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Inverse problem on a tree-shaped network:

unified approach for uniqueness.

Lucie Baudouin∗, Masahiro Yamamoto†

November 11, 2014

Abstract

In this article, we prove uniqueness results for coefficient inverse problems regarding wave,
heat or Schrödinger equation on a tree-shaped network, as well as the corresponding stability
result of the inverse problem for the wave equation. The objective is the determination of the
potential on each edge of the network from the additional measurement of the solution at all
but one external end points. Several results have already been obtained in this precise setting
or in similar cases, and our main goal is to propose a unified and simpler method of proof of
some of these results. The idea which we will develop for proving the uniqueness is to use a more
traditional approach in coefficient inverse problems by Carleman estimates. Afterwards, using an
observability estimate on the whole network, we apply a compactness-uniqueness argument and
prove the stability for the wave inverse problem.

Keywords: networks, inverse problem, Carleman estimate.

AMS subject classifications: 35R30, 93C20, 34B45

1 Introduction and main results

Systems known as multi-link structures have large applicative relevance and their mathematical
study attracts a growing interest. The modeling of the evolution of these structures is generally
quite complex and can be often described with systems of partial differential equations on networks
or graphs. As large as the literature on this subject can be (see e.g. [12] and the references therein),
from a mathematical and scientific point of view, there are still many necessary works needed to
complete the theory. Regarding more specific topics such as the control and inverse problems on
networks, a full theory cannot be developed by simply superposing the existing results for partial
differential equations on one-dimensional domains. Indeed, the interaction between the different
components of a multi-link structure may generate unexpected phenomena, as [12] pointed out
mainly for vibrations on networks.

Concerning other operators on metric graphs, they can arise in many applications, e.g., chem-
istry or engineering, and we refer to high-temperature granular superconductors [1] as one exam-
ple. One can look deeper in the review papers [13], [22] (or even in the introduction of [15]) for
more information on this topic.

Besides, inverse problems have been studied only recently on networks, and we refer to the
articles [7] and [2] for uniqueness results with the boundary control approach, or in [15] and [3]
for uniqueness and stability results with Carleman estimates.

Here we discuss the same type of inverse problems for the wave and the Schrödinger equations
as in [15] and [3], while for the heat equation, our inverse problem concerns the initial-boundary
value problem and is different from the case of the heat equation treated in [15] where initial
values are also unknown in the inverse problem. Our purpose is to propose a unified and simpler
method to prove some of these results by using previously known results for the inverse problem
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of determining a coefficient.

Let us now give the detailed mathematical framework within which we will work. Let Λ be
a tree-shaped network composed of N + 1 open segments (ej)j=0,1,...,N of length ℓj , linked by
N1 internal node points belonging to the set Π1 and let us denote by Π2 the set of N2 exterior
end points where only one segment starts. By a “tree-shaped network”, we mean that Λ does
not contain any closed loops, and and one can see for instance the network pictured in Figure 1.
Moreover we assume that at each interior node point, at least three segments ej meet.

We define any function on the network f : Λ → R by f = (f0, ..., fN ), where fj = f |ej denotes
the restriction of f to the edge ej . Moreover, for any internal node P ∈ Π1 where nP segments,
say e1, ..., enP , meet, we set

[f ]P :=

nP∑

j=1

fj(P ).

We consider on this plane 1-d tree-shaped network Λ either wave or heat or even Schrödinger
equations, with a different potential term x 7→ pj(x) in L

∞(ej) on each segment.
Our first system of interest is the following 1-d wave equation on the network Λ:





∂2
t uj − ∂2

xuj + pj(x)uj = 0 ∀j ∈ {0, 1, ..., N}, (x, t) ∈ ej × (0, T ),
u(Q, t) = h(t), ∀Q ∈ Π2, t ∈ (0, T ),
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Λ,

(1)

assuming some compatibility condition between the boundary and initial data. Moreover we
assume the continuity and what is called the Kirchhoff law at any internal node P ∈ Π1, which
are given by

uj(P, t) = uk(P, t) =: u(P, t), ∀j, k ∈ {1, ..., nP } , 0 < t < T, (2)

[ux(t)]P :=

nP∑

j=1

∂neuj(P, t) = 0, 0 < t < T. (3)

Here and henceforth we choose an orientation of Λ such that to two endpoints of each segment e,
correspond an initial node I(e) and a terminal node T (e), and further define the outward normal
derivative ∂neuj at a node P of ej by

∂neuj(P, t) =

{
−∂xuj(P, T ), if P ∈ I(ej),
∂xuj(P, T ), if P ∈ T (ej).

Since one can prove the unique existence of solution to (1) - (3) in a suitable function space
(from Lions and Magenes [26] or more explicitly in [23, Chapter 3], and see also Lemma 1 below),
we denote the solution by u[p](x, t), and we set u[p] = (u[p]0, ..., u[p]N ).

Moreover we consider the following heat system on the same network Λ





∂tuj − ∂2
xuj + pj(x)uj = 0 ∀j ∈ {0, 1, ..., N}, ∀(x, t) ∈ ej × (0, T ),

∂xu(Q, t) = 0, ∀Q ∈ Π2,∀t ∈ (0, T ),
u(x, 0) = u0(x), ∀x ∈ Λ,

(4)

and the Schrödinger system on the network Λ





i∂tuj − ∂2
xuj + pj(x)uj = 0 ∀j ∈ {0, 1, ..., N}, ∀(x, t) ∈ ej × (0, T ),

u(Q, t) = h(t), ∀Q ∈ Π2,∀t ∈ (0, T ),
u(x, 0) = u0(x), ∀x ∈ Λ,

(5)

both under the same node conditions (2) and (3). Here and henceforth we set i =
√
−1. If there

is no possible confusion, by the same notation u[p] we denote the solution to (4) or (5) under
(2) and (3). Again the uniqueness, existence and regularity of solutions to these systems can be
deduced by a standard method (see e.g. [26]).

This article focuses on results on networks concerning the following question.

Inverse Problem: Is it possible to retrieve the potential p everywhere in the whole network Λ
from measurements at all external nodes except one?
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We will address the following two fundamental theoretical questions concerning this coefficient
inverse problem. Let QN2 ∈ Π2 be arbitrarily fixed.

Uniqueness: Do the equalities of the measurements ∂xu[p](Q, t) = ∂xu[q](Q, t) for all t ∈ (0, T )
and Q ∈ Π2 \ {QN2} imply p = q on Λ?

Stability: Can we estimate, in appropriate norms, the difference of two potentials p− q on Λ by
the difference of the corresponding measurements ∂xu[p](Q, t)− ∂xu[q](Q, t) for all t ∈ (0, T ) and
Q ∈ Π2 \ {QN2} ?

As it will be clear when reading the proof, we cannot expect the uniqueness by data ∂xu[p](Q, t)
at external nodes Q except more than one.

Q7

P1

P2

Q1 Q2

Q3

P3

Q4

P4

Q5

Q6

no measurement measurement

Figure 1: A star-shaped network with 10 edges (N = 9, N1 = 4, N2 = 7).

This inverse problem is nonlinear and we will give here the proof of the uniqueness of the
solution with an argument which do not use a global Carleman estimate. Very recent papers
on coefficient inverse problems on networks, as Baudouin, Crépeau and Valein [3] for the wave
equation, and Ignat, Pazoto and Rosier [15] for the heat and the Schrödinger equations, give
indeed the stability and therefore the uniqueness in the determination of the potential from
boundary measurements using appropriate global Carleman estimates.

For the wave, the heat and the Schrödinger equations, our method yields the same uniqueness
results as in the existing works, and we basically want to give a technically different approach
of the same questions. However, our method is widely applicable to other equations such as a
system of beam equations on networks and can yields novel uniqueness results. The question of
the proof of the Lipschitz stability in the case of the wave equation will be addressed afterwards,
using a compacteness-uniqueness argument, and relies on the observability estimate on the whole
network which was already proved in the literature in several situations. However, this Lipschitz
stability result given in Theorem 4 will require more regularity of the solutions than [3], as a
consequence of the use of the compactness-uniqueness argument.

Concerning the precise topic we are considering, the bibliography lies in two different domains,
namely coefficient inverse problems for partial differential equation on the one hand and control
and stabilization in networks on the other hand.

Actually, as the first answer to the uniqueness for a coefficient inverse problem with a single
measurement, we refer to Bukhgeim and Klibanov [9]. Later on, the works of Klibanov [19] and
Yamamoto [33] are also important references related to our topic. Here we do not intend to give
an exhaustive list of references but still, we can mention a recent comprehensive survey [20]. After
the proof of uniqueness using the basic 1-d result on the basis of local Carleman estimates, the
idea beneath this article is to take advantage of an observability estimate to obtain the Lipschitz
stability of the inverse problem with a compactness-uniqueness argument (see [33]). We can refer
to Isakov [18] which addresses other techniques linked to the study of inverse problems for several
partial differential equations.
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Nowadays, many results on the stability of inverse problems are derived directly from global
Carleman estimates (e.g., [3] and [15]) for networks, or also in [5] for the related case of a hyper-
bolic transmission equation. We should underline that this “global” method goes back to [16] and
[17] for the wave equation. One should also know that studies on inverse problems and controlla-
bility of partial differential equations share some technical materials such as Carleman estimates
and observability inequalities. In the particular network setting, we would like to make use of
classical results such as well-known 1-d local Carleman estimates and observability estimates on
the network, borrowed from control studies, in order to obtain first uniqueness and then stability
results, using a compactness-uniqueness argument (e.g. [34], [29]).

Besides, the control, observation and stabilization problems of networks have been objects
of recent and intensive researches such as e.g., Dáger and Zuazua [12], Lagnese, Leugering and
Schmidt [23], Zuazua [37]. More specifically, the control being only applied at one single end
of the network, the articles Dáger [10], Dáger and Zuazua [11, 12] prove controllability results
for the wave equation on networks, using observability inequalities under assumptions about the
irrationality properties of the ratios of the lengths of the strings. We can also underline that
many results of controllability on networks concern only the wave equation without lower order
terms (see [23] and [31] for instance). However, it is difficult to consider such measurements at a
more limited number of nodes for the inverse problem and we do not consider the measurements
at less external nodes than Π2 \ {QN2}.

In the sequel, we shall use the following notations:

L
γ(Λ) = {f ; fj ∈ L

γ(ej), ∀j ∈ {0, 1, ..., N}} , γ ≥ 1,

H
1
0 (Λ) =

{
f ; fj ∈ H

1(ej), ∀j ∈ {0, 1, ..., N}, fj(P ) = fk(P ) if ej and ek meet at P ,

∀P ∈ Π1, and f(Q) = 0, ∀Q ∈ Π2

}
.

For shortness, for f ∈ L1(Λ), we often write,

∫

Λ

fdx =

N∑

j=0

∫

ej

fj(x)dx,

where the integral on ej is oriented from I(ej) to T (ej). Then the norms of the Hilbert spaces
L2(Λ) and H1

0 (Λ) are defined by

‖f‖2L2(Λ) =

∫

Λ

|f |2 dx and ‖f‖2H1
0
(Λ) =

∫

Λ

|∂xf |2 dx.

We are ready to state our first main result:

Theorem 1 (Uniqueness) Let r > 0 be an arbitrary constant. Assume that p, q ∈ L∞(Λ) and
the initial value u0 satisfies

|u0(x)| ≥ r > 0, a.e. in Λ.

Assume further that the solutions u[p], u[q] of (1)-(2)-(3) belong to

C
1([0, T ];H1(Λ)) ∩ C2([0, T ];L2(Λ)).

Then there exists sufficiently large T0 > 0 such that for all T ≥ T0, if

∂xu[p](Q, t) = ∂xu[q](Q, t) for each t ∈ (0, T ) and Q ∈ Π2 \ {QN2},

then we have p = q in Λ.

The proof of this result in Section 2 relies on the uniqueness for the determination of potential
in the one-dimensional wave equation and a “removing” argument.

Our argument gives the uniqueness for the inverse problems of determination of potentials on
tree-shaped networks also for the heat and the Schrödinger equations using only measurements at
N2−1 exterior end points. In fact, our arguments in proving the uniqueness for the wave and the
Schrödinger equations are essentially the same and are based on local Carleman estimates, while
the uniqueness for the inverse heat problem is reduced to the uniqueness for the corresponding
inverse wave problem (in a sense to be detailed later).
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Theorem 2 (Uniqueness for the heat inverse problem) Assume that p, q ∈ L∞(Λ), the
initial value u0 satisfies

|u0(x)| ≥ r > 0, a.e. in Λ

for some constant r, and the solutions u[p] and u[q] to (4)-(2)-(3) satisfy

∂
j
t u[p], ∂

j
t u[q] ∈ H

1(0, T ;L2(Λ)) ∩ L2(0, T ;H2(Λ)), j = 0, 1.

Then there exists T > 0 such that if

u[p](Q, t) = u[q](Q, t) for each t ∈ (0, T ) and Q ∈ Π2 \ {QN2},

then we have p = q in Λ.

We note that our inverse heat problem is an inverse problem for the initial-boundary value
problem and is different from Ignat, Pazoto and Rosier [15] where an initial value is known but
value at positive time is given. In general dimensions, the uniqueness for the inverse problem of
determining coefficients in a parabolic equation by overdetermining boundary data on arbitrary
subboundary is an open problem if we are not given u(x, t0) over the whole domain at t0 > 0. In
other words, even the uniqueness the inverse heat problem for the classical initial-boundary value
problem is not solved except for the measurement subboundary is a sufficienly large part of the
whole boundary, because one cannot have relevant Carleman estimates for the heat equation for
t ≥ 0.

Theorem 3 (Uniqueness for the Schrödinger inverse problem) Assume that p, q ∈ L∞(Λ),
the initial value u0 satisfies

|u0(x)| ≥ r > 0, a.e. in Λ

for some constant r, and the solutions u[p] and u[q] to (5)-(2)-(3) satisfy

∂
j
t u[p], ∂

j
t u[q] ∈ H

1(0, T ;L2(Λ)) ∩ L2(0, T ;H2(Λ)), j = 0, 1.

Then there exists T > 0 such that

∂xu[p](Q, t) = ∂xu[q](Q, t) for each t ∈ (0, T ) and Q ∈ Π2 \ {QN2},

then we have p = q in Λ.

In Theorems 2 and 3, we may be able to relax the regularity condition for u[p] and u[q], but we
do not want to go into further details in this article.

One can refer to [3] for the same inverse problem in the wave equation on a network where the
proof is detailed in a star-shaped network but is actually generalizable to tree-shaped networks.
The paper [15] treats the Schrödinger case in a star-shaped network and needs measurements at
all external nodes. We do not know any uniqueness result for non-tree graphs, which are graphs
containing a closed cycle.

For M ≥ 0, we introduce the set

L
∞
M (Λ) =

{
q = (q0, ..., qN ); qj ∈ L

∞(ej), ∀j ∈ {0, 1, ..., N} such that ‖q‖L∞(Λ) ≤M
}
.

For the inverse problem in the wave equation case, we state

Theorem 4 (Stability) LetM > 0, r > 0 and K > 0 be arbitrarily fixed constants. Assume that
p ∈ L∞

M (Λ) and the solutions u[p] and u[q] to (1)-(2)-(3) satisfy u[p], u[q] ∈ C1([0, T ];H1(Λ)) ∩
C2([0, T ];L∞(Λ)) with

‖u‖C1([0,T ];H1(Λ))∩C2([0,T ];L∞(Λ)) ≤ K. (6)

Assume also that the initial data u0 satisfies

|u0(x)| ≥ r > 0, a.e. in Λ.

Then there exists sufficiently large T0 > 0 such that for all T ≥ T0, there exists a constant
C = C(T,M, r,K,Λ) > 0 such that

||q − p||L2(Λ) ≤ C

N2−1∑

j=1

‖∂xu[p]j(Qj)− ∂xu[q]j(Qj)‖H1(0,T ) . (7)
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One can notice that for our proof based on a compactness-uniqueness argument, we assume a
little more regularity than in Theorem 1.

This paper is composed of five sections. The proof of uniqueness in the inverse problem in
the wave equation case (Theorem 1) is presented in Section 2. Section 3 is devoted to the proofs
of Theorems 2 and 3. Theorem 4 is finally proven in Section 5 by a compactness-uniqueness
argument and an observability estimate on the whole network.

We conclude this section with a classical result on the existence and regularity of solutions of
the wave system and provide the corresponding energy estimates for the solution which we will
need later.

Lemma 1 Let Λ be a tree-shaped network and assume that p ∈ L∞
M (Λ), g ∈ L1(0, T ;L2(Λ)),

u0 ∈ H1
0 (Λ) and u1 ∈ L2(Λ). We consider the 1-d wave equation on the network with the

conditions (2) and (3):





∂2
t u− ∂2

xu+ p(x)u = g(x, t), in Λ× (0, T ),
u(Q, t) = 0, in (0, T ), Q ∈ Π2,

uj(P, t) = uk(P, t), in (0, T ), P ∈ Π1, j, k ∈ {1, ..., nP },
[∂xu(t)]P = 0, in (0, T ), P ∈ Π1,

u(0) = u0, ∂tu(0) = u1, in Λ.

(8)

The Cauchy problem is well-posed and equation (8) admits a unique weak solution

u ∈ C([0, T ];H1
0 (Λ)) ∩ C1([0, T ];L2(Λ)).

Moreover there exists a constant C = C(Λ, T,M) > 0 such that for all t ∈ (0, T ), the energy

E(t) = ||∂tu(t)||2L2(Λ) + ||∂xu(t)||2L2(Λ), 0 ≤ t ≤ T

of the system (8) satisfies

E(t) ≤ C
(
||u0||2H1

0
(Λ) + ||u1||2L2(Λ) + ‖g‖2L1(0,T,L2(Λ))

)
, 0 ≤ t ≤ T (9)

and we also have the following trace estimate

N2∑

j=1

‖∂xuj(Qj)‖2L2(0,T ) ≤ C
(
||u0||2H1

0
(Λ) + ||u1||2L2(Λ) + ||g||2L1(0,T,L2(Λ))

)
. (10)

The proof of the unique existence of solution to equation (8) can be deduced from [26], vol.1,
Chapter 3 or [23, Chapter 3].

Estimate (9) is a classical result which can be formally obtained by multiplying the main
equation in (8) by ∂tuj , summing up for j ∈ {0, ..., N} the integral of this equality on (0, T )× ej
and using some integrations by parts. Estimate (10) is a hidden regularity result which can be
obtained by multipliers technique (we refer to [25, Chapter 1]). Formally, for the particular case
of a star-shaped network of vertex P = 0 for example, it comes from the multiplication of (8) by
m(x)∂xuj , where m ∈ C1(Λ̄) with m(0) = 0 and mj(lj) = 1, summing up the integrals of this
equality on (0, T )× (0, lj) over j ∈ {0, ..., N} and using integrations by parts. Here we omit the
details and we concentrate on the inverse problems.

2 Uniqueness of the inverse problem - wave network

case

As already evoked in the introduction, the proof of Theorem 1 will use a well-known uniqueness
result for the inverse problem by a local Carleman estimate. We state it in the following lemma.

Lemma 2 Let r > 0, p ∈ L∞(0, ℓ) and T > ℓ. Let f ∈ L2(0, ℓ), R ∈ H1(0, T ;L∞(0, ℓ)) and
∂tR ∈ L∞((0, ℓ)× (0, T )) and assume that |R(x, 0)| ≥ r > 0 a.e. in (0, ℓ).
Let y satisfy {

∂2
t y − ∂2

xy + p(x)y = f(x)R(x, t), (x, t) ∈ (0, ℓ)× (0, T ),
y(x, 0) = 0, ∂ty(x, 0) = 0, x ∈ (0, ℓ),

(11)
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Assume further that
y ∈ C

1([0, T ];H1(0, ℓ)) ∩ C2([0, T ];L2(0, ℓ)). (12)

Therefore, if y(0, t) = ∂xy(0, t) = 0 for all t ∈ (0, T ), then we have f ≡ 0 in (0, ℓ).
Moreover if 0 < T1 < T − ℓ, then we obtain y(x, t) = 0 for 0 < x < ℓ and 0 < t < T1.

This lemma is a classical uniqueness result for the inverse source problem in a wave equation
and the proof can be done by the method in [9] on the basis of a Carleman estimate and the
even extension of y to negative times t. We further refer to Imanuvilov and Yamamoto [16],
[17], Klibanov [19], Klibanov and Timonov [21] for example, and for completeness, we prove it in
Appendix A.

Proof of Theorem 1. We define the following operation of “removing” segments from the
tree-shaped network Λ, starting from all the external nodes except for one where we make mea-
surements. We divide the proof into three steps.

Step 1. From Lemma 2, we can easily prove that if ej is a segment of Λ which ends at an
external nodeQj ∈ Π2, and if the solutions u[p] and u[q] to (1) satisfy ∂xu[p](Qj , t) = ∂xu[q](Qj , t)
for all t ∈ (0, T ), then p = q on the segment ej and u[p](x, t) = u[q](x, t) for all x ∈ ej and all
t ∈ (0, T1), for T1 ∈ (0, T − ℓ).
Indeed, if we set y = u[p]j − u[q]j , then






∂2
t y − ∂2

xy + pj(x)y = (qj − pj)(x)u[q]j(x, t) (x, t) ∈ (0, ℓ)× (0, T ),
y(Qj , t) = 0, t ∈ (0, T ),
y(x, 0) = 0, ∂ty(x, 0) = 0, x ∈ (0, ℓ),

(13)

and noting that T > 0 is sufficiently large, we can apply Lemma 2 on ej since ∂xy(Qj , t) = 0
for all t ∈ (0, T ). Moreover we note that u[q]j ∈ C1([0, T ];H1(ej)) ⊂ H1(0, T ;L∞(ej)) and
∂tu[q]j ∈ C([0, T ];H1(ej)) ⊂ L∞(ej × (0, T )) by the Sobolev embdedding, and we also note
|u0
j (x)| ≥ r > 0 on ej , so that R := u[q]j satisfies the required assumptions. Thus, Lemma 2

allows to obtain pj ≡ qj on ej and consequently u[p]j(x, t) = u[q]j(x, t) in ej × (0, T1).

Therefore, for any segment e with the end points P and Q such that Q ∈ Π2 \ {QN2}, we see
that p = q on e and (u[p]|e)(P, t) = (u[q]|e)(P, t), (∂xu[p]|e)(P, t) = (∂xu[q]|e)(P, t) for 0 < t < T1.

Let Π2
1 be all the interior node points P of segments of Λ having their other end point in

Π2 \ {QN2}. We note that Π2
1 ⊂ Π1. Applying the above argument to all the exterior end points

except for QN2 , we have

u[p]j(P, t) = u[q]j(P, t), ∂xu[p]j(P, t) = ∂xu[q]j(P, t)

for each P ∈ Π2
1, 0 < t < T1 and j ∈ {1, ..., N3}. Here by e1, ..., eN3 , we enumerate the segments

connecting a point in Π2
1 and a point in Π2 \ {QN2}.

Step 2. Let P ∈ Π1 be a given node such that nP segments, say, e1, ..., enP meet at P and
e1, ..., enP−1 connect P with exterior end points, say, Q1, ..., QnP−1 ∈ Π2 and

u[p]j(P, t) = u[q]j(P, t),
∂xu[p]j(P, t) = ∂xu[q]j(P, t), j ∈ {1, ..., nP − 1}, 0 < t < T1.

(14)

Using the continuity (2) and the Kirchhoff law (3) at node P , we can deduce that

u[p]nP (P, t) = u[q]nP (P, t),
∂xu[p]nP (P, t) = ∂xu[q]nP (P, t), 0 < t < T1.

Step 3. Let Λ2 be the graph generated from Λ by removing e1, ..., eN3 . Since T0 > 0 is
sufficiently large by assumption in Theorem 1, when applying the same argument as in Step 1 to
the graph Λ2, the corresponding time T1 > 0 just adds up to the largest one induced by Step 2.
Thus we can repeat this operation to obtain the sets Λ3, and then Λ4,..., Λn. Hence, let Lk be
the set of all the open segments of Λk, Π

k
1 the set of the interior node points of Λk, Π

k
2 the set

of external endpoints of Λk. Setting Λ1 = Λ, we note that L1 = {e0, ..., eN}, Π1
1 = {P1, ..., PN1},

Π1
2 = {Q1, ..., QN2}.
By (2) and (3), we see that

Πk−1
1 ⊃ Πk1 , ∀k ∈ N
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and
Λk = L

k ∪Πk1 ∪Πk2 , L
k ∩Πk1 = L

k ∩Πk2 = Πk1 ∩Πk2 = ∅, ∀k ∈ N.

In order to complete the proof, it is sufficient to prove there exists n ∈ N such that

Λn = ∅. (15)

Assume contrarily that Λn 6= ∅ for all n ∈ N. Since every segment with exterior end point in
Π2 \ {QN2}, can be removed (meaning that u[p] = u[q] on the segment) by the above operation,
we obtain that there exists n0 ∈ N such that Λn0 = Ln0 ∪Πn0

1 , i.e., Πn0
2 = ∅. Then Λn0 must be

a closed loop since it possesses no external end points. By the assumption, there exist no closed
loops in a tree-shape network. This is a contradiction and thus the proof of (15), and therefore,
the one of Theorem 1 is completed. �

3 Uniqueness for the inverse problem - Schrödinger

and heat network cases

3.1 Proof of Theorem 2 - Heat case.

We apply an argument similar to the proof of Theorem 4.7 in [19] which is based on the reduction
of the inverse heat problem to an inverse wave problem by a kind of Laplace transform called the
Reznitzkaya transform (e.g., [18], [24], [30]).

First we define an operator ∆Λ in L2(Λ) by ∆Λu = ∂2
xuj in ej , for all j ∈ {0, 1, ...., N} with

D(∆Λ) =
{
u = (u0, ..., uN); uj ∈ H2(ej), ∂xu(Q) = 0 for Q ∈ Π2, uj satisfying (2) and (3)

}
.

Here, ej is oriented from I(ej) to T (ej) when defining ∂2
x. Then, similarly to [15], we can prove

that ∆Λ is self-adjoint and (∆Λu, u)L2(Λ) :=
∑N

j=0(∂
2
xuj , uj)L2(ej )

≤ 0. Therefore ∆Λ generates

an analytic semigroup et∆Λ , t > 0 (e.g., Pazy [28], Tanabe [32]).
Since p ∈ L∞(Λ), the perturbed operator ∆Λ − p generates an analytic semigroup (e.g.,

Theorem 2.1 in [28], p.80). Therefore by the semigroup theory (e.g., [28], [32]), we know that
the solutions u[p](x, t) and u[q](x, t) of equation (4) are analytic in t for any fixed x ∈ Λ. More
precisely, u[p], u[q] : (0,∞) −→ H2(Λ) are analytic in t > 0.

By uH [p] we denote the solution of the heat system (4) and by uH [q] the corresponding solution
when the potential is q. By the analyticity in t and the assumption in the theorem, we have

u
H [p](Q, t) = u

H [q](Q, t), ∀Q ∈ Π2 \ {QN2}, ∀t > 0. (16)

On the other hand, we denote by ũ[p] the solution of the wave system





∂2
t uj − ∂2

xuj + pj(x)uj = 0, ∀j ∈ {0, 1, ..., N}, ∀(x, t) ∈ ej × (0,∞),
∂xu[p](Q, t) = 0, ∀Q ∈ Π2,∀t ∈ (0,∞),
u[p](x, 0) = 0, ∂tu(x, 0) = u0(x), ∀x ∈ Λ

(17)

and by ũ[q] the corresponding solution when the potential is q. Then we obtain (e.g., [24, pp.251-
252]) that

1

2
√
πt3

∫ ∞

0

τe
− τ2

4t ũ[p](x, τ )dτ

satisfies (4). The uniqueness of solution to equation (4) implies

u
H [p](x, t) =

1

2
√
πt3

∫ ∞

0

τe
− τ2

4t ũ[p](x, τ )dτ, ∀x ∈ Λ, ∀t > 0

and the same equality with q. By assumption (16), we obtain

1

2
√
πt3

∫ ∞

0

τe
− τ2

4t (ũ[p]− ũ[q])(Q, τ )dτ = 0, ∀Q ∈ Π2 \ {QN2}, ∀t > 0.

By the change of variables s = 1
4t

and τ 2 = η, we obtain
∫ ∞

0

e
−sη(ũ[p]− ũ[q])(Q,

√
η)dη = 0, ∀Q ∈ Π2 \ {QN2}, ∀s > 0

and the injectivity of the Laplace transform yields

(ũ[p]− ũ[q])(Q,
√
η) = 0, ∀Q ∈ Π2 \ {QN2},∀η > 0. (18)

Applying the same argument as in Section 2 for the wave system, we prove p = q in Λ. Thus the
proof of Theorem 2 is completed. �



9

3.2 Proof of Theorem 3 - Schrödinger case.

It is sufficient to prove the following lemma.

Lemma 3 Let r > 0 and p ∈ L∞(0, ℓ), f ∈ L2(0, ℓ) be real-valued, and T > 0 be arbitrarily fixed.
We consider a 1-d Schrödinger equation:





i∂ty − ∂2
xy + p(x)y = f(x)R(x, t), ∀(x, t) ∈ (0, ℓ)× (0, T ),

y(0, t) = 0, ∀t ∈ (0, T ),
y(x, 0) = 0, ∀x ∈ (0, ℓ),

where R ∈ H1(0, T ;L∞(0, ℓ)), ∂tR ∈ L∞((0, ℓ)× (0, T )) and |R(x, 0)| ≥ r > 0 a.e. in (0, ℓ).
If ∂xy(0, t) = 0 for all t ∈ (0, T ), then we have f = 0 in (0, ℓ) and y = 0 in (0, ℓ)× (0, T ).

Using the same method as the one for the proof of Lemma 2, this lemma is proved by means
of the following Carleman estimate:

Lemma 4 For x0 6∈ [0, ℓ] and β > 0 arbitrarily fixed, we set

Sv = i∂tv − ∂
2
xv, ϕ(x, t) = e

λ(|x−x0|
2−βt2)

, (x, t) ∈ (0, ℓ)× (0, T ),

where λ > 0 is chosen sufficiently large. Then, there exists s0 > 0 and a constant C > 0 such that

∫ T

0

∫ ℓ

0

(s|∂xv|2 + s
3|v|2)e2sϕdxdt ≤ C

∫ T

0

∫ ℓ

0

|Sv|2e2sϕdxdt

for all s > s0 and all v ∈ L2(0, T ;H2
0 (0, ℓ)) ∩H1

0 (0, T ;L
2(0, ℓ)).

This is a Carleman estimate with regular weight function λ(|x−x0|2 −βt2) and for the proof,
we refer to e.g., [35, Lemma 2.1], [36]. Concerning a Carleman estimate for the Schrödinger
equation in a bounded domain Ω ⊂ R

n with singular weight function ϕ, we can refer for example
to [6, 27].

On the basis of this lemma, the proof of Lemma 3 is done by a usual method by Bukhgeim
and Klibanov [9] by using the extension of y to −T < t < 0 by y(·, t) = y(·,−t) and a cut-off
argument and the proof is similar to the proof of Lemma 2 in Appendix. We omit the details.

4 Observability in the wave network

The proof of the stability result will rely strongly on the classical result of observability that
we are now presenting and proving. One should specifically mention a survey [37] and books
[12], [23], where the question of observability in networks of strings (or wave equations) is widely
explored in different cases.

We concentrate here on the case where the available observation comes from all but one
external nodes, in a setting with a system of wave equations with potential. Since most of the
literature on string networks focus only on the wave equation without lower order terms (see [23]
or [12] for instance), we detail here how to obtain the observability result for the wave equation
with potential. In some other cases, we can prove the observability inequality directly by a global
Carleman estimate (e.g., [3]).

Theorem 5 (Observability inequality) On the tree-shaped network Λ, assuming p ∈ L∞(Λ),
let us consider the system of 1-d wave equations under the continuity and Kirchhoff law assump-
tions (2) and (3):






∂2
t u− ∂2

xu+ p(x)u = 0, in Λ× (0, T ),
u(Q, t) = 0, in (0, T ), ∀Q ∈ Π2,

uj(P, t) = uk(P, t), in (0, T ), ∀P ∈ Π1, ∀j, k ∈ {1, ..., nP },
[∂xu(t)]P = 0, in (0, T ),∀P ∈ Π1,

u(x, 0) = 0, ∂tu(x, 0) = a(x), in Λ,

(19)

Then there exists a constant T̃ such that for all T > T̃ , the following observability estimate holds
for u solution of (19):

∫

Λ

|a(x)|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xuj(Qj , t)|2dt. (20)
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Proof of Theorem 5. Let v be the solution of the system






∂2
t v − ∂2

xv = −pu ∀(x, t) ∈ Λ× (0, T ),
v(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
vj(x, 0) = 0, ∂tvj(x, 0) = 0, ∀j ∈ {0, 1, ..., N}, x ∈ ej ,

under conditions (2) and (3). Then (10) in Lemma 1 and p ∈ L∞(Λ) yields

N2∑

j=1

∫ T

0

|∂xvj(Qj , t)|2dt ≤ C

∫ T

0

∫

Λ

|pu|2dxdt ≤ C

∫ T

0

∫

Λ

|u|2dxdt. (21)

Setting w = u− v, we still have (2), (3) and the following equation






∂2
tw − ∂2

xw = 0 ∀(x, t) ∈ Λ× (0, T ),
w(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
wj(x, 0) = 0, ∂twj(x, 0) = a(x), ∀x ∈ Λ.

Therefore, using the existing observability inequality in the case where p = 0 (see e.g., [12, 23]),
we have ∫

Λ

|a(x)|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xwj(Qj , t)|2dt.

Hence, by (21), we have

∫

Λ

|a(x)|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xuj(Qj , t)|2dt+C

N2−1∑

j=1

∫ T

0

|∂xvj(Qj , t)|2dt

≤ C

N2−1∑

j=1

∫ T

0

|∂xuj(Qj , t)|2dt+ C

∫ T

0

∫

Λ

|u|2dxdt. (22)

Therefore a usual compactness-uniqueness argument yields the observability inequality (20). In-
deed, if (20) is not satisfied, then we can assume that there exists an ∈ L2(Λ), n ∈ N such
that

‖an‖L2(Λ) = 1, ∀n ∈ N and lim
n→+∞

N2−1∑

j=1

∫ T

0

|∂xunj (Qj , t)|2dt = 0. (23)

Here unj is the solution to (19) with initial value an. Using the energy estimate (9) of Lemma 1
to un, we obtain

||un(t)||2H1
0
(Λ) + ‖∂tun(t)‖2L2(Λ) ≤ C||an||2L2(Λ) ≤ C.

Since the embedding C([0, T ];H1
0 (Λ)) ∩ C1([0, T ];L2(Λ)) ⊂ L2(Λ × (0, T )) is compact, we can

extract a subsequence, denoted again by the same notation, such that (un)n∈N∗ is convergent in
L2(Λ). Therefore, using (22), we obtain

∫

Λ

|an − a
m|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xunj (Qj , t)|2dt+ C

N2−1∑

j=1

∫ T

0

|∂xumj (Qj , t)|2dt

+ C

∫ T

0

∫

Λ

|un − u
m|2dxdt

so that (23) and lim
n,m→∞

‖un−um‖L2(Λ×(0,T )) = 0 imply lim
n,m→∞

||an−am||2L2(Λ) = 0. Consequently,

there exists a limit a0 such that lim
n→+∞

a
n = a0 in L2(Λ) and from (23), we have ‖a0‖L2(Λ) = 1

and the solution u[a0] of system (19) with initial data a0 that satisfies

∂xuj [a0](Q, t) = 0, ∀t ∈ (0, T ),∀Q ∈ Π2.

The goal is now to deduce u[a0] ≡ 0 in Λ × (0, T ), and for it we will need a classical unique
continuation result for a 1-d wave equation and a “removing” argument similar to the one in the
proof of Theorem 1.
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Lemma 5 We choose T > ℓ. Let y ∈ C([0, T ];H1(0, ℓ)) ∩ C1([0, T ];L2(0, ℓ)) satisfy






∂2
t y(x, t)− ∂2

xy(x, t) + p(x)y = 0, (x, t) ∈ (0, ℓ)× (0, T ),
y(0, t) = 0, t ∈ (0, T ),
y(x, 0) = 0, x ∈ (0, ℓ).

If ∂xy(0, ·) ∈ L2(0, T ) and ∂xy(0, t) = 0 for 0 < t < T , then for 0 < T1 < T−ℓ we have y(x, t) = 0
for 0 < x < ℓ and 0 < t < T1.

This is a type of unique continuation and for completeness, the proof is given in Appendix B.
On the basis of Lemma 5, with (0, ℓ) replaced by ej for j ∈ {1, . . . , N2 − 1}, we follow the ideas
of Steps 1 - 3 of the proof of Theorem 1 to obtain that u[a0] ≡ 0 everywhere in Λ× (0, T ), which
implies ∂tu[a0](x, 0) = a0(x) = 0 for all x ∈ Λ. It finally yields a contradiction with ‖a0‖L2(Λ) = 1,
so that this ends the proof of Theorem 5. �

5 Proof of the stability for the wave network inverse

problem

This section is devoted to the proof of Theorem 4. The proof relies on a compactness-uniqueness
argument and the observability estimate (Theorem 5) on the whole network.

Let us denote by u[p] the solution of (1) under the assumptions (2) and (3). Henceforth we
always assume the conditions (2) and (3). We consider y = ∂t (u[p]− u[q]) that satisfy





∂2
t y − ∂2

xy + q(x)y = (q − p)∂tu[p] ∀(x, t) ∈ Λ× (0, T ),
y(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
y(x, 0) = 0, ∂ty(x, 0) = (q − p)u0(x), ∀x ∈ Λ,

(24)

We set f = q − p. We define ψ and φ as the solutions of






∂2
t ψ − ∂2

xψ + q(x)ψ = f∂tu[p] ∀(x, t) ∈ Λ× (0, T ),
ψ(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
ψ(x, 0) = 0, ∂tψ(x, 0) = 0, ∀x ∈ Λ,

(25)

and 




∂2
t φ− ∂2

xφ+ q(x)φ = 0 ∀(x, t) ∈ Λ× (0, T ),
φ(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
φ(x, 0) = 0, ∂tφ(x, 0) = fu0(x), ∀x ∈ Λ.

(26)

Then y = ψ + φ. We can apply Theorem 5 to equation (26) so that

∫

Λ

|fu0|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xφj(Qj , t)|2dt. (27)

On the other hand, taking the time derivative of equation (25) and applying (10) from Lemma 1,
by (6) we have

N2∑

j=1

‖∂xψj(Qj)‖2H1(0,T ) ≤ C
(
||fu1||2L2(Λ) + ||f∂tu[p]||2W1,1(0,T,L2(Λ))

)

≤ 2CK2||f ||2L2(Λ), (28)

where we used that u[p] ∈ C1([0, T ],H1(Λ)) ∩ C2([0, T ], L∞(Λ)) yields ∂tu[p] ∈ C([0, T ];L∞(Λ))
so that u1 ∈ L∞(Λ) and (6) gives ‖u1‖L∞(Λ) ≤ K.
By the compact embedding H1(0, T ) ⊂ L2(0, T ), we see that the operator Ψ : L2(Λ) → L2(0, T )
defined by

(Ψf)(t) =

N2∑

j=1

∂xψj(Qj , t), 0 < t < T

is compact.
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Therefore, since we have |u0(x)| ≥ r > 0 almost everywhere in Λ, by (27) and (28), we obtain

||f ||2L2(Λ) ≤ C

∫

Λ

|fu0|2dx ≤ C

N2−1∑

j=1

∫ T

0

|∂xφj(Qj , t)|2dt

≤ C

N2−1∑

j=1

∫ T

0

|∂xyj(Qj , t)|2dt+ C

N2∑

j=1

∫ T

0

|∂xψj(Qj , t)|2dt

≤ C

N2−1∑

j=1

∫ T

0

|∂xyj(Qj , t)|2dt+ C||Ψf ||2L2(0,T ) (29)

≤ C

N2−1∑

j=1

‖∂xu[p]j(Qj)− ∂xu[q]j(Qj)‖2H1(0,T ) + C||Ψf ||2L2(0,T ).

We aim at proving that we can get rid of the second term on the right-hand side of the last
estimate in order to obtain (7). Again, a compactness-uniqueness argument will be the key and
it relies here on the compactness of Ψ and the uniqueness result of Theorem 1.

In fact, by contradiction, we assume that

||f ||L2(Λ) ≤ C

N2−1∑

j=1

‖∂xyj(Qj)‖L2(0,T ) ,

which is equivalent to (7), does not hold. Then one can assume that there exists fn ∈ L2(Λ), n ∈ N

such that

‖fn‖L2(Λ) = 1, ∀n ∈ N and lim
n→+∞

N2−1∑

j=1

∥∥∂xynj (Qj)
∥∥
L2(0,T )

= 0. (30)

Here yn = (yn0 , ..., y
n
N ) is the solution to





∂2
t y
n − ∂2

xy
n + q(x)yn = fn∂tu[p] ∀(x, t) ∈ Λ× (0, T ),

yn(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
yn(x, 0) = 0, ∂ty

n(x, 0) = (fnu0)(x), ∀x ∈ Λ.

First, since the sequence (fn)n∈N is bounded in L2(Λ), we can extract a subsequence denoted
again by (fn)n∈N such that it converges towards some f0 ∈ L2(Λ) weakly in L2(Λ). Since Ψ is a
compact operator, we obtain therefore the strong convergence result

lim
n,m→∞

‖Ψfn −Ψfm‖L2(0,T ) = 0. (31)

Then, from (29) we can write

||fn−fm||2L2(Λ) ≤ C

N2−1∑

j=1

∥∥∂xynj (Qj)
∥∥2

L2(0,T )
+C

N2−1∑

j=1

∥∥∂xymj (Qj)
∥∥2

L2(0,T )
+C||Ψfn−Ψfm||2L2(Λ)

and deduce from (30) and (31) that lim
n,m→∞

‖fn − f
m‖L2(Λ) = 0, so that there exists f0 ∈ L2(Λ)

such that lim
n→∞

‖fn − f
0‖L2(Λ) = 0 with

‖f0‖L2(Λ) = 1. (32)

By Lemma 1, there exists a solution y0 ∈ C([0, T ];H1
0 (Λ)) ∩ C1([0, T ];L2(Λ)) to the system (24)

with initial data (0, f0u0) and source term f0∂tu[p]. Moreover, using the trace estimate (10) of
Lemma 1 for the solution yn of system (24) with initial data fnu0 and source term fn∂tu[p], we
obtain (in the same way we proved (28))

N2−1∑

j=1

∥∥∂xynj (Qj)
∥∥2

L2(0,T )
≤ C

(
||fnu0||2L2(Λ) + ||fn∂tu[p]||2L1(0,T,L2(Λ))

)
≤ 2CK2‖fn‖2L2(Λ).

Thus we can write

lim
n→∞

N2−1∑

j=1

∥∥∂xynj (Qj)− ∂xy
0
j (Qj)

∥∥2

L2(0,T )
≤ 2CK2 lim

n→∞
‖fn − f

0‖2L2(Λ) = 0,
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which, combined with (30), gives

∂xy
0
j (Qj , t) = 0, ∀Qj ∈ Π2 \ {QN2},∀t ∈ (0, T ).

Therefore we have




∂2
t y

0 − ∂2
xy

0 + q(x)y0 = f0∂tu[p] ∀(x, t) ∈ Λ× (0, T ),
y0(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
y0(x, 0) = 0, ∂ty

0(x, 0) = (f0u0)(x), ∀x ∈ Λ

and ∂xy
0(Q, t) = 0, for all Q ∈ Π2 \ {QN2} and t ∈ (0, T ). The last objective is now to infer that

f0 ≡ 0 in Λ, and in order to be able to apply the unique continuation given by Lemma 2 and the
“removing” argument of the proof of Theorem 1, we need to work on a primitive of y0.

Therefore, we set ỹ(x, t) =

∫ t

0

y
0(x, ξ)dξ for (x, t) ∈ Λ × (0, T ). In view of the initial data

y0(x, 0) = 0 and ∂ty
0(x, 0) = (f0u0)(x) for all x ∈ Λ, we can verify that ỹ ∈ C1([0, T ];H1

0 (Λ)) ∩
C2([0, T ];L2(Λ)) and ỹ satisfies





∂2
t ỹ − ∂2

xỹ + q(x)ỹ = f0u[p] ∀(x, t) ∈ Λ× (0, T ),
ỹ(Q, t) = 0, ∀Q ∈ Π2, t ∈ (0, T ),
∂xỹ(Q, t) = 0, ∀Q ∈ Π2 \ {QN2}, t ∈ (0, T ),
ỹ(x, 0) = ∂tỹ(x, 0) = 0, x ∈ Λ.

Since T > T0, noting that |u[p](x, 0)| = |u0(x)| > 0 for x ∈ Λ and using Lemma 2, we repeat the
arguments of the proof of Theorem 1 to conclude that f0 = 0 everywhere in Λ. This contradicts
(32) and thus the proof of Theorem 4 is complete. �
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A Proof of Lemma 2

We begin this appendix by recalling the following known Carleman estimate:

Lemma 6 We assume that p0 ∈ L∞((0, ℓ)× (−T, T )), x0 > ℓ, β ∈ (0, 1), and we set

ψ(x, t) = |x− x0|2 − βt
2
, ϕ(x, t) = e

λψ(x,t)
,

where we fix λ > 0 sufficiently large. Then there exist contants s0 > 0 and C > 0 independent of
s, such that

∫ T

−T

∫ ℓ

0

(s|∂xv|2 + s|∂tv|2 + s
3
v
2)e2sϕdxdt ≤ C

∫ T

−T

∫ ℓ

0

∣∣∂2
t v − ∂

2
xv + p0v

∣∣2 e2sϕdxdt (33)

for all s ≥ s0 and v ∈ L2(−T, T ;H1
0 (Ω)) satisfying ∂2

t v − ∂2
xv ∈ L2((0, ℓ) × (−T, T )), v(·,±T ) =

∂tv(·,±T ) = 0, in (0, ℓ), and ∂xv(0, ·) = ∂xu(ℓ, ·) = 0 in (−T, T ).

Proof. This result is not new and the proof of this Lemma can be done in several ways. For
convenience of the reader, we refer to [4] where the detailed proof of a more general Carleman
estimate, given in Theorem 2.1, can be read.

Lemma 6 is a particular case of [4, Theorem 2.1]. On the one hand, by choosing large s0 > 0,
a Carleman estimate for the operator ∂2

t − ∂2
x + p0 with p0 ∈ L∞((0, ℓ)× (−T, T )) is very easily

deduced from a Carleman estimate in the case of p0 = 0 which is given by Theorem 2.1. Moreover
we notice that the weight function used in Theorem 2.1 is ψ0(x, t) = |x − x0|2 − βt2 + C0 with
some constant C0, but, since λ is fixed large enough in our lemma, we do not need C0 as we can
write 2sϕ = 2seλψ = 2seλψ0e−λC0 and set s := se−λC0 .

The Carleman estimate for a hyperbolic equation is well-known for functions with compact
supports, i.e. u ∈ H2

0 ((0, ℓ) × (0, T )), and we can refer to several works for the proof , e.g.,
Hörmander [14] for a general theory, Klibanov and Timonov [21], and Chapter 1 in Bellassoued
and Yamamoto [8] where a direct proof is given. In view of such a classical Carleman estimates,
Lemma 6 can also be proved by approximating the right-hand side by suitable smooth functions. �

Proof of Lemma 2.
Our proof is based on Bukhgeim and Klibanov [9] but here we use the argument from Imanuvilov
and Yamamoto [16].

Step 1. First we extend y in (0, T ) to (−T, T ) by setting y(x, t) = y(x,−t) for t < 0. We also
set R(x, t) = R(x,−t) for t < 0. By the initial conditions in (11), we can directly verify that
y ∈ C1([−T, T ];H1

0 (0, ℓ)) ∩ C2([−T, T ];L2(0, ℓ)) and






∂2
t y − ∂2

xy + p(x)y = f(x)R(x, t) (x, t) ∈ (0, ℓ)× (−T, T ),
y(0, t) = 0, ∂xy(0, t) = 0, t ∈ (−T, T ),
y(x, 0) = 0, ∂ty(x, 0) = 0, x ∈ (0, ℓ).

In order to apply Lemma 6, we need to design and use a cut-off function χ because y does not
satisfy all the expected zero boundary conditions.

Let 0 < δ0 < δ and set x0 = ℓ+ δ0. Since T > ℓ, we can choose δ > 0 small enough such that

ℓ2 + 2ℓδ < T 2. Therefore we can choose 0 < β < 1 such that ℓ2+2ℓδ
T2 < β < 1, i.e.,

√
x2
0 − δ2

β
< T. (34)
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ℓ

T

0

ψ
=
0

ψ
=
δ 2

ψ
=
4δ 2

ψ
=
9δ 2

x0Ω

Figure 2: Isovalues of the weight function ψ(x, t) = |x−x0|2−βt2, β ∈ (0, 1), for Ω = (0, ℓ), x0 = ℓ+δ0,
0 < δ0 < δ and T = x0/

√
β.

Indeed, we easily have: x2
0 − δ2 = (ℓ+ δ0)

2 − δ2 = ℓ2 + 2ℓδ0 + δ20 − δ2 < ℓ2 + 2ℓδ < βT 2.
With this β and x0, we set

ψ(x, t) = |x− x0|2 − βt
2
, ϕ(x, t) = e

λψ(x,t)

with large fixed λ > 0 (see Figure 2). We further set

Qµ = {(x, t); 0 < x < ℓ, ψ(x, t) > µ
2}.

Then we can easily verify Qδ ⊂ (0, x0 − δ) ×
(
−
√

x2
0
−δ2

β
,

√
x2
0
−δ2

β

)
so that, by (34), we have

Qδ ⊂ (0, ℓ)× (−T, T ).
Thus, we define a cut-off function χ ∈ C∞(R+ × R) such that 0 ≤ χ ≤ 1 and

χ(x, t) =

{
1, (x, t) ∈ Q3δ,

0, (x, t) ∈ ((0, ℓ)× (−T, T )) \Q2δ
(35)

and we set
z = χ(∂ty)e

sϕ
.

Then, in the sense of distribution in (0, ℓ)× (−T, T ), we easily have

∂tz = (∂tχ)(∂ty)e
sϕ + χ(∂2

t y)e
sϕ + s(∂tϕ)z,

∂xz = (∂xχ)(∂ty)e
sϕ + χ(∂x∂ty)e

sϕ + sχ(∂xϕ)(∂ty)e
sϕ,

∂2
t z = χ(∂3

t y)e
sϕ + sχ(∂tϕ)(∂

2
t y)e

sϕ + s(∂2
tϕ)z + s(∂tϕ)∂tz +Q1(s)e

sϕ,

∂2
xz = χ(∂2

x∂ty)e
sϕ + sχ(∂xϕ)(∂x∂ty)e

sϕ + s(∂2
xϕ)z + s(∂xϕ)∂xz +Q2(s)e

sϕ,

(36)

where Q1(s) denotes a linear combination of ∂jt y with j = 0, 1, 2 whose coefficients include the
time derivatives of χ and the power sk with k = 0, 1 as factors, and Q2(s) denotes a linear
combination of ∂jx∂ty with j = 0, 1 whose coefficients include the space derivatives of χ and the
power sk with k = 0, 1 as factors. Therefore we obtain

∂
2
t z − ∂

2
xz + pz = χ∂t(∂

2
t y − ∂

2
xy + py)esϕ + sχ((∂tϕ)∂

2
t y − (∂xϕ)(∂x∂ty))e

sϕ

+ s(∂2
tϕ− ∂

2
xϕ)z + s((∂tϕ)∂tz − (∂xϕ)∂xz) + (Q1(s)−Q2(s))e

sϕ

= χf(x)(∂tR)e
sϕ + sχ((∂tϕ)∂

2
t y − (∂xϕ)(∂x∂ty))e

sϕ

+ s(∂2
tϕ− ∂

2
xϕ)z + s((∂tϕ)∂tz − (∂xϕ)∂xz) + (Q1(s)−Q2(s))e

sϕ
. (37)

Now if we set w = χ∂ty (such that z = esφw), then, by (37) with s = 0 and the regularity
assumptions of y and R, we have

∂
2
tw − ∂

2
xw + pw = χf∂tR + (Q1(0)−Q2(0)) in L2((0, ℓ)× (−T, T )).
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Since y(0, t) = ∂xy(0, t) = 0, −T < t < T , we see by (35) that w ∈ C([−T, T ];H1
0 (0, ℓ)) ∩

C1([−T, T ];L2(0, ℓ)), ∂jtw(x,±T ) = 0 for 0 < x < ℓ and j = 0, 1, ∂xw(0, t) = ∂xw(ℓ, t) = 0 for
−T < t < T and ∂2

tw − ∂2
xw = χf∂tR + Q1(0) − Q2(0) − pw ∈ L2((0, ℓ) × (−T, T )). Hence we

can apply the Carleman estimate of Lemma 6 to w:

∫ T

−T

∫ ℓ

0

(s|∂xw|2 + s|∂tw|2 + s
3
w

2)e2sϕdxdt

≤ C

∫ T

−T

∫ ℓ

0

χ
2|f |2|∂tR|2e2sϕdxdt+ C

∫ T

−T

∫ ℓ

0

|Q1(0)−Q2(0)|2e2sϕdxdt. (38)

Now, since
χ∂x∂ty = ∂xw − (∂ty)∂xχ and χ∂

2
t y = ∂tw − (∂ty)∂tχ,

we have∫

Q2δ

(s|χ∂x∂ty|2 + s|χ∂2
t y|2 + s

3|χ∂ty|2)e2sϕdxdt

≤ 2

∫

Q2δ

(s|∂xw|2 + s|∂tw|2 + s
3
w

2)e2sϕdxdt+ 2

∫

Q2δ

(s|∂ty|2|∂xχ|2 + s|∂ty|2|∂tχ|2)e2sϕdxdt.

Therefore, from the definition (35) of the cut-off function, and using (38), the definition of Q3δ

and the regularity assumptions (12) on y, we obtain

∫

Q2δ

(s|χ∂x∂ty|2 + s|χ∂2
tw|2 + s

3|χ∂ty|2)e2sϕdxdt

≤ C

∫

Q2δ

|f |2e2sϕdxdt+C
∫

Q2δ\Q3δ

|Q1(0)−Q2(0)|2e2sϕdxdt+Cs
∫

Q2δ

(|∂xχ|2+|∂tχ|2)|∂ty|2e2sϕdxdt

≤ C

∫

Q2δ

|f |2e2sϕdxdt+ Cs
2
e
2se9λδ2

(39)

since derivatives of χ, as well as Q1(0)−Q2(0), are vanishing everywhere outside Q2δ \Q3δ.

Step 2. Next we set Q+
δ = {(x, t) ∈ Qδ; t > 0}. Then

Q
+
δ =

{
(x, t); 0 < x < x0 − δ, 0 < t <

√
|x− x0|2 − δ2

β

}
.

Multiplying (37) by ∂tz and integrating over Q+
δ , we have

∫

Q
+
δ

(∂2
t z − ∂

2
xz + pz)∂tz dxdt =

4∑

k=1

Ik

:=

∫

Q
+

δ

χf(∂tR)e
sϕ(∂tz) dxdt+ s

∫

Q
+

δ

χ((∂tϕ)∂
2
t y − (∂xϕ)(∂x∂ty))(∂tz)e

sϕ
dxdt

+ s

∫

Q
+

δ

{(∂2
t ϕ− ∂

2
xϕ)z + ((∂tϕ)∂tz − (∂xϕ)∂xz)}∂tz dxdt

+

∫

Q
+
δ

(Q1(s)−Q2(s))(∂tz)e
sϕ
dxdt.

On the one hand, by integration by parts and using z = ∂xz = ∂tz = 0 on ∂Q+
δ \ {t = 0} and

z = ∂xz = 0 on ∂Q+
δ ∩ {t = 0}, we have
∣∣∣∣∣

∫

Q
+

δ

(∂2
t z − ∂

2
xz + pz)∂tz dxdt

∣∣∣∣∣ =
1

2

∫ x0−δ

0

|∂tz(x, 0)|2dx.

Moreover, by ∂ty(x, 0) = 0 for 0 < x < ℓ and z = χ(∂ty)e
sϕ, we have ∂tz(x, 0) = χ(x, 0)∂2

t y(x, 0)e
sϕ(x,0).

Therefore, using (11) and |R(x, 0)| ≥ r on [0, ℓ], we obtain

∣∣∣∣∣

∫

Q
+

δ

(∂2
t z − ∂

2
xz + pz)∂tz dxdt

∣∣∣∣∣ =
1

2

∫ x0−δ

0

|χ(x, 0)|2|∂2
t y(x, 0)|2e2sϕ(x,0)dx

=
1

2

∫ x0−δ

0

|χ(x, 0)|2|f(x)|2|R(x, 0)|2e2sϕ(x,0)dx ≥ C

∫ x0−δ

0

|χ(x, 0)|2|f(x)|2e2sϕ(x,0)dx. (40)
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On the other hand, by ∂tR ∈ L∞((0, ℓ)× (0, T )) and the Cauchy-Schwarz inequality, we have

I1 ≤ C

∫

Q
+
δ

χ
2|f(x)|2e2sϕdxdt+ C

∫

Q
+
δ

|∂tz|2dxdt,

I2 ≤ Cs

∫

Q
+
δ

(χ|∂2
t y|+ χ|∂t∂xy|)|∂tz|esϕdxdt

≤ Cs

∫

Qδ

(|χ∂2
t y|2 + |χ∂t∂xy|2)e2sϕdxdt+ C

∫

Qδ

|∂tz|2dxdt,

I3 ≤ Cs

∫

Q
+

δ

(|z|+ |∂tz|+ |∂xz|)|∂tz|dxdt ≤ Cs

∫

Qδ

(z2 + |∂tz|2 + |∂xz|2)

I4 ≤ Cs
2
e
2se9λδ2

+ C

∫

Qδ

|∂tz|2dxdt.dxdt,

using also that Q1(s)−Q2(s) vanishes everywhere outside Q2δ \Q3δ.
Now, analyzing the terms in z on the right-hand side of these estimates, from (36), we have

that in Qδ,

|∂tz|2 + |∂xz|2 ≤ C(|χ∂2
t y|2 + |χ∂t∂xy|2)e2sϕ + Cs

2|χ∂ty|2e2sϕ + (|∂tχ|2 + |∂xχ|2)|∂ty|2e2sϕ.

Therefore, since |∂tχ|2 and |∂xχ|2 vanish everywhere outside Q2δ \Q3δ and χ = 0 outside of Q2δ,
using the definition of Q3δ and the regularity assumptions (12) on y, we have

∫

Qδ

(s|∂tz|2 + s|∂xz|2 + s
3
z
2)dxdt

≤ C

∫

Q2δ

(s|χ∂2
t y|2 + s|χ∂x∂ty|2 + s

3|χ∂ty|2)e2sϕdxdt+Cs
2
e
2se9λδ2

.

Hence, using also (39), we finally obtain

4∑

k=1

|Ik| ≤ C

∫

Q2δ

|f |2e2sϕdxdt+C

∫

Q2δ

(s|χ∂2
t y|2+s|χ∂x∂ty|2+s3|χ∂ty|2)e2sϕdxdt+Cs2e2se

9λδ2

≤ C

∫

Q2δ

|f |2e2sϕdxdt+ Cs
2
e
2se9λδ2

. (41)

Step 3. From (40) and (41), we obtain

∫ x0−δ

0

|χ(x, 0)|2|f(x)|2e2sϕ(x,0)dx ≤ C

∫

Q2δ

|f |2e2sϕdxdt+ Cs
2
e
2se9λδ2

.

Noting that (0, x0 − mδ) × {0} ⊂ Qmδ and Qmδ ⊂ Q2δ for m ≥ 3 and χ = 1 in Q3δ, setting

µm = em
2λδ2 , we have

∫ x0−3δ

0

|f(x)|2e2sϕ(x,0)dx ≤ C

∫

Q3δ

|f |2e2sϕdxdt+ C

∫

Q2δ\Q3δ

|f |2e2sϕdxdt+ Cs
2
e
2sµ3 .

Besides, we have

∫

Q3δ

|f |2e2sϕdxdt ≤
∫ x0−3δ

0

|f(x)|2e2sϕ(x,0)
(∫ T

−T

e
2s(ϕ(x,t)−ϕ(x,0))

dt

)
dx.

Here

ϕ(x, t)− ϕ(x, 0) = e
λ(|x−x0|

2−βt2) − e
λ|x−x0|

2 ≤
(

min
0≤x≤ℓ

e
λ|x−x0|

2

)
(e−λβt

2 − 1) < 0

for t 6= 0 and 0 ≤ x ≤ ℓ, and the Lebesgue theorem yields

max
0≤x≤ℓ

∫ T

−T

e
2s(ϕ(x,t)−ϕ(x,0))

dt ≤ C

∫ T

−T

exp(2sC(e−λβt
2 − 1))dt = o(1)
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as s → ∞. Consequently,

∫

Q3δ

|f |2e2sϕdxdt = o(1)

∫ x0−3δ

0

|f(x)|2e2sϕ(x,0)dx. Hence

(1− o(1))

∫ x0−4δ

0

|f(x)|2e2sϕ(x,0)dx ≤ (1− o(1))

∫ x0−3δ

0

|f(x)|2e2sϕ(x,0)dx

≤ C

∫

Q2δ\Q3δ

|f |2e2sϕdxdt+ Cs
2
e
2sµ3 .

Therefore, since (0, x0 − 4δ) × {0} ⊂ Q4δ implies e2sϕ(x,0) ≥ e2sµ4 for 0 < x < x0 − 4δ and
|e2sϕ| ≤ e2sµ3 in Q2δ \Q3δ, we have

(1− o(1))e2sµ4

∫ x0−4δ

0

|f |2dx ≤ Ce
2sµ3‖f‖2L2(0,ℓ) + Cs

2
e
2sµ3 .

Choosing s > 0 large and dividing by e2sµ4 , we obtain
∫ ℓ+δ0−4δ

0

|f(x)|2dx ≤ C(s2 + ‖f‖2L2(0,ℓ))e
−2s(µ4−µ3)

By µ4 − µ3 > 0, letting s → ∞, we see that the right-hand side tends to 0, and f(x) = 0 for
0 ≤ x ≤ ℓ+ δ0 − 4δ. We can choose δ, δ0 > 0 arbitrarily small, provided that 0 < δ0 < δ, so that
f = 0 in (0, ℓ).

Step 4. It remains to prove the latter part of the Lemma 2. Since f = 0 in (0, ℓ), estimate (39)
yields ∫

Q2δ

s
3|χ(x, t)|2|∂ty|2e2sϕdxdt ≤ Cs

2
e
2sµ3 (42)

for all s ≥ s0. Since
∫

Q4δ

s
3|χ(x, t)|2|∂ty|2e2sϕdxdt ≤

∫

Q2δ

s
3|χ(x, t)|2|∂ty|2e2sϕdxdt,

e2sϕ ≥ e2sµ4 in Q4δ and χ = 1 in Q4δ, from (42) we obtain
∫

Q4δ

|∂ty|2dxdt ≤ C

s
e
−2s(µ4−µ3)

for all s ≥ s0. Letting s → ∞, we obtain
∫
Q4δ

|∂ty|2dxdt = 0. One can directly verify that we
have the inclusion

(0, x0 − 5δ) ×
(
− δ√

β
,
δ√
β
δ

)
⊂ Q4δ, (43)

so that

∂ty(x, t) = 0 in (0, x0 − 5δ)×
(
− δ√

β
,
δ√
β

)
.

We fix δ > 0 arbitrarily small and choose the weight function ψθ(x, t) = |x− x0|2 − β(t− θ)2 for
each θ ∈ (−T1, T1). Noting that |T − θ| > ℓ for |θ| < T1, we can apply the above arguments from
(39) and obtain

∂ty(x, t) = 0 in (0, ℓ+ δ0 − 5δ)× (−T1, T1).

Since y(x, 0) = 0 for 0 < x < ℓ, we have y(x, t) = 0 in (0, ℓ+ δ0 − 5δ)× (−T1, T1). Since δ0, δ > 0
can be chosen arbitrarily small, we can obtain y = 0 in (0, ℓ) × (−T1, T1). Thus the proof of
Lemma 2 is completed. �

B Proof of Lemma 5

We choose the same x0, δ0, δ, β and use the same notations as in the proof of Lemma 2. We extend
y(x, t) to t < 0 by setting y(x,−t) = −y(x, t) for t > 0. Then by y(·, 0) = 0 in (0, ℓ), we can verify
that y ∈ C([−T, T ];H1(0, ℓ)) ∩ C1([−T, T ];L2(0, ℓ)) and y satisfies by assumption

{
∂2
t y − ∂2

xy + p(x)y = 0, (x, t) ∈ (0, ℓ)× (−T, T ),
y(0, t) = 0, ∂xy(0, t) = 0, t ∈ (−T, T ).

Defining the cut-off function χ by (35), we apply Lemma 6 to y1 := χy. Similar but simpler
arguments to the proof of Lemma yields y = 0 in Q4δ. We also repeat the proof of the final part
of Lemma 2, in view of (43), so that the proof of Lemma 5 is completed. �
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