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Solving the neutron slowing down equation.

Introduction :

Fission neutrons are fast neutrons (energy in the range 1 to 10 MeV). However, Uranium 235 fission cross section is much higher (σ f =580 barns) for thermal neutrons (energy smaller than 1 eV) than for fast neutrons (σ f = 2 barns). This basic feature is used in most nuclear reactors to reduce the size of the core. A moderator (see e.g. http://en.wikipedia.org/wiki/Neutron_moderator) is then needed to achieve neutron slowing down. Neutron slowing down in a reactor is a complex phenomenon due to the fact that nuclear fuel is usually made of a combination of 238 U and 235 U, with proportions depending of uranium enrichment. In fact, the 238 U absorption cross section is very noisy in the range 1-500 eV (see further references) and it is not easy to precisely evaluate the so-called resonance escape probability factor p, i.e. the probability for a neutron not to be captured in this energy range. In the case of a homogeneous core, Uranium fuel and moderator are supposed to be intimately mixed. The outline of this paper is as follows 1. first form of the neutron slowing down equation 2. Second form of the neutron slowing down equation 3. Approximation of the exact transition probability ሺ݂ -ݓ݈ܽ ሻ in the case A > 1 4. Monte-Carlo analysis of the replacement of the ݂ -ݓ݈ܽ by the ݃ -ݓ݈ܽ 5. Exact solution vs Monte-Carlo solution for the ݃ -ݓ݈ܽ 6. Benefits of an exact solution to the neutron slowing down equation. 7. Reduction of the number of groups with self-shielding. 8. Computation with 652 groups data. 9. Non linear averaging on unit lethargy groups.

First form of the neutron slowing down equation.

Rather than using the neutron energy as a parameter, we shall use the lethargy ݑ defined as ݑ = Log (E 0 / E) where E 0 = 10 MeV.

If Σ s )ݑ( denotes the scattering cross section and Σ a )ݑ( the absorption cross section in the core of a nuclear reactor assumed to be homogeneous, then we have Σ()ݑ = Σ s )ݑ( + Σ a ,)ݑ( so that in case of collision the neutron is absorbed with a probability Σ a /)ݑ( Σ()ݑ or reappears at another lethargy 'ݑ > ݑ with a probability Σ s /)ݑ( Σ( .)ݑ

The probability density for the new lethargy 'ݑ is p(,ݑ )'ݑ and is such that

 ,ݑ‪ሺ ݑ ᇱ ሻ݀ݑ ᇱ = 1 ஶ ௨
If the moderator is made with an atom whose atomic mass is equal to A, then it is well known that Bertrand Mercier -Arthur Peng Nov 10, 2014 2

(1.1) ݑ‪ሺ ᇱ , ݑሻ = ଵ ଵିఈ ൜ ݁ ௨ ᇲ ି௨ ݅ݏ ݑ ᇱ ≤ ݑ ≤ ݑ ᇱ + ߝ 0 ݊݊݅ݏ ൠ where ߙ = ቀ ିଵ ାଵ ቁ ଶ
and ߝ = -ln ሺߙሻ (see e.g. ሾ1ሿ).

In case there is a homogeneous source S()ݑ in the reactor, then, in the steady state, the balance of neutrons in the lethargy band ,ݑ[ ݑ + ]ݑ݀ is the following :

S()ݑ ݑ݀ +  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻሺݑ ᇱ , ݑ݀‪ሻݑ ᇱ ݑ݀ = ௨ Σ()ݑ Φ( )ݑ ݑ݀ which is equivalent to (1.2) S()ݑ +  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻሺݑ ᇱ , ݑ݀‪ሻݑ ᇱ = ௨ Σ()ݑ Φ( )ݑ
where ݑ is arbitrary in the range ሺ0, ∞ሻ. Equation (1.2) is known as the first form of the neutron slowing down equation.

Second form of the neutron slowing down equation.

As in reference ሾ1ሿ, let us introduce the neutron current

ݍሺݑሻ =  ݑ݀ ᇱ  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻሺݑ ᇱ , ݑ ᇱᇱ ሻ݀ݑ ᇱᇱ ஶ ௨ ௨
we have ሾ1ሿ :

(2.1) ௗ ௗ௨ ݍሺݑሻ = ܵሺݑሻ -Σ ሺݑሻ Φሺ ݑሻ which is known as the second form of the neutron slowing down equation. Note that it is not very convenient to use since we have first to compute Φ.

However we shall prove that in the case where

(2.2) ݑ‪ሺ ᇱ , ݑሻ = ଵ ξ ൜ ݁ ൫௨ ᇲ ି௨൯/ξ ݂݅ ݑ ᇱ ≤ ݑ 0 ݁ݏ݅ݓݎ݁‪ℎݐ ൠ then we have (2.3) ξ ௗ ௗ௨ + Σ ೌ ሺ௨ሻ Σሺ௨ሻ ݍ = ξ Σ ೞ ሺ௨ሻ Σሺ௨ሻ ܵሺݑሻ .
Indeed, when ݑ‪ሺ ᇱ , ݑሻ is given by (2.2), we have :

ݍሺݑሻ = ଵ ξ  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݁ ௨ ᇲ /ξ ݑ݀ ᇱ  ݁ ି௨ ᇲᇲ /ξ ݑ݀ ᇱᇱ ஶ ௨ ௨ = ଵ ξ  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݁ ௨ ᇲ /ξ ݑ݀ ᇱ ௨ ξ݁ ି௨/ξ = ξ  Σ ௦ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻሺݑ ᇱ , ݑ݀‪ሻݑ ᇱ ௨ = ξ ሺΣሺݑሻΦሺ ݑሻ -ܵሺݑሻሻ so that (2.4) Φሺ ݑሻ = ௌሺ௨ሻ Σሺ௨ሻ + ଵ ξ ሺ௨ሻ Σሺ௨ሻ From (2.1), we have ௗ ௗ௨ = ܵሺݑሻ -Σ ሺݑሻΦሺ ݑሻ = ܵሺݑሻ -Σ ሺݑሻ ቀ ௌሺ௨ሻ Σሺ௨ሻ + ଵ ξ ሺ௨ሻ Σሺ௨ሻ ቁ we can conclude that ξ ௗ ௗ௨ + Σ ೌ ሺ௨ሻ Σሺ௨ሻ ݍ = ξ Σሺ௨ሻି Σ ೌ ሺ௨ሻ Σሺ௨ሻ ܵሺݑሻ = ξ Σ ೞ ሺ௨ሻ

Σሺ௨ሻ

ܵሺݑሻ which is the expected result. ∎ Now if we assume the source ܵሺݑሻ = ߜሺݑሻ, that is to be a Dirac measure, then it is equivalent to solve Nov 10, 2014 3

ξ ௗ ௗ௨ + Σ ೌ ሺ௨ሻ Σሺ௨ሻ ݍ = 0 ݍሺ0 ା ሻ = Σ ೞ ሺሻ Σሺሻ therefore, we have (2.5) ݍሺݑሻ = ݍሺ0 ା ሻ ݔ݁ ቀ- ଵ ξ  Σ ೌ ሺ௩ሻ Σሺ௩ሻ ௨ ݀ݒቁ.
Indeed the function ݑ → ݍሺݑሻ has a jump in ݑ = 0 : this is physically obvious since all the neutrons start at lethargy ݑ = 0 but only a fraction

Σ ೞ ሺሻ Σሺሻ go further. We have ݍሺ0 ି ሻ = 1 but ݍሺ0 ା ሻ = Σ ೞ ሺሻ Σሺሻ )
We note that the function ݑ → ݍሺݑሻ is decreasing, which is physically obvious. Formula (2.4) is well known in the case of hydrogen as a moderator.

It seems that it was not known for ξ < 1.

Approximation of the exact transition probability in the case A > 1.

In section 1, we have seen that when A > 1, the exact transition probability is not given by (2.2) but by (1.1).

However, if we choose ξ = 1 -ఈ ఌ ଵିఈ we claim that in both cases

(3.1)  ݑ‪ሺ ᇱ , ݑሻ ݑ ݑ݀ ஶ ௨ ᇲ = ݑ ᇱ + ξ ,
in other words, they are different probability laws but they have the same expectation.

When  is the exact transition probability (2.1) we have

ݑ‪ሺ ᇱ , ݑሻ = ݂ሺݑ -ݑ ᇱ ሻ where ݂ሺݓሻ = ଵ ଵିఈ ቄ ݁ ି௪ ݂݅ 0 ≤ ݓ ≤ ߝ 0 ݁ݏ݅ݓݎ݁‪ℎݐ ቅ We check that  ݂ሺݓሻ ݓ݀ ஶ = 1  ݂ሺݓሻ ݓ ݓ݀ ஶ = ଵ ଵିఈ  ݓ ݁ ି௪ ݓ݀ ఌ = ଵ ଵିఈ ൫ሾ-݁ݓ ି௪ ሿ ఌ +  ݁ ି௪ ݓ݀ ఌ ൯ =ξ  ݑ‪ሺ ᇱ , ݑሻ ݑ ݑ݀ = ஶ ௨ ᇲ  ݂ሺݑ -ݑ ᇱ ሻ ݑ ݑ݀ = ஶ ௨ ᇲ  ݂ሺݓሻሺݑ ᇱ + ݓ݀‪ሻݓ = ݑ ᇱ ஶ + ξ ∎
On the other hand, when ݑ‪ሺ ᇱ , ݑሻ is given by (2.2), we have ݑ‪ሺ ᇱ , ݑሻ = ݃ሺݑ -ݑ ᇱ ሻ where

݃ሺݓሻ = ଵ ξ ൜ ݁ ି௪/ξ ݂݅ ݓ ≥ 0 0 ݁ݏ݅ݓݎ݁‪ℎݐ ൠ We check that  ݃ሺݓሻ ݓ݀ ஶ = 1  ݃ሺݓሻ ݓ ݓ݀ ஶ = ଵ ξ  ݓ ݁ ି௪/ξ ݓ݀ ஶ = ଵ ξ ቀൣ-ξ ݁ݓ ି௪/ξ ൧ ஶ +  ξ ݁ ି௪/ξ ݔ݀ ஶ ቁ = ൣ-ξ ݁ ି௪/ξ ൧ ஶ =ξ  ݑ‪ሺ ᇱ , ݑሻ ݑ ݑ݀ = ஶ ௨ ᇲ  ݂ሺݑ -ݑ ᇱ ሻ ݑ ݑ݀ = ஶ ௨ ᇲ  ݂ሺݓሻሺݑ ᇱ + ݓ݀‪ሻݓ = ݑ ᇱ ஶ + ξ ∎
A comparative plot of functions ݂ and ݃ is given below, in the case A = 2.

We shall call ݂ -ݓ݈ܽ the exact transition probability (1.1) and ݃ -ݓ݈ܽ the approximate transition probability (2.2).
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The advantage of changing from the ݂ -ݓ݈ܽ to the ݃ -ݓ݈ܽ is that we shall benefit from the existence of the exact solution (2.5) for the neutron current . We shall analyze the effect of such an approximation with a Monte-Carlo analysis in the case ܣ = 2 that is in the case where the moderator is heavy water. The core is assumed to be homogeneous and made with a mixture of 3.7% enriched UO2 and heavy water D2O. The dilution ratio (which is the ratio of the number of Deuterium atoms per ܿ݉ ଷ to the number of U atoms per ܿ݉ ଷ ) is assumed to be equal to ݀. We shall make the Monte-Carlo Analysis in 2 cases : ݀ = 3.75 and ݀ = 22.

Note that ݀ = 3.75 is an acceptable dilution factor for light water which is an excellent moderator ; However for heavy water it leads to a quite low value for the resonance escape probability factor , as we shall see. This is the reason why we also used the ݀ = 22 value. The capture cross sections for ܷ ଶଷହ are given in Fig. 3 (in arithmetic scale). ) and in such a case, the lethargy of the next event is found by sampling the transition probability ݑ‪ሺ ᇱ , ݑሻ or equivalently by sampling the lethargy increment ݓ by using either the ݂ -ݓ݈ܽ or the ݃ -.ݓ݈ܽ

Uranium

To obtain the results represented on Fig. 4 & 5, we have used 5000 Monte-Carlo neutrons. The neutron current ݍሺݑሻ is obtained by counting the Monte-Carlo neutrons which go further than lethargy .ݑ Function ݑ → ݍሺݑሻ is obviously decreasing as can be seen from (2.1) or (2.5). This is what we observe on Fig. 4 and 5 where we compare the ݂ -ݓ݈ܽ and the ݃ -.ݓ݈ܽ

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 9.60E+00 1.06E+01 1.16E+01 1.26E+01 1.36E+01 1.46E+01 1.56E+01 U8 capture U 3.7% Nov 10, 2014 6 
We used a point-source in ݑ = 9.6.

In other words the source ܵ is a Dirac measure located in ݑ = 9.6. The resonance escape probability factor  is then equal to the value of the current obtained in ݑ = 15.3, that is  = 0.175 for the ݂ -ݓ݈ܽ or  = 0.166 for the ݃ -.ݓ݈ܽ

As anticipated, this is a quite low value, and the reason is that, in the lethargy range of interest, the scattering cross section is Σ ௦ =3.4 barn for the deuterium atom compared to 20 barn for the hydrogen atom. The probability

Σ ೌ ሺ௨ሻ Σሺ௨ሻ
for a neutron to be absorbed in the lethargy range 9.6 ≤ ݑ ≤ 15.3, where the ܷ ଶଷ଼ traps are located, is significantly larger for heavy water than for light water.

For ݀ = 22, we obtain  = 0.551 for the ݂ -ݓ݈ܽ or  = 0.547 for the ݃ -.ݓ݈ܽ From these results, we conclude that the ݃ -ݓ݈ܽ is a quite good approximation to the ݂ -.ݓ݈ܽ

Exact solution vs Monte-Carlo solution for the -

To assess the accuracy of the Monte-Carlo method we used, we have compared the Monte-Carlo results to the exact solution as given in (3.5). (Note that the exact solution contains a Dirac Measure in ݑ = 9.6 which is not represented here, see ሾ1ሿ : the amplitude of this Dirac measure is precisely

equal to 1 -ξ Σ ೞ ሺሻ Σሺሻ ).
The results are given below.

Fig.6 Comparison of the ݃ -ݓ݈ܽ with the exact solution (3.2) ሺ݀ = 22ሻ

The accuracy of our Monte-Carlo calculations is then quite good.

Benefits of an exact solution to the neutron slowing down equation.

Formula (2.4) shows that where ܵሺݑሻ = 0, we have It also shows that, from ݑ to ,ݑ neutrons are disappearing from the absorption phenomena. By writing Σ = Σ ு + Σ + Σ we see that neutrons can be • captured by hydrogen • captured by Uranium

• absorbed to produce one fission Neutrons who survived the slowing down process will be thermalized at a lethargy ,02~ݑ which means that they will be captured by hydrogen with probability

Σ ಹ Σ ೌ
by Uranium with probability

Σ ೆ Σ ೌ
and lead to a fission with probability

Σ Σ ೌ
.

Up to now we have been interested in the resonance escape probability factor  only.

We could also start from ݑ = 1.6094 (that is 2 Mev) since this is the average energy for fission neutrons.

In view of (2.1) we have (6.2)

ݑ‪ሺݍ ଵ ሻ = ݑ‪ሺݍ ሻ - Σ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݀ݑ ᇱ ௨ భ ௨ బ
which proves that all the current decrease is due to absorption but one part may be due to capture and another one to fission.

Computing the exact decrease of the current ݍሺݑሻ with formula (6.1) gives us Φ()ݑ and then by decomposition of Σ = Σ ு + Σ + Σ it gives us separately

•  Σ ு ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݀ݑ ᇱ ௨ భ ௨ బ
capture by hydrogen

•  Σ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݀ݑ ᇱ ௨ భ ௨ బ capture by Uranium •  Σ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݀ݑ ᇱ ௨ భ ௨ బ

absorption leading to fission

The first term is negligible in the lethargy range ݑ = 1.6094 to ݑ ଵ = 15.3, but this is not the case for the fission part which leads to the ߝ factor in Fermi's four factors formula. So by solving the neutron slowing down equation with (6.1) we can not only obtain  but also ߝ.

Now we could be tempted to use (2.5) for ݑ > 15.3 to evaluate also ݂ and η however we should stop at ݑ = 19,8 which corresponds to the average thermalization energy. We shall show some example of such solutions for A = 1 (moderator = light water) in section 9.

Before that, we shall show how to reduce the number of groups by using "self-shielding".

7. Reduction of the number of groups with self-shielding.

As we have noticed before, ݍሺݑሻ = Σ()ݑ Φ( )ݑ is a decreasing and regular function even though, both functions Σ()ݑ and Φ()ݑ taken separately are irregular. As is shown above that Σ()ݑ has high peaks, whereas (see Fig. 7) Φ()ݑ has low peaks precisely at the same lethargy locations : this phenomenon is known as self-shielding.

The usual way to reduce the number of groups is to replace on the large lethargy interval ሾܽ, ܾሿ the curve ݑ → Σ ሺݑሻ by its weighted average Σ * * which is such that 3) with 652 groups for 3.7% enriched UO2.

We shall see that if Σ ௦ is constant, the appropriate choice is to take Σ ௗ = Σ ௦ . We claim that in such a case, we obtain approximately the same result with (7.1) or (7.2). In other words that Σ * ≅ Σ * * .

For this, we note that ݍሺݑሻ being regular, ݍ * = ‪ሻݍ‪ሺݕ݉ = ଵ ି  ݑ݀‪ሻݑ‪ሺݍ is a good approximation of ݍ on ሾܽ, ܾሿ. We let

ߜ = ݔܽ݉ ݑ ∈ ሾܽ, ܾሿ |ݍሺݑሻ -ݍ * |
From the particular shape of ݂, we have successively We shall introduce microscopic cross sections. 

Σ * Σ ାΣ * = ݂ሺΣ * ሻ = ݕ݉ ቀ݂൫Σ ሺݑሻ൯ቁ = ݕ݉ ቀ Σ ೌ Σ ቁ Σ * ൬1 -ݕ݉ ቀ Σ ೌ Σ ቁ൰ = Σ ௗ ݕ݉ ቀ Σ ೌ Σ ቁ Σ * ݕ݉ ቀ ΣିΣ ೌ Σ ቁ = Σ ௗ ݕ݉ ቀ Σ ೌ Σ ቁ Σ * ݕ݉ ቀ Σ Σ ቁ = Σ ௗ ݕ݉ ቀ Σ ೌ Σ ቁ Σ * ݕ݉ ቀ ଵ Σ ቁ = ݕ݉ ቀ Σ ೌ Σ ቁ Σ * ݕ݉ ቀ * Σ ቁ = ݕ݉ ቀ * Σ ೌ Σ ቁ Σ * ݕ݉ ቀ * ିା Σ ቁ = ݕ݉ ቀ ሺ * ିାሻΣ ೌ Σ ቁ (7.

Fig 1 .

 1 Fig 1. Comparison of functions ݂ and ݃ 4. Monte-Carlo analysis of the replacement of theby the -

Fig. 2 .

 2 Fig.2 . capture cross section for ܷ ଶଷ଼ (in barns) in the range 9.6 ≤ ݑ ≤ 15.3

Fig. 3 .

 3 Fig.3 . capture cross section for ܷ ଶଷହ (in barns) in the range 9.6 ≤ ݑ ≤ 15.3

Fig. 4

 4 Fig.4 Comparison of the ݂ -ݓ݈ܽ and the ݃ -ݓ݈ܽ for ݀ = 3.75

Fig. 5

 5 Fig.5 Comparison of the ݂ -ݓ݈ܽ and the ݃ -ݓ݈ܽ for ݀ = 22

Σ

  ݍሺݑሻ = ξ ΣሺݑሻΦሺ ݑሻAs we know, Σ ሺݑሻ is a quite irregular function, with high values corresponding to the Uranium resonance peaks and low values between. The above formula shows that Σ()ݑ Φ( )ݑ is not only decreasing but also much more regular than ሺݑሻ or Σ ሺݑሻΦሺݑ ሻ.

  (7.1) Σ * *  Φሺ ݑ݀‪ሻݑ =  Σ ሺݑሻΦሺ ݑሻ ݑ݀ We propose to use alternatively the following nonlinear averaging by computing (7.2) ݂ሺΣ * ሻ = ଵ ି  ݂ሺΣ ሺݑሻሻ ݑ݀ where ݂ is the homographic function Bertrand for suitably choosen Σ ௗ . In other words, Σ * = ݂ ିଵ ሺ݉ݕሺ݂ሺΣ ሺݑሻሻሻ.

Fig. 7

 7 Fig. 7 Exact flux Φ (x100) solution given by (3) with 652 groups for 3.7% enriched UO2.

  3) Σ * ݕ݉ ቀ * ି Σ ቁ + Σ * ݕ݉ ቀ Σ Therefore |Σ * -Σ * * | is small as long as ݉ݕሺΦሻ is not too small, which is precisely the case for a macrogroup.∎ Remark 7.1 Note that Σ * like Σ * * appears as a weighted average of Σ . In one case the weight function is ଵ Σሺ୳ሻ , in the other one the weight function is Φሺݑሻ = ሺ୳ሻ Σሺ୳ሻ . It should be no surprise that we get close results since ݍሺuሻ is smooth.

Fig 8 .

 8 Fig 8. Comparison of the weight functions leading to Σ * (in red) and Σ * * (in blue).Moreover, in view of formula (2.5) if we replace Σ ሺݑሻ by Σ * on an interval ሺݑ , ݑ ଵ ሻ and if we start from the same ݑ‪ሺݍ ሻ then it does not change ሺݑ ଵ ሻ !

cross sections used in this paper.

  As we know, for Uranium, Σ ሺݑሻ is a quite irregular function, with high values corresponding to the Uranium resonance peaks and low values between. Then it is necessary to use a sufficiently high number of values. In what follows, we have used 4792 values in the range 9.6 ≤ ݑ ≤ 15.3 (see Fig 2.)

 Nov 10, 2014 11Let ߙ be the partial volume fraction of fuel in the core and ሺ1 -αሻ the partial volume fraction for the moderator which is liquid water (note that we can neglect the O cross section compared to H). We have

where ܰ = 0.0245 10 ଶସ ݉ܿ/ݐܽ ଷ and ܰ ு = 0.0483 10 ଶସ ݉ܿ/ݐܽ ଷ , where ߪ ሺݑሻ = ሺ1 -݁ሻߪ ଼ ሺݑሻ + ݁ ߪ ହ ሺݑሻ denotes the microscopic cross section of the enriched uranium used in the fuel. We note that

where

is the dilution factor.

We choose ߪ ௗ = 75ܾ for ߪ ு = 20ܾ which gives ߙ = 0.34 which corresponds to a moderation ratio ሺଵିαሻ α =1.94 which is typical in a PWR.∎

Computation with 652 groups data.

From now on, we are in the case ܣ = 1 and then ξ = 1.

A table of 652 groups cross sections has been prepared by Olivia Feng, Alexis Jin and Arthur Peng during their 2013-2014 bachelor project. They started from the 4792 values plotted in fig 1 and 2 combining them with an enrichment ݁ = 3.7 %. The lethargy range for these values extracted from the ENDF files is 9.6 < ݑ < 15.3.

They used the nonlinear averaging introduced here with ߪ ௗ (defined above) = 75ܾ.

They obtained 380 groups in the range 9.6 < ݑ < 15.3 which they complemented with 217 groups in the range 1.6094 < ݑ < 9.6 and 55 groups in the range 15.3 < u < 19.9723. Note that it is not appropriate to go beyond ݑ = 19.97 because it corresponds to an energy ܧ = 0.025 ݒ݁ which is the thermalisation energy at room temperature.

With such a table of cross sections, we are able to solve exactly the neutron slowing down equation (2.2) by using (3.5) and ݍሺݑሻ = Σ()ݑ Φ( .)ݑ

We now comment the results we obtained with our 652 groups for ݁ = 3.7% and ߪ ௗ = 75ܾ.

What we give in Fig. 8 is a comparison of the neutron currents ݍ ଵ , ݍ ଶ , ݍ ଷ by using the following capture cross sections in the core (1) ሺ1 -݁ሻߪ ଼ ሺݑሻ + ݁ߪ ሺݑሻ only,

(2) ߪ ሺݑሻ

Bertrand Mercier -Arthur Peng Nov 10, 2014 12 Note that, even though the enrichment ݁ = 3.7% is small, the influence of ߪ ହ ሺݑሻ is significant.

On the contrary, the influence of ߪ ு ሺݑሻ is rather small. This is because the capture cross section of hydrogen is quite small in the range 1.6 ≤ ݑ ≤ 15.3. We note once again that the function ݑ → ݍሺݑሻ is decreasing and quite smooth. We summarize in table 1 the results obtained by solving exactly the neutron slowing down equation in this homogeneous core, where formula (7.2) and the decomposition Σ = Σ ு + Σ + Σ allows us to compute in columns 3, 4, 5 and 6, the different cumulative captures and fission.

As an example, at ݑ = 15.3 we get  Σ ሺݑ ᇱ ሻΦሺݑ ᇱ ሻ݀ݑ ᇱ ௨ ௨ బ = 0,0609 which means that 6.09% of the neutrons which where created at the initial lethargy ݑ =1.609 have produced a fission in the epithermal range and that 18.84% of them have produced a fission in the thermal range. = 0,666.

We could evaluate η by counting the number of fissions in the thermal domain ( 4526) and divide by the number of absorptions which is 5930. Then, we get ܲ ௦ = 76,3% which gives η = ν. ܲ ௦ = 1.896.

Finally, we obtain ݂ = ಮ .η.ఌ = 0.615 , but there are many ways of defining p or ݂.

However, rather than trying to fit by all means within the 4 factors formula approach, is it not better to summarize what happens in the core by a 

Remark : Relation with the effective integral

The effective integral is introduced in Reuss §8.1.4. With our notations, it is defined as :

when we solve the slowing down equation, this is a quantity we evaluate.

In our case where ξ=1, the relationship between  and ܫ is  = exp ሺ-ூ ఙ ሻ .

Since we have evaluated  it gives a way of computing ܫ .

Here we would get ܫ = 35.5 ܾ. This value is relatively high since we use ݑ = 1.6 and ݑ ଵ = 15.3. Had we used ݑ = 9.6 and ݑ ଵ = 15.3 as it is usually evaluated in books, we would have obtained 28.8 ܾ.

When we solve the slowing down equation, we compute ܫ . However ܫ leads only to p. The way we solve the slowing down equation gives not only  but also ݇ ஶ and the 3 other factors of the 4 factors formula.

Non linear averaging on unit lethargy groups.

Of course tables give These 15 values which cover the lethargy range 5 < ݑ < 20 correspond exactly to a subset of 600 values extracted from the 652 described above. We checked that if we replace the 600 values of σ by the 15 values if column 3 above (noted Σ * although we should have indicated σ * ) we obtain the same current ݍ at the common points : this is consistent with remark 7.1 The same is approximatively true for column 2 (indicated Σ * * ). However the arithmetic averages obtained in column 4 are completely inadequate.