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In web-scale image retrieval, the most effective strategy is to aggregate local descriptors into a high dimensionality signature and then reduce it to a small dimensionality. Thanks to this strategy, web-scale image databases can be represented with small index and explored using fast visual similarities. However, the computation of this index has a very high complexity, because of the high dimensionality of signature projectors. In this work, we propose a new efficient method to greatly reduce the signature dimensionality with low computational and storage costs. Our method is based on the linear projection of the signature onto a small subspace using a sparse projection matrix. We report several experimental results on two standard datasets (Inria Holidays and Oxford) and with 100k image distractors. We show that our method reduces both the projectors storage cost and the computational cost of projection step while incurring a very slight loss in mAP (mean Average Precision) performance of these computed signatures.

INTRODUCTION

In this paper, we focus on dimensionality reduction methods for content-based image retrieval (CBIR) on web scale datasets. CBIR is a very dynamic research field that rises many challenges, and which has proposed a variety of efficient methods to solve the problem of similarity search. Many of these methods are based on the use of highly discriminative local descriptors [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF] (e.g., HoG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], SIFT [START_REF] David G Lowe | Distinctive image features from scaleinvariant keypoints[END_REF]). Initially, the similarity between two images [START_REF] Henri Gosselin | Kernels on bags of fuzzy regions for fast object retrieval[END_REF] was computed directly on the sets of local descriptors extracted from the images. However, the computing cost of the pairwise similarity between two sets of local descriptors is prohibitive due to the large number of extracted local descriptors. To solve this problem, methods aggregating local descriptors in a unique signature [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF][START_REF] Wang | Locality-constrained linear coding for image classification[END_REF][START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF][START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF][START_REF] Picard | Improving image similarity with vectors of locally aggregated tensors[END_REF] were proposed. It has been shown that these signatures retain the discriminatory power of local descriptors with similarity measures of low computational cost (e.g., dot product). However signatures that perform well are very large [START_REF] Sánchez | High-dimensional signature compression for large-scale image classification[END_REF], and the storage cost becomes prohibitive for web scale datasets. As we detail later, several methods to reduce signatures dimensionality have been proposed. These methods provide low dimensional signatures with low storage cost and good discriminatory power. However, they incur a high projection cost: the memory required to store the projectors and the computational cost to perform the projection are often prohibitive, and this is precisely what we investigate in this paper.

More specifically, we propose a new method to dramatically reduce the memory footprint and the computational cost of such pro-jections. This method is based on the low-rank approximation of Gram matrix with a sparse projection matrix. Our main novel contributions are:

• The introduction of a sparsity constraint in the Gram matrix low-rank approximation problem;

• The introduction of a correction matrix to correct the errors induced by the coarse solution of the sparse low-rank approximation problem.

The rest of the paper is organized as follows: First, we give an overview of the related work in dimensionality reduction. Then we explain our proposed method in section 3. In section 4, we evaluate our method on Inria Holidays [START_REF] Jegou | Hamming embedding and weak geometric consistency for large scale image search[END_REF] and Oxford datasets and we discuss and compare the performance with the state of the art methods, before we conclude.

RELATED WORKS

In this section, we present current methods for the reduction of visual signatures, as well as their main advantages and drawbacks. More specifically, we focus on methods that compute linear projectors in Hilbert spaces:

y = P ⊤ x, (1) 
with y the signature reduced at N dimensions, P the projectors matrix and x the original signature of W dimensions. The choice of linear projectors can be explained by their simplicity and their ability to deal with large datasets. The choice of unsupervised training can be explained by the difficulty of obtaining a ground truth for image similarity search. The most popular approach to learn the projection matrix is the Principal Component Analysis (PCA) [START_REF] Christopher | Pattern recognition and machine learning[END_REF] which selects components of largest variance. PCA is well known in data analysis as it provides a compact representation of the data while guaranteeing the lowest reconstruction error of the data. This approach has shown to retain the discriminating power of signatures while greatly reducing the dimensionality in many state of the art papers [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF][START_REF] Douze | Combining attributes and fisher vectors for efficient image retrieval[END_REF][START_REF] Sánchez | High-dimensional signature compression for large-scale image classification[END_REF]. However, the criterion of data reconstruction does not guarantee the preservation of the discrimination power of signatures.

To solve this problem, the authors of [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] propose a similar approach based on the low-rank approximation of the Gram matrix. The authors propose to compute the projectors such that the original similarity between two signatures is retained. To this purpose, they propose to solve the following problem:

P * N = arg min P N ||X ⊤ X -X ⊤ PN P ⊤ N X|| 2 F s.t. PN ∈ MW,N with N < L ≪ W, (2) 
with X the L signatures of the training set and PN the projectors matrix. The closed form solution of this problem is:

P * N = XTN L -1/2 N , (3) 
with {TN , LN } the N principal eigenvectors and eingenvalues of Gram matrix XX ⊤ . Furthermore, they propose to use the dot product associated with Mahalanobis distance as a new similarity measure. This similarity measure gives a better discrimination power and it can be integrated in the projectors matrix as follows:

P ′ * N = P ′ * N L -1/2 N = XTN L -1 N . (4) 
This method provides projectors which drastically reduce the size of original signature while retaining the similarity between two signatures. For example, visual signatures of hundreds of thousands of dimensions can be reduced to a few hundreds and with similar retrieval performance. However, all these current methods suffer from a major drawback: the size of projectors is as large as the size of visual features. This implies that the memory cost and computational cost of the projection have an order of O(W × N ) with N the dimension of subspace. Thus, given the high values of W (e.g. at least hundreds of thousands), the corresponding projection matrix quickly becomes very large, the projection itself is not scalable. For instance such matrix is thus difficult to spread on a computational grid, or simply too large to fit in the available memory.

PROPOSED METHOD

In this section, we present our main contribution: a new projection matrix for significantly reducing the size of large signatures with a low storage cost and computational cost. Our projection matrix is based on optimizing the reconstruction of the Gram matrix of a training set with a sparsity constraint.

In order to obtain the sparse projectors that provide a better approximation of the Gram matrix, we must solve problem (2) constrained with ℓ0 norm:

U * N = arg min U N ||X ⊤ X -X ⊤ UN U ⊤ N X|| 2 F s.t. UN ∈MW,N with N < L ≪ W ||ui||0 = M, ∀i, (5) 
with M the number of non-zero entries by columns of matrix UN . However, since this problem is NP-hard, it is very complex to obtain an exact solution.

We propose to reformulate this problem by decomposing the projection matrix UN into two matrices:

UN = PN RN , (6) 
with PN a sparse matrix of W by N , RN a full square matrix. Dimensionality reduction is then performed in two steps: (i) a first step of high dimensionality reduction with a sparse approximation of full projection matrix P * N and (ii) a second projection step with a low cost full matrix. The second projection step allows to correct the errors introduced by the sparse approximation P * N .

The sparse matrix PN

To compute the sparse projection matrix, we propose to compute the sparse approximation of the projectors P * N obtained by solving the problem without the constraint of sparsity. For this, we solve the following problem:

P * N = arg min PN ||P ′ * N -PN || 2 F s.t. ||pi||0 = M, ∀i. (7) 
The problem [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF] has a closed form solution obtained by thresholding the smallest values of the original projectors:

pki = p ki h(|p ik | -∇i), ∀k (8) 
with h the Heaviside step function, ∇i ∈ R + the threshold selected to satisfies the sparsity constraint. The solution of this problem is a very simple but coarse approximation of the solution of the problem [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF]. Indeed, this solution does not take into consideration the correlations between projectors.

The correction matrix RN

To correct the errors introduced by the sparse projection matrix, we propose to compute a correction matrix in the low dimensional space. For this, we propose to compute the matrix RN such that the Gram matrix of corrected signature,

G P * N R N = X ⊤ P * N RN R ⊤ N P * ⊤ N X
, is as close as possible to the Gram matrix of signature obtained with full projectors

G P ′ * N = X ⊤ P ′ * N P ′ * ⊤ N X.
To obtain this correction matrix, we solve the following problem:

W * = arg min W ||G P ′ * N -Y ⊤ P * N WY P * N || 2 F , (9) 
with

Y P * N = P * ⊤ N X and W = RN R ⊤ N .
This problem is convex and, for S < L, it has a closed form solution: 

W * = Y + P * N G P ′ * N Y +⊤ P * N , (10) 
R * N = VD 1/2 , (11) 
with {V, D} the eigenvectors and eigenvalues of W * . The full projection for the dimensionality reduction is then decomposed into two projections:

ŷi = P * ⊤ N xi yi =R * ⊤ N ŷi . ( 12 
)
For convenience, we define the sparsity constraint independently from the dimension of the input vectors. To this end, we note by τ the rate of zero values in a sparse matrix:

τ ( P * N ) = Number of zero values in P * N Number of values in P * N . (13) 
In the case of our matrix P * N constrained by ℓ0 norm, we have the following relation between M and τ :

τ ( P * N ) = W -M W . (14) 
The cumulative computational cost of these two projections is 

O ((N + (1 -τ ) × W ) × N ).
((N + 2 × (1 -τ ) × W ) × N )
, considering that the values of sparse projectors are stored in couples (index, value). Table 1 shows the computational and storage cost of the proposed method. We observe that high sparsity rate allows to strongly reduces the costs of dimensionality reduction step.

EXPERIMENTS

In this section, we present the reference datasets and the signatures we use to evaluate our proposed method. We discuss the performance of our method and compare it with the state of the art.

Datasets and Signatures

We use two well known benchmarks: Inria Holidays dataset and Oxford dataset. The Holidays dataset contains 1,491 images (typically personal holiday photographs) gathered in 500 groups. The Oxford dataset is a set of images (from Flickr) representing various Oxford landmarks; it contains 5,062 images of 11 landmarks. To evaluate the robustness of our method, we use 100k images distractor randomly extracted from ImageNet dataset. The ImageNet dataset is a set of high-quality images extracted from Flickr. For all training, we use Holidays Flickr60k dataset, which is a set of high-quality images randomly extracted from Flickr; it contains 60,000 images without ground truth. For all the above mentioned images, we perform a two step preprocessing: (a) image resizing (to a maximum width of 512 pixels); (b) histogram equalization. Furthermore, we use two types of local descriptors: a texture descriptor HOG (128-dimensional) [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] and a color descriptor (96-dimensional) proposed by Perronnin et al. [START_REF] Perronnin | Improving the fisher kernel for large-scale image classification[END_REF]. We extract these descriptors on a regular dense grid of 3 × 3 pixels and at 4 scales. We use these descriptors to compute "Vectors of Locally Aggregated Tensors" (VLAT) [START_REF] Picard | Improving image similarity with vectors of locally aggregated tensors[END_REF] and "Fisher Vector" (FV) [START_REF] Perronnin | Large-scale image retrieval with compressed fisher vectors[END_REF] signatures as follows. For each descriptor, we compute: a VLAT signature with a cluster-wise PCA that preserves 80 dimensions by cluster; and a FV signature with a PCA on local descriptors that preserves 80 dimensions. The HOG and color signatures are subsequently concatenated. Then, we perform a powernormalization (for all experiments set to 0.1) and ℓ2-normalization of the concatenated signatures.

In the following, we denote the signatures used for the experiments by their abbreviations prefixed by the dimentionnality reduction method used if any, and as suffix the size of the visual codewords. More precisely, we use the prefix "C" to denote the dimentionnality reduction method proposed in [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF]; "CS" to denote our method without the correction matrix; and "CSR" to denote our method with the correction matrix. For example, "CS-VLAT-256" is Sign.

Dim. Holidays Oxford FV-64 [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] 4k 59.5 31.7 VLAD-64 [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] 4k 55.6 30.4 VLAD-64 [START_REF] Delhumeau | Revisiting the vlad image representation[END_REF] 8k 62.2 50.0 VLAD-64 [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] 8k -36.6 VLAT-64 [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] 528k Fig. 2. mAP evolution on Holidays dataset as function of dimensionality reduction step computational cost for different sparsity rates (i.e., τ ∈ {99.9%, 99%, 90%, 0%}).

a signature VLAT computed with 256 visual codewords and dimensionality of reduced with our proposed method without the correction matrix.

As a baseline, Table 2 shows the mAP on Holidays and Oxford datasets obtained by the unreduced signatures. This table is divided in two parts: in the top part, we report several results obtained in related state of the art; and, in the bottom part, we report the results of our implementation of the same methods. Comparing with the results of state of the art, we see that we obtain much better performance. This is mainly due to our use of two types of local descriptors as well as larger visual codebooks than those of the state of the art.

Parameter Analysis

Here, we study the behavior of the reduced signatures as function of the parameters of our method. All experiments are done using the Holidays dataset. We consider a web-scale context in which the final signature must be small (N = 256). We compute the sparse projectors P * N and the correction matrix R * N for different sparsity rates τ ∈ {99.9%, 99%, 90%, 0%} (note that for τ = 0%: P * N = P * N and R * N = I). Figure 2 shows the mAP evolution on Holidays Fig. 1. Images from Holidays dataset [START_REF] Jegou | Hamming embedding and weak geometric consistency for large scale image search[END_REF].

dataset as function of the computational cost of our dimentionality reduction method. This cost is induced by the two projection steps: the projection of the signature on the sparse projectors; and the projection on the correction matrix. The continuous and dashed curves represent the performance of the reduced signatures with and without the correction step respectively. We note that at equivalent computation cost, the high dimensional projectors are less sensitive to high sparsity rate. We see that the correction step allows to correct well the errors introduced by sparse projectors. Moreover, we observe that the higher the sparsity rate, the more effective the correction step. We also observe that the mAP performance is similar for any type of signatures. Thus, our method is not sensitive to a particular signature choice. For instance, with "CSR-FV-256" signature and a sparsity rate of 90%, the computational cost is divided by a factor of about 9 without any performance loss. With the same "CSR-VLAT-256" signature, but with a sparsity rate of 99.9%, the computational cost is divided by a factor of about 1000 while incurring a mAP loss of only 0.9.

Comparison with the State of the Art

In the following, we compare the performances of our dimensionality reduction method with state of the art methods. We compute the signatures: FV-64, FV-256, VLAT-64 and VLAT-256 reduced at 128 dimensions. We compute the performance of these signatures on Holidays and Oxford datasets with and without the addition of 100k distractors.

The performance results are reported in Table 3 which is divided in three parts. In the top part, we report several results obtained in related state of the art. The middle part illustrates the results obtained by reproducing the dimensionality reduction method proposed in [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] for fairness of comparison. We note that this method preserves the performance of the original signature on Holidays dataset but on Oxford dataset the performance is degraded. This is probably caused by using the local color descriptor that is not relevant on this dataset. In the bottom part, we report the results of the proposed method. We observe, in the two datasets, that our method provides the same robustness as the state of the art when adding the distractors. However, our method has the great advantage of having a much lower dimensionality reduction cost. For example, in the case of C-VLAT-256, the loss in mAP performance is of 6.4 on Holidays and of 0.6 on Oxford. Using our method, in the case of CSR-VLAT-256, the loss in mAP performance is of 6.3 on Holidays and of 1.0 on Oxford while dividing the computational cost by a factor of around 1000.

Name

Dim. Holidays Oxford +100k +100k FV-64-PCA [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] 128 56.5 38.0 24.3 -VLAD-64-PCA [START_REF] Jégou | Aggregating local image descriptors into compact codes[END_REF] 64 44.7 32.0 --VLAD-64-PCA [START_REF] Delhumeau | Revisiting the vlad image representation[END_REF] 128 --32.5 26.6 C-VLAT-64 [START_REF] Negrel | Compact tensor based image representation for similarity search[END_REF] 256 72.3 58.0 --VLAD-64-PCA [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] 128 --32.7 25.6 C-VLAT-64 [START_REF] Negrel | Web-scale image retrieval using compact tensor aggregation of visual descriptors[END_REF] 128 57. 128 77.5 69.9 35.9 34.7 CSR-FV-256, τ = 0.9 128 80.6 73.9 37.8 36.9 CSR-VLAT-64, τ = 0.99 128 75.6 68.8 40.9 39.9 CSR-VLAT-256, τ = 0.999 128 76.9 70.6 35.6 34.6 Table 3. Evaluation of the reduced signatures robustness by adding of 100k distractors and comparison of state-of-the-art results on Holidays and Oxford dataset (mAP in %).

CONCLUSION

In this paper, we introduce a method to reduce the dimensionality of image signatures with very low storage and computational complexities. Our method consists in a linear projection of the image signature in a low dimensional subspace thanks to sparse projectors. The sparse projectors are initialized using a sparse approximation of dense projectors, and then corrected using a small matrix. This second step allows to better recover the discriminative power of reduced signatures. We have carried out experiments on Inria Holidays and Oxford datasets, which showed that our dimensionality reduction method provides close performance to the state of the art, while reducing storage and computational complexities of a factor in between 10 to 1000 times.

  obtain the correction matrix R * N by factorization of W * to this propose we use the eigen decomposition:

  3 -54.3 46.6 C-FV-64 128 77.4 69.9 36.6 35.7 C-FV-256 128 79.9 74.0 38.0 37.2 C-VLAT-64 128 75.4 69.3 42.1 41.3 C-VLAT-256 128 78.2 71.8 39.0 38.4 CSR-FV-64, τ = 0.9

Table 1 .

 1 For high sparsity rate (e.g. τ = Costs of dimensionality reduction step as function of input signature size and sparsity rate with N = 256 (with Oc the computational cost in operations and Om the storage cost).

	W ❍ ❍ ❍ ❍ ❍ τ	Oc	82k	Om	Oc	415k Om	Oc	1.7M Om
	0.0%	21,1M 160MB 106M 811MB 435M 3,2GB
	90.0%	2,2M 16.3MB 10,7M 81.3MB 43,5M 332MB
	99.0%	275k 1.9MB 1,1M 8.4MB 4,4M 33.5MB
	99.9%	87k	420kB 172k 1.1MB 501k 3.6MB
	99%), this cost is very low in comparison with the computational
	cost with full projectors. The storage cost is also drastically re-
	duced: O							

Table 2 .

 2 Evaluation of computed signatures and comparison of stateof-the-art results on Holidays and Oxford dataset (mAP in %).

			66.4	54.2
	FV-64	20k	78.6	43.3
	FV-256	82k	82.0	49.3
	VLAT-64	415k	81.6	58.4
	VLAT-256	1.7M	84.0	59.8