t
(‖F (t)‖ ∧ 1)

)
> ε

}

µ([−r, r])

=
µ
{
t ∈ [−r, r]; E

(
1lΩε,t

1l{‖Z(t)‖>η}(‖F (t)‖ ∧ 1)
)
> ε

}

µ([−r, r])

+
µ
{
t ∈ [−r, r]; E

(
1lΩc

ε,t
(‖F (t)‖ ∧ 1)

)
> ε

}

µ([−r, r])

≤µ {t ∈ [−r, r]; P{‖Z(t)‖ > η} > ε}
µ([−r, r])

+
µ
{
t ∈ [−r, r]; P(Ωc

ε,t) > ε
}

µ([−r, r])

≤
µ
{
t ∈ [−r, r]; 1

η E
(
‖Z(t)‖

)
> ε

}

µ([−r, r]) .

Since Z is in E(R,L0(Ω,P,X), µ), we have, for the above ε,

lim
r→∞

µ
{
t ∈ [−r, r]; E

(
‖Z(t)‖

)
> εη

}

µ([−r, r]) = 0,

which implies, using [7, Theorem 2.14] (see Remark 2.4),

lim sup
r→∞

1

µ([−r, r])

∫

[−r,r]

E
(
‖f(t,X(t))− f(t, Y (t))‖ ∧ 1

)
dµ(t) = 0.

Therefore t→ f(t,X(t))− f(t, Y (t)) is in E(R,L0(Ω,P,Y), µ).
Assume now that p > 0. If f is Lipschitz with respect to the second vari-

able, uniformly with respect to the first one, then ‖F (t)‖ ≤ K ‖Z(t)‖ for some
constant K, thus, trivially, F ∈ E(R,Lp(Ω,P,Y), µ).

3.3 Pseudo-almost automorphy in p-mean vs in p-distri-
bution

Let X = (Xt)t∈R be a continuous stochastic process with values in X, defined
on a probability space (Ω,F ,P). Let µ be a Borel measure on R satisfying (2.6).
Clearly, we have for all p ≥ 0,


X ∈ AA(R,Lp(Ω,P,X))


 ⇒


X ∈ AADp

f (R,X)

.
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Using Theorem 3.5, we can get more: if X satisfies (3.6), we deduce, for every
p ≥ 0,


X ∈ AA(R,Lp(Ω,P,X))


 ⇒


X ∈ AADp(R,X)


,


X ∈ PAA(R,Lp(Ω,P,X), µ)


 ⇒


X ∈ PAADp(R,X, µ)


.

The converse implications are false. Indeed, Example 3.1 shows that a pro-
cess which is almost automorphic in distribution is not necessarily almost auto-
morphic in probability or in p-mean, see also [3, Counterexample 2.16]3.

The same counterexample also shows that a process which is µ-pseudo almost
automorphic in p-distribution is not necessarily µ-pseudo almost automorphic
in probability or in p-mean.

4 Pseudo almost automorphic solutions to stochas-
tic differential equations

In the sequel, if X and Y are metric spaces, we denote CUB(X,Y) the space of
bounded uniformly continuous functions from X to Y.

We are given two separable Hilbert spaces H1 and H2, and we consider the
semilinear stochastic differential equation,

dXt = AX(t) dt+ f(t,X(t)) dt+ g(t,X(t)) dW (t), t ∈ R (4.1)

where A : Dom(A) ⊂ H2 → H2 is a densely defined closed (possibly unbounded)
linear operator, and f : R×H2 → H2, and g : R×H2 → L(H1,H2) are continuous
functions. In this section, we assume that:

(i) W (t) is an H1-valued Wiener process with nuclear covariance operator Q
(we denote by trQ the trace ofQ), defined on a stochastic basis (Ω,F , (Ft)t∈R,P).

(ii) A : Dom(A) → H2 is the infinitesimal generator of a C0-semigroup (S(t))t≥0

such that there exists a constant δ > 0 with

‖S(t)‖L(H2) ≤ e−δt, t ≥ 0.

(iii) There exists a constant K such that the mappings f : R × H2 → H2 and
g : R×H2 → L(H1,H2) satisfy

‖f(t, x)‖H2
+ ‖g(t, x)‖L(H1,H2) ≤ K(1 + ‖x‖H2

).

3Let us here point out an infortunate error in [38]: it is mistakenly said at the end of Section
1 of [38] that almost periodicity in square mean implies almost periodicity in distribution, and
that the converse is true under a tightness condition. The first claim is true under the tightness
condition (3.6), whereas Example 3.1, which is also Example 2.1 of [38], disproves the second
claim.
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(iv) The functions f and g are Lipschitz, more precisely there exists a constant
K such that

‖f(t, x)− f(t, y)‖H2
+ ‖g(t, x)− g(t, y)‖L(H1,H2) ≤ K‖x− y‖H2

for all t ∈ R and x, y ∈ H2.

(v) f ∈ PAAUb(R×H2,H2, µ) and g ∈ PAAUb(R×H2, L(H1,H2), µ) for some
given Borel measure µ on R which satisfies (2.6) and Condition (H).

By [7, Theorem 3.5], Condition (H) implies that E(R,X, µ) and PAA(R,X, µ)
are translation invariant.

In order to study the weighted pseudo almost automorphy property of solu-
tions of SDEs, we need a result on almost automorphy.

Theorem 4.1 (Almost automorphic solution of an equation with al-
most automorphic coefficients) Let the assumptions (i) - (iv) be fulfilled,
and assume furthermore the following condition, which is stronger than (v) :

(v’) f ∈ AAUb(R×H2,H2) and g ∈ AAUb(R×H2, L(H1,H2)).

Assume further that θ :=
K2

δ

(
1

2δ
+ trQ

)
< 1. Then there exists a unique

mild solution X to (4.1) in the space CUB
(
R,L2(P,H2)

)
of bounded uniformly

continuous mappings from R to L2(P,H2). Furthermore, X has a.e. continuous
trajectories, and X(t) satisfies, for each t ∈ R:

X(t) =

∫ t

−∞

S(t− s)f
(
s,X(s)

)
ds+

∫ t

−∞

S(t− s)g
(
s,X(s)

)
dW (s). (4.2)

If furthermore θ′ :=
4K2

δ

(
1

δ
+ trQ

)
< 1, then X is almost automorphic in

2-distribution.

The proof of this theorem is very similar to that of [31, Theorem 3.1], which
is the analogous result for SDEs with almost periodic coefficients. Only the
almost automorphy part needs to be adapted. Such an adaptation is provided
in [35], for SDEs driven by Lévy processes, but only for one-dimensional almost
automorphy. We give the proof of this part for the convenience of the reader.

Let us first recall the following result, which is given in a more general form
in [17]:

Proposition 4.2 ([17, Proposition 3.1-(c)]) Let τ ∈ R. Let (ξn)0≤n≤∞ be
a sequence of square integrable H2-valued random variables. Let (fn)0≤n≤∞

and (gn)0≤n≤∞ be sequences of mappings from R × H2 to H2 and L(H1,H2)
respectively, satisfying (iii) and (iv) (replacing f and g by fn and gn respectively,
and the constant K being independent of n). For each n, let Xn denote the
solution to
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Xn(t) = S(t− τ)ξn

+

∫ t

τ

S(t− s)fn
(
s,Xn(s)

)
ds+

∫ t

τ

S(t− s)gn
(
s,Xn(s)

)
dW (s).

Assume that, for every (t, x) ∈ R×H2,

lim
n→∞

fn(t, x) = f∞(t, x), lim
n→∞

gn(t, x) = g∞(t, x),

lim
n→∞

dBL(law (ξn,W ) , law (ξ∞,W )) = 0,

(the last equality takes place in M1,+ (H2 × C(R,H1))). Then we have in C([τ, T ];H2),
for any T > τ ,

lim
n→∞

dBL(law (Xn) , law (X∞)) = 0.

We need also a variant of Gronwall’s lemma.

Lemma 4.3 ([31, Lemma 3.3]) Let g : R → R be a continuous function such
that, for every t ∈ R,

0 ≤ g(t) ≤ α(t)+β1

∫ t

−∞

e−δ1(t−s)g(s) ds+ · · ·+βn
∫ t

−∞

e−δn(t−s)g(s) ds, (4.3)

for some locally integrable function α : R → R, and for some constants β1, . . . , βn ≥
0, and some constants δ1, . . . , δn > β, where β :=

∑n
i=1 βi. We assume that the

integrals in the right hand side of (4.3) are convergent. Let δ = min1≤i≤n δi.

Then, for every γ ∈]0, δ − β] such that
∫ 0

−∞ eγsα(s) ds converges, we have, for
every t ∈ R,

g(t) ≤ α(t) + β

∫ t

−∞

e−γ(t−s)α(s) ds.

In particular, if α is constant, we have

g(t) ≤ α
δ

δ − β
.

Proof of Theorem 4.1 The proof of the existence and uniqueness of a mild
solution to (4.1) in CUB

(
R,L2(P,H2)

)
is the same as that of Theorem 3.1 in

[31] or Theorem 3.3.1 in [37].
For the almost automorphy part, let (γ′n) be a sequence in R. Since f

and g are almost automorphic, there exists a subsequence (γn) and functions

f̂ : R×H2 → H2 and ĝ : R×H2 → L(H1,H2) such that

lim
n→∞

f(t+ γn, x) = f̂(t, x), lim
n→∞

f̂(t− γn, x) = f(t, x) (4.4)

lim
n→∞

g(t+ γn, x) = ĝ(t, x), lim
n→∞

ĝ(t− γn, x) = g(t, x). (4.5)

These limits are taken uniformly with respect to x in bounded subsets of H2.
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For each fixed integer n, we consider

Xn(t) =

∫ t

−∞

S(t− s)f(s+ γn, Xn(s)) ds+

∫ t

−∞

S(t− s)g(s+ γn, Xn(s)) dW (s)

the mild solution to

dXn(t) = AXn(t)dt+ f(t+ γn, Xn(t)) dt + g(t+ γn, Xn(t)) dW (t)

and

X̂(t) =

∫ t

−∞

S(t− s)f̂(s, X̂(s)) ds+

∫ t

−∞

S(t− s)ĝ(s, X̂(s)) dW (s)

the mild solution to

dX̂(t) = A(t)X̂(t)dt+ f̂(t, X̂(t)) dt+ ĝ(t, X̂(t)) dW (t).

Make the change of variable σ + γn = s, the process

X(t+ γn) =

∫ t+γn

−∞

S(t+ γn − s)f(s,X(s)) ds

+

∫ t+γn

−∞

S(t+ γn − s)g(s,X(s)) dW (s)

satisfies

X(t+ γn) =

∫ t

−∞

S(t− s)f(s+ γn, X(s+ γn))ds

+

∫ t

−∞

S(t− s)g(s+ γn, X(s+ γn))dW̃n(s),

where W̃n(s) = W (s + γn) −W (γn) is a Brownian motion with the same dis-
tribution as W (s). Thus the process X(. + γn) has the same distribution as
Xn.

Let us show that Xn(t) converges in quadratic mean to X̂(t) for each fixed
t ∈ R. We have

E‖Xn(t)− X̂(t)‖2
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=E

∥∥∥∥
∫ t

−∞

S(t− s)
(
f(s+ γn, Xn(s))− f̂(s, X̂(s))

)
ds

+

∫ t

−∞

S(t− s)
(
g(s+ γn, X

n(s))− ĝ(s, X̂(s))
)
dW (s)

∥∥∥∥
2

≤2E

∥∥∥∥
∫ t

−∞

S(t− s)
(
f(s+ γn, Xn(s))− f̂(s, X̂(s))

)
ds

∥∥∥∥
2

+ 2E

∫ t

−∞

S(t− s)
(
g(s+ γn, Xn(s))− ĝ(s, X̂(s))

)
dW (s)

∥∥∥∥
2

≤4E

∥∥∥∥
∫ t

−∞

S(t− s)
(
f(s+ γn, X

n(s))− f(s+ γn, X̂(s))
)
ds

∥∥∥∥
2

+ 4E‖
∫ t

−∞

S(t− s)
(
f(s+ γn, X̂(s))− f̂(s, X̂(s))

)
ds

∥∥∥∥
2

+ 4E‖
∫ t

−∞

S(t− s)
(
g(s+ γn, X

n(s))− g(s+ γn, X̂(s))
)
dW (s)

∥∥∥∥
2

+ 4E‖
∫ t

−∞

S(t− s)
(
g(s+ γn, X̂(s))− ĝ(s, X̂(s))

)
dW (s)

∥∥∥∥
2

≤I1 + I2 + I3 + I4.

Now, using (ii), (iv) and the Cauchy-Schwartz inequality, we obtain

I1 = 4E

∥∥∥∥
∫ t

−∞

S(t− s)
(
f(s+ γn, Xn(s))− f(s+ γn, X̂(s))

)
ds

∥∥∥∥
2

≤ 4E

(∫ t

−∞

‖S(t− s)‖‖f(s+ γn, Xn(s))− f(s+ γn, X̂(s))‖ ds
)2

≤ 4E

(∫ t

−∞

e−δ(t−s)‖f(s+ γn, Xn(s)) − f(s+ γn, X̂(s))‖ds
)2

≤ 4

(∫ t

−∞

e−δ(t−s) ds

)(∫ t

−∞

e−δ(t−s) E‖f(s+ γn, Xn(s))− f(s+ γn, X̂(s))‖2ds
)

≤ 4K2

δ

∫ t

−∞

e−δ(t−s) E‖Xn(s)− X̂(s)‖2ds.

Then we have

I2 = 4E

∥∥∥∥
∫ t

−∞

S(t− s)[f(s+ γn, X̂(s)) − f̂(s, X̂(s))]ds

∥∥∥∥
2

≤ 4E

(∫ t

−∞

e−δ(t−s)‖f(s+ γn, X̂(s)) − f̂(s, X̂(s))‖ds
)2

≤ 4E

(∫ t

−∞

e−δ(t−s)ds

)(∫ t

−∞

e−δ(t−s)‖f(s+ γn, X̂(s))− f̂(s, X̂(s))‖2ds
)
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≤ 4

(∫ t

−∞

e−δ(t−s)ds

)2

sup
s

E‖f(s+ γn, X̂(s))− f̂(s, X̂(s))‖2

≤ 4

δ2
sup
s

E‖f(s+ γn, X̂(s))− f̂(s, X̂(s))‖2,

which converges to 0 as n → ∞ because supt∈R E‖X̂(t)‖2 < ∞ which implies

that (X̂(t))t is tight relatively to bounded sets.
Applying Itô’s isometry, we get

I3 = 4E

∥∥∥∥
∫ t

−∞

S(t− s)
(
g(s+ γn, Xn(s))− g(s+ γn, X̂(s))

)
dW (s)

∥∥∥∥
2

≤ 4 trQE

∫ t

−∞

‖S(t− s)‖2 ‖g(s+ γn, Xn(s))− g(s+ γn, X̂(s))‖2ds

≤ 4 trQ

∫ t

−∞

e−2δ(t−s) E‖g(s+ γn, Xn(s))− g(s+ γn, X̂(s))‖2ds

≤ 4K2 trQ

∫ t

−∞

e−2δ(t−s) E‖Xn(s)− X̂(s)‖2ds,

and

I4 = 4E

∥∥∥∥
∫ t

−∞

S(t− s)
(
g(s+ γn, X̂(s))− ĝ(s, X̂(s))

)
dW (s)

∥∥∥∥
2

≤ 4 trQE

(∫ t

−∞

‖S(t− s)‖2‖g(s+ γn, X̂(s)) − ĝ(s, X̂(s))‖2ds
)

≤ 4 trQ

(∫ t

−∞

e−2δ(t−s)ds

)
sup
s∈R

E‖g(s+ γn, X̂(s))− ĝ(s, X̂(s))‖2

≤ 2 trQ

δ
sup
s∈R

E‖g(s+ γn, X̂(s))− ĝ(s, X̂(s))‖2.

For the same reason as for I2, the right hand term goes to 0 as n→ ∞.
We thus have

E‖Xn(t)− X̂(t)‖2 ≤ αn +
4K2

δ

∫ t

−∞

e−δ(t−s) E‖Xn(s)− X̂(s)‖2 ds

+ 4K2 trQ

∫ t

−∞

e−2δ(t−s) E‖Xn(s)− X̂(s)‖2 ds

for a sequence (αn) such that limn→∞ αn = 0. Furthermore, β := 4K2

δ +
4K2 trQ < δ. We conclude by Lemma 4.3 that

lim
n→∞

E‖Xn(t)− X̂(t)‖2 = 0,

hence Xn(t) converges in distribution to X̂(t). But, since the distribution of
Xn(t) is the same as that of X(t+ γn), we deduce that X(t+ γn) converges in
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distribution to X̂(t). By analogy and using (4.4), (4.5) we can easily prove that

X̂(t− γn) converges in distribution to X(t).

Note that the sequence (‖Xn(t)‖2) is uniformly integrable, thus (‖X(t+ γn)‖2)
is uniformly integrable too. As (γ′n) is arbitrary, this implies that the family

(‖X(t)‖2)t∈R is uniformly integrable, because, if not, there would exist a se-

quence (γ′n) and t ∈ R such that no subsequence of (‖X(t+ γ′n)‖2) is uniformly
integrable.

We have thus proved that X has almost automorphic one-dimensional 2-
distributions. To prove thatX is almost automorphic in 2-distribution, we apply
Proposition 4.2: for fixed τ ∈ R, let ξn = X(τ + γn), fn(t, x) = f(t + γn, x),
gn(t, x) = g(t+ γn, x). By the foregoing, (ξn) converges in distribution to some
variable Y (τ). We deduce that (ξn) is tight, and thus (ξn,W ) is tight also.
We can thus choose a subsequence (still noted (γn) for simplicity) such that
(ξn,W ) converges in distribution to (Y (τ),W ). Then, by Proposition 4.2, for
every T ≥ τ , X(.+ γn) converges in distribution on C([τ, T ];H2) to the (unique
in distribution) solution to

Y (t) = S(t− τ)Y (τ) +

∫ t

τ

S(t− s)f
(
s, Y (s)

)
ds+

∫ t

τ

S(t− s)g
(
s, Y (s)

)
dW (s).

Note that Y does not depend on the chosen interval [τ, T ], thus the convergence
takes place on C(R;H2). Similarly, Yn := Y (.−γn) converges in distribution on
C(R;H2) to X . Thus X is almost automorphic in 2-distribution.

We are now ready to prove our main result.

Theorem 4.4 (Weighted pseudo almost automorphic solution of an
equation with weighted pseudo almost automorphic coefficients) Let
the assumptions (i) - (v) be fulfilled. Let (f1, g1) and (f2, g2) be respectively the
decompositions of f and g, namely,

f = f1 + f2, g = g1 + g2,

f1 ∈ AAUb(R×H2,H2), f2 ∈ EUb(R×H2,H2, µ),

g1 ∈ AAUb(R×H2, L(H1,H2)), g2 ∈ EUb(R×H2, L(H1,H2), µ).

Assume that f1 and g1 satisfy the same growth and Lipschitz conditions (iii) -
(v) as f and g respectively, with same coefficient K. Assume furthermore that

θ′ :=
4K2

δ

(
1

δ
+ trQ

)
< 1.

Then there exists a unique mild solution X to (4.1) in the space CUB
(
R,L2(P,H2)

)

of bounded uniformly continuous mappings from R to L2(P,H2), X has a.e. con-
tinuous trajectories, and X satisfies (4.2) for every t ∈ R. Furthermore, X
is µ-pseudo almost automorphic in 2-distribution. More precisely, let Y ∈
CUB

(
R,L2(P,H2)

)
be the unique almost automorphic in distribution mild solu-

tion to

dY (t) = AY (t) dt+ f1(t, Y (t)) dt+ g1(t, Y (t)) dW (t), t ∈ R. (4.6)
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Then X has the decomposition

X = Y + Z, Z ∈ E
(
R,L2(P,H2), µ

)
.

The following technical lemma will be used several times.

Lemma 4.5 Let h ∈ E(R,R, µ). Then the function

t 7→
(∫ t

−∞

e−2δ(t−s)h2(s) ds

)1/2

is also in E(R,R, µ).

Proof by Condition (H) and [7, Theorem 3.9], we have, for every u ∈ R,

lim
r→+∞

1

µ([−r, r])

∫

[−r,r]

|h(t− u)| dµ(t) = 0.

We deduce, by Lebesgue’s dominated convergence theorem,

1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s)h2(s) ds

)1/2

dµ(t)

≤ 1
(
µ([−r, r])

)1/2
(∫

[−r,r]

∫ t

−∞

e−2δ(t−s)h2(s) ds dµ(t)

)1/2

=
1

(
µ([−r, r])

)1/2
(∫

[−r,r]

∫ +∞

0

e−2δuh2(t− u) du dµ(t)

)1/2

=
1

(
µ([−r, r])

)1/2
(∫ +∞

0

e−2δu

∫

[−r,r]

h2(t− u) dµ(t) du

)1/2

≤
(∫ +∞

0

e−2δu ‖h‖∞

∫
[−r,r] |h(t− u)| dµ(t)

µ([−r, r]) du

)1/2

→ 0 when r → +∞.

Proof of Theorem 4.4 The existence and the properties of Y are guaranteed
by Theorem 4.1.

As in Theorem 4.1, the existence and uniqueness of the mild solution X to
(4.1) are proved as in [31, Theorem 3.1], using the classical method of the fixed
point theorem for the contractive operator L on CUB

(
R,L2(P,H2)

)
defined by

LX(t) =

∫ t

−∞

S(t− s)f
(
s,X(s)

)
ds+

∫ t

−∞

S(t− s)g
(
s,X(s)

)
dW (s).

The solution X defined by (4.2) is thus the limit in CUB
(
R,L2(P,H2)

)
of

a sequence (Xn) with arbitrary X0 and, for every n, Xn+1 = L(Xn). To prove
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that X is µ-pseudo almost automorphic in 2-distribution we choose a special
sequence. Set

X0 = Y, Xn+1 = L(Xn), Zn = Xn − Y, n ∈ N.

Let us prove that each Zn is in E
(
R,L2(P,H2), µ

)
. We use some arguments of

the proof of [7, Theorem 5.7]. We have, for every n ∈ N and every t ∈ R,

Zn+1(t) = LXn(t)− Y (t)

=

∫ t

−∞

S(t− s)
(
f(s,Xn(s))− f(s, Y (s))

)
ds

+

∫ t

−∞

S(t− s)
(
g(s,Xn(s))− g(s, Y (s))

)
dW (s)

+

∫ t

−∞

S(t− s)
(
f(s, Y (s))− f1(s, Y (s))

)
ds

+

∫ t

−∞

S(t− s)
(
g(s, Y (s))− g1(s, Y (s))

)
dW (s)

=

∫ t

−∞

S(t− s)
(
f(s,Xn(s))− f(s, Y (s))

)
ds

+

∫ t

−∞

S(t− s)
(
g(s,Xn(s))− g(s, Y (s))

)
dW (s)

+

∫ t

−∞

S(t− s)f2(s, Y (s)) ds+

∫ t

−∞

S(t− s)g2(s, Y (s)) dW (s).

Assume that Zn ∈ E
(
R,L2(P,H2), µ

)
. By the Lipschitz condition (iv),

(
E ‖f(t,Xn(t))− f(t, Y (t))‖2

)1/2 ≤ K
(
E ‖Zn(t)‖2

)1/2

thus the mapping

f : t 7→
(
E ‖f(t,Xn(t))− f(t, Y (t))‖2

)1/2

is in E(R,R, µ). The same conclusion holds for

g : t 7→
(
E ‖g(t,Xn(t))− g(t, Y (t))‖2

)1/2
.

We get, using Lemma 4.5,

1

µ([−r, r])

∫

[−r,r]

(
E

∥∥∥∥
∫ t

−∞

S(t− s)
(
f(s,Xn(s))− f(s, Y (s))

)
ds

∥∥∥∥
2)1/2

dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s)f2(s) ds

)1/2

dµ(t)

→ 0 when r → +∞,
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and

1

µ([−r, r])

∫

[−r,r]

(
E

∥∥∥∥
∫ t

−∞

S(t− s)
(
g(s,Xn(s))− g(s, Y (s))

)
dW (s)

∥∥∥∥
2)1/2

dµ(t)

≤ (trQ)1/2
1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s)g2(s) ds

)1/2

dµ(t)

→ 0 when r → +∞.

To prove that Zn+1 is in E
(
R,L2(P,H2), µ

)
, there only remains to show that

the process
∫ t

−∞ S(t− s)f2(s, Y (s)) ds+
∫ t

−∞ S(t− s)g2(s, Y (s)) dW (s) belongs

to E
(
R,L2(P,H2), µ

)
. As Y is almost automorphic in distribution, the family

(Ỹ (t)) = (Y (t + .))t∈R is uniformly tight in Ck(R,H2). In particular, for each
ε > 0 there exists a compact subset Kε of Ck(R,H2) such that, for every t ∈ R,

P
{
Ỹ (t) ∈ Kε

}
≥ 1− ε.

By the Arzelà-Ascoli Theorem (e.g. [24, Theorems 8.2.10 and 8.2.11]), this im-
plies that, for every ε > 0, and for every compact interval I of R, there exists a
compact subset Kε,I of H2 such that, for every t ∈ R,

P {(∀s ∈ I) Y (t+ s) ∈ Kε,I} ≥ 1− ε.

In particular, the family (Y (t))t∈R is tight, i.e., denoting Kε = Kε,{0}, we have,
for every t ∈ R,

P {Y (t) ∈ Kε} ≥ 1− ε.

By the uniform continuity property of f2 and g2 on Kε, there exists η(ε) > 0
such that, for all x, y ∈ Kε,

‖x− y‖ ≤ η(ε) ⇒ sup
t∈R

max
(
‖f2(t, x)− f2(t, y)‖ , ‖g2(t, x)− g2(t, y)‖

)
≤ ε.

We can find a finite sequence y1, . . . , ym such that

Kε ⊂
m⋃

i=1

B(yi, η(ε)).

By [31, Remark 3.6]), the condition θ′ < 1 ensures that Y is bounded in
Lp(P,H2) for some p > 2 (the same result holds for X , but we do not need
it). Note that f2 = f − f1 and g2 = g − g1 satisfy a condition similar to
(iii), which implies that f2(., Y (.)) and g2(., Y (.)) are bounded in Lp(P,H2) and
Lp

(
P, L(H1,H2)

)
respectively. Let

Mp = sup
t∈R

max
(
E ‖f2(., Y (.))‖p ,E ‖g2(., Y (.))‖p

)2/p
.
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Let q = p/(p − 2). Let t ∈ R, and let Ωε,t be the measurable subset of Ω on
which Y (t) ∈ Kε. We have

(
E ‖f2(t, Y (t))‖2

)1/2

≤ min
1≤i≤m

(
E
(
1lΩε,t

‖f2(t, Y (t))− f(t, yi)‖2
))1/2

+ max
1≤i≤m

‖f2(t, yi)‖

+

(
E
(
1lΩc

ε,t
‖f2(t, Y (t))‖2

))1/2

≤ε+ max
1≤i≤m

‖f2(t, yi)‖+
(
P
(
Ωc

ε,t

))1/q
(
E ‖f2(t, Y (t))‖p

)2/p

≤ε+ max
1≤i≤m

‖f2(t, yi)‖+ ε1/qMp.

A similar result holds for E ‖g2(t, Y (t))‖2. Let us denote

E(ε) = ε+ ε1/qMp,

fε(t) = max
1≤i≤m

‖f2(s, yi)‖ ,

gε(t) = max
1≤i≤m

‖g2(s, yi)‖ .

Thanks to the ergodicity of f2 and g2, the functions fε and gε are in E(R,R, µ).
We have

1

µ([−r, r])

∫

[−r,r]

(
E

∥∥∥∥
∫ t

−∞

S(t− s)f2(s, Y (s)) ds

+

∫ t

−∞

S(t− s)g2(s, Y (s)) dW (s)

∥∥∥∥
2)1/2

dµ(t)
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≤ 1

µ([−r, r])

∫

[−r,r]

((∫ t

−∞

e−2δ(t−s) E ‖f2(s, Y (s))‖2 ds
)1/2

+ (trQ)1/2
(∫ t

−∞

e−2δ(t−s) E ‖g2(s, Y (s))‖2 ds
)1/2)

dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s) (fε(s) + E(ε))
2
ds

)1/2

dµ(t)

+ (trQ)1/2
1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s) (gε(s) + E(ε))
2
ds

)1/2

dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s)f2ε(s) ds

)1/2

dµ(t)

+ (trQ)1/2
1

µ([−r, r])

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s)g2ε(s) ds

)1/2

dµ(t)

+
1 + (trQ)1/2

µ([−r, r]) E(ε)

∫

[−r,r]

(∫ t

−∞

e−2δ(t−s) ds

)1/2

dµ(t).

In the right hand side of the last inequality, the last term is arbitrarily small and
both other terms converge to 0 when r goes to +∞, thanks to Lemma 4.5. We
have thus proved that Zn+1 is in E

(
R,L2(P,H2), µ

)
. We deduce by induction

that the sequence (Zn) lies in E
(
R,L2(P,H2), µ

)
.

Now, the sequence (Xn) converges to X in CUB
(
R,L2(P,H2)

)
, thus (Zn)

converges to Z := X − Y in CUB
(
R,L2(P,H2)

)
. Let ε > 0, and let n such that

sup
t∈R

(
E ‖Z(t)− Zn(t)‖2

)1/2 ≤ ε.

We have

1

µ([−r, r])

∫

[−r,r]

(
E ‖Z(t)‖2

)1/2
dµ(t)

≤ 1

µ([−r, r])

∫

[−r,r]

(
E ‖Z(t)− Zn(t)‖2

)1/2
dµ(t)

+
1

µ([−r, r])

∫

[−r,r]

(
E ‖Zn(t)‖2

)1/2
dµ(t)

≤ε+ 1

µ([−r, r])

∫

[−r,r]

(
E ‖Zn(t)‖2

)1/2
dµ(t).

As ε is arbitrary, this proves that Z ∈ E
(
R,L2(P,H2), µ

)
.

Remark 4.6 We did not use in the proof of Theorem 4.4 the hypothesis that
f2 ∈ EUb(R × H2,H2, µ) and g2 ∈ EUb(R × H2, L(H1,H2), µ). Actually, we
needed only to assume that, for each x ∈ H2, f2(., x) ∈ E(R,H2, µ) and g2(., x) ∈
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E(R, L(H1,H2), µ). By Remark 2.3 and the Lipschitz condition, this is equiva-
lent to assume that f2 ∈ EUc(R×H2,H2, µ) and g2 ∈ EUc(R×H2, L(H1,H2), µ).

Theorem 4.7 (Weighted pseudo almost periodic solution of an equa-
tion with weighted pseudo almost periodic coefficients) Assume the
same hypothesis as in Theorem 4.4, and that f1 and g1 are almost periodic with
respect to the first variable, uniformly with respect to the second variable in
bounded sets. Then (with obvious definitions) the process Y of Theorem 4.4 is
almost periodic in 2-distribution, thus the process X is µ-pseudo almost periodic
in 2-distribution.

Proof The proof is exactly the same as that of Theorem 4.4, replacing Theorem
4.1 by [31, Theorem 3.1].

Acknowledgements We thank an anonymous referee for pointing out an
error in a previous version.
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[7] Joël Blot, Philippe Cieutat, and Khalil Ezzinbi. Measure theory and pseudo
almost automorphic functions: new developments and applications. Non-
linear Anal., 75(4):2426–2447, 2012.
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[16] Gh. Cenuşă and I. Săcuiu. Some properties of random functions almost
periodic in probability. Rev. Roumaine Math. Pures Appl., 25(9):1317–
1325, 1980.

[17] G. Da Prato and C. Tudor. Periodic and almost periodic solutions for
semilinear stochastic equations. Stochastic Anal. Appl., 13(1):13–33, 1995.

[18] Toka Diagana. Weighted pseudo almost periodic functions and applications.
C. R. Math. Acad. Sci. Paris, 343(10):643–646, 2006.

[19] Toka Diagana. Pseudo almost periodic functions in Banach spaces. Nova
Science Publishers, Inc., New York, 2007.

[20] Toka Diagana. Weighted pseudo-almost periodic solutions to some differ-
ential equations. Nonlinear Anal., 68(8):2250–2260, 2008.

[21] Toka Diagana. Existence of pseudo-almost automorphic solutions to some
abstract differential equations with Sp-pseudo-almost automorphic coeffi-
cients. Nonlinear Anal., 70(11):3781–3790, 2009.

[22] Toka Diagana. Evolution equations in generalized Stepanov-like pseudo
almost automorphic spaces. Electron. J. Differential Equations, pages No.
49, 19, 2012.

[23] Hui-Sheng Ding, Chao Deng, and Gaston M. N’Guérékata. Almost auto-
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differential equations driven by Lévy noise. J. Funct. Anal., 266(3):1115–
1149, 2014.

[36] Carlos Lizama and Gaston M. N’Guérékata. Bounded mild solutions for
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[43] Gaston M. N’Guérékata and Alexander Pankov. Stepanov-like almost au-
tomorphic functions and monotone evolution equations. Nonlinear Anal.,
68(9):2658–2667, 2008.

[44] Octav Onicescu and Vasile I. Istrătescu. Approximation theorems for ran-
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