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ABSTRACT

In web-scale image retrieval, the most effective strategy is to ag-

gregate local descriptors into a high dimensionality signature and

then reduce it to a small dimensionality. Thanks to this strategy,

web-scale image databases can be represented with small index and

explored using fast visual similarities. However, the computation

of this index has a very high complexity, because of the high di-

mensionality of signature projectors. In this work, we propose a

new efficient method to greatly reduce the signature dimensionality

with low computational and storage costs. Our method is based on

the linear projection of the signature onto a small subspace using

a sparse projection matrix. We report several experimental results

on two standard datasets (Inria Holidays and Oxford) and with 100k

image distractors. We show that our method reduces both the projec-

tors storage cost and the computational cost of projection step while

incurring a very slight loss in mAP (mean Average Precision) per-

formance of these computed signatures.

Index Terms— Image retrieval, Image databases, Indexes,

Sparse matrices

1. INTRODUCTION

In this paper, we focus on dimensionality reduction methods for

content-based image retrieval (CBIR) on web scale datasets. CBIR is

a very dynamic research field that rises many challenges, and which

has proposed a variety of efficient methods to solve the problem of

similarity search. Many of these methods are based on the use of

highly discriminative local descriptors [1] (e.g., HoG [2], SIFT [3]).

Initially, the similarity between two images [4] was computed di-

rectly on the sets of local descriptors extracted from the images.

However, the computing cost of the pairwise similarity between two

sets of local descriptors is prohibitive due to the large number of

extracted local descriptors. To solve this problem, methods aggre-

gating local descriptors in a unique signature [5, 6, 7, 8, 9] were

proposed. It has been shown that these signatures retain the dis-

criminatory power of local descriptors with similarity measures of

low computational cost (e.g., dot product). However signatures that

perform well are very large [10], and the storage cost becomes pro-

hibitive for web scale datasets. As we detail later, several methods to

reduce signatures dimensionality have been proposed. These meth-

ods provide low dimensional signatures with low storage cost and

good discriminatory power. However, they incur a high projection

cost: the memory required to store the projectors and the computa-

tional cost to perform the projection are often prohibitive, and this is

precisely what we investigate in this paper.

More specifically, we propose a new method to dramatically re-

duce the memory footprint and the computational cost of such pro-

jections. This method is based on the low-rank approximation of

Gram matrix with a sparse projection matrix. Our main novel con-

tributions are:

• The introduction of a sparsity constraint in the Gram matrix

low-rank approximation problem;

• The introduction of a correction matrix to correct the errors

induced by the coarse solution of the sparse low-rank approx-

imation problem.

The rest of the paper is organized as follows: First, we give an

overview of the related work in dimensionality reduction. Then we

explain our proposed method in section 3. In section 4, we evaluate

our method on Inria Holidays [11] and Oxford datasets and we dis-

cuss and compare the performance with the state of the art methods,

before we conclude.

2. RELATED WORKS

In this section, we present current methods for the reduction of visual

signatures, as well as their main advantages and drawbacks. More

specifically, we focus on methods that compute linear projectors in

Hilbert spaces:

y = P
⊤
x, (1)

with y the signature reduced at N dimensions, P the projectors ma-

trix and x the original signature of W dimensions. The choice of

linear projectors can be explained by their simplicity and their abil-

ity to deal with large datasets. The choice of unsupervised training

can be explained by the difficulty of obtaining a ground truth for

image similarity search.

The most popular approach to learn the projection matrix is the

Principal Component Analysis (PCA) [12] which selects compo-

nents of largest variance. PCA is well known in data analysis as

it provides a compact representation of the data while guaranteeing

the lowest reconstruction error of the data. This approach has shown

to retain the discriminating power of signatures while greatly reduc-

ing the dimensionality in many state of the art papers [8, 13, 10].

However, the criterion of data reconstruction does not guarantee the

preservation of the discrimination power of signatures.

To solve this problem, the authors of [14] propose a similar ap-

proach based on the low-rank approximation of the Gram matrix.

The authors propose to compute the projectors such that the original

similarity between two signatures is retained. To this purpose, they

propose to solve the following problem:

P
∗

N =argmin
PN

||X⊤
X−X

⊤
PNP

⊤

NX||2F

s.t. PN ∈ MW,N with N < L ≪ W,

(2)



with X the L signatures of the training set and PN the projectors

matrix. The closed form solution of this problem is:

P
∗

N = XTNL
−1/2
N , (3)

with {TN ,LN} the N principal eigenvectors and eingenvalues of

Gram matrix XX⊤. Furthermore, they propose to use the dot prod-

uct associated with Mahalanobis distance as a new similarity mea-

sure. This similarity measure gives a better discrimination power

and it can be integrated in the projectors matrix as follows:

P
′
∗

N = P
′
∗

NL
−1/2
N = XTNL

−1

N . (4)

This method provides projectors which drastically reduce the size

of original signature while retaining the similarity between two sig-

natures. For example, visual signatures of hundreds of thousands

of dimensions can be reduced to a few hundreds and with similar

retrieval performance.

However, all these current methods suffer from a major draw-

back: the size of projectors is as large as the size of visual features.

This implies that the memory cost and computational cost of the

projection have an order of O(W × N) with N the dimension of

subspace. Thus, given the high values of W (e.g. at least hundreds

of thousands), the corresponding projection matrix quickly becomes

very large, the projection itself is not scalable. For instance such ma-

trix is thus difficult to spread on a computational grid, or simply too

large to fit in the available memory.

3. PROPOSED METHOD

In this section, we present our main contribution: a new projection

matrix for significantly reducing the size of large signatures with

a low storage cost and computational cost. Our projection matrix

is based on optimizing the reconstruction of the Gram matrix of a

training set with a sparsity constraint.

In order to obtain the sparse projectors that provide a better ap-

proximation of the Gram matrix, we must solve problem (2) con-

strained with ℓ0 norm:

U
∗

N =argmin
UN

||X⊤
X−X

⊤
UNU

⊤

NX||2F

s.t.
UN ∈MW,N with N < L ≪ W

||ui||0 = M, ∀i,

(5)

with M the number of non-zero entries by columns of matrix UN .

However, since this problem is NP-hard, it is very complex to obtain

an exact solution.

We propose to reformulate this problem by decomposing the

projection matrix UN into two matrices:

UN = P̂NRN , (6)

with P̂N a sparse matrix of W by N , RN a full square matrix.

Dimensionality reduction is then performed in two steps: (i) a first

step of high dimensionality reduction with a sparse approximation

of full projection matrix P∗

N and (ii) a second projection step with

a low cost full matrix. The second projection step allows to correct

the errors introduced by the sparse approximation P̂∗

N .

3.1. The sparse matrix PN

To compute the sparse projection matrix, we propose to compute the

sparse approximation of the projectors P∗

N obtained by solving the

problem without the constraint of sparsity. For this, we solve the

following problem:

P̂
∗

N =argmin
P̂N

||P
′
∗

N − P̂N ||2F

s.t. ||p̂i||0 = M, ∀i.

(7)

The problem (7) has a closed form solution obtained by thresholding

the smallest values of the original projectors:

p̂ki = pki h(|pik| − ∇i), ∀k (8)

with h the Heaviside step function, ∇i ∈ R
+ the threshold selected

to satisfies the sparsity constraint.

The solution of this problem is a very simple but coarse approx-

imation of the solution of the problem (5). Indeed, this solution does

not take into consideration the correlations between projectors.

3.2. The correction matrix RN

To correct the errors introduced by the sparse projection matrix,

we propose to compute a correction matrix in the low dimen-

sional space. For this, we propose to compute the matrix RN

such that the Gram matrix of corrected signature, G
P̂∗

N
RN

=

X⊤P̂∗

NRNR⊤

N P̂∗⊤

N X, is as close as possible to the Gram matrix

of signature obtained with full projectors G
P

′
∗

N

= X⊤P
′
∗

NP
′
∗⊤

N X.

To obtain this correction matrix, we solve the following problem:

W
∗ = argmin

W

||G
P

′
∗

N

−Y
⊤

P̂∗

N

WY
P̂∗

N

||2F , (9)

with Y
P̂∗

N

= P̂∗⊤

N X and W = RNR⊤

N . This problem is convex

and, for S < L, it has a closed form solution:

W
∗ = Y

+

P̂∗

N

G
P

′
∗

N

Y
+⊤

P̂∗

N

, (10)

with Y+

P̂∗

N

= (Y
P̂∗

N

Y⊤

P̂∗

N

)−1Y
P̂∗

N

the pseudoinverse of Y
P̂∗

N

ma-

trix. We obtain the correction matrix R∗

N by factorization of W∗ to

this propose we use the eigen decomposition:

R
∗

N = VD
1/2

, (11)

with {V,D} the eigenvectors and eigenvalues of W∗.

The full projection for the dimensionality reduction is then de-

composed into two projections:

ŷi =P̂
∗⊤

N xi

yi =R
∗⊤

N ŷi

. (12)

For convenience, we define the sparsity constraint independently

from the dimension of the input vectors. To this end, we note by τ

the rate of zero values in a sparse matrix:

τ(P̂∗

N ) =
Number of zero values in P̂∗

N

Number of values in P̂∗

N

. (13)

In the case of our matrix P̂∗

N constrained by ℓ0 norm, we have the

following relation between M and τ :

τ(P̂∗

N ) =
W −M

W
. (14)

The cumulative computational cost of these two projections is

O ((N + (1− τ)×W )×N). For high sparsity rate (e.g. τ =



❍
❍
❍
❍❍

τ

W 82k 415k 1.7M

Oc Om Oc Om Oc Om

0.0% 21,1M 160MB 106M 811MB 435M 3,2GB

90.0% 2,2M 16.3MB 10,7M 81.3MB 43,5M 332MB

99.0% 275k 1.9MB 1,1M 8.4MB 4,4M 33.5MB

99.9% 87k 420kB 172k 1.1MB 501k 3.6MB

Table 1. Costs of dimensionality reduction step as function of input

signature size and sparsity rate with N = 256 (with Oc the compu-

tational cost in operations and Om the storage cost).

99%), this cost is very low in comparison with the computational

cost with full projectors. The storage cost is also drastically re-

duced: O ((N + 2× (1− τ)×W )×N), considering that the val-

ues of sparse projectors are stored in couples (index, value).

Table 1 shows the computational and storage cost of the pro-

posed method. We observe that high sparsity rate allows to strongly

reduces the costs of dimensionality reduction step.

4. EXPERIMENTS

In this section, we present the reference datasets and the signatures

we use to evaluate our proposed method. We discuss the perfor-

mance of our method and compare it with the state of the art.

4.1. Datasets and Signatures

We use two well known benchmarks: Inria Holidays dataset and Ox-

ford dataset. The Holidays dataset contains 1,491 images (typically

personal holiday photographs) gathered in 500 groups. The Oxford

dataset is a set of images (from Flickr) representing various Oxford

landmarks; it contains 5,062 images of 11 landmarks. To evaluate

the robustness of our method, we use 100k images distractor ran-

domly extracted from ImageNet dataset. The ImageNet dataset is a

set of high-quality images extracted from Flickr. For all training, we

use Holidays Flickr60k dataset, which is a set of high-quality images

randomly extracted from Flickr; it contains 60,000 images without

ground truth.

For all the above mentioned images, we perform a two step pre-

processing: (a) image resizing (to a maximum width of 512 pix-

els); (b) histogram equalization. Furthermore, we use two types of

local descriptors: a texture descriptor HOG (128-dimensional) [2]

and a color descriptor (96-dimensional) proposed by Perronnin et

al. [15]. We extract these descriptors on a regular dense grid of

3 × 3 pixels and at 4 scales. We use these descriptors to compute

“Vectors of Locally Aggregated Tensors” (VLAT) [9] and “Fisher

Vector” (FV) [16] signatures as follows. For each descriptor, we

compute: a VLAT signature with a cluster-wise PCA that preserves

80 dimensions by cluster; and a FV signature with a PCA on local

descriptors that preserves 80 dimensions. The HOG and color sig-

natures are subsequently concatenated. Then, we perform a power-

normalization (for all experiments set to 0.1) and ℓ2-normalization

of the concatenated signatures.

In the following, we denote the signatures used for the experi-

ments by their abbreviations prefixed by the dimentionnality reduc-

tion method used if any, and as suffix the size of the visual code-

words. More precisely, we use the prefix “C” to denote the di-

mentionnality reduction method proposed in [14]; “CS” to denote

our method without the correction matrix; and “CSR” to denote our

method with the correction matrix. For example, “CS-VLAT-256” is

Sign. Dim. Holidays Oxford

FV-64[17] 4k 59.5 31.7

VLAD-64[17] 4k 55.6 30.4

VLAD-64[18] 8k 62.2 50.0

VLAD-64[14] 8k - 36.6

VLAT-64[14] 528k 66.4 54.2

FV-64 20k 78.6 43.3

FV-256 82k 82.0 49.3

VLAT-64 415k 81.6 58.4

VLAT-256 1.7M 84.0 59.8

Table 2. Evaluation of computed signatures and comparison of state-

of-the-art results on Holidays and Oxford dataset (mAP in %).
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Fig. 2. mAP evolution on Holidays dataset as function of dimension-

ality reduction step computational cost for different sparsity rates

(i.e., τ ∈ {99.9%, 99%, 90%, 0%}).

a signature VLAT computed with 256 visual codewords and dimen-

sionality of reduced with our proposed method without the correc-

tion matrix.

As a baseline, Table 2 shows the mAP on Holidays and Oxford

datasets obtained by the unreduced signatures. This table is divided

in two parts: in the top part, we report several results obtained in

related state of the art; and, in the bottom part, we report the results

of our implementation of the same methods. Comparing with the

results of state of the art, we see that we obtain much better perfor-

mance. This is mainly due to our use of two types of local descriptors

as well as larger visual codebooks than those of the state of the art.

4.2. Parameter Analysis

Here, we study the behavior of the reduced signatures as function of

the parameters of our method. All experiments are done using the

Holidays dataset. We consider a web-scale context in which the final

signature must be small (N = 256). We compute the sparse projec-

tors P̂∗

N and the correction matrix R∗

N for different sparsity rates

τ ∈ {99.9%, 99%, 90%, 0%} (note that for τ = 0%: P̂∗

N = P∗

N

and R∗

N = I). Figure 2 shows the mAP evolution on Holidays



Fig. 1. Images from Holidays dataset [11].

dataset as function of the computational cost of our dimentional-

ity reduction method. This cost is induced by the two projection

steps: the projection of the signature on the sparse projectors; and

the projection on the correction matrix. The continuous and dashed

curves represent the performance of the reduced signatures with and

without the correction step respectively. We note that at equivalent

computation cost, the high dimensional projectors are less sensitive

to high sparsity rate. We see that the correction step allows to cor-

rect well the errors introduced by sparse projectors. Moreover, we

observe that the higher the sparsity rate, the more effective the cor-

rection step. We also observe that the mAP performance is similar

for any type of signatures. Thus, our method is not sensitive to a

particular signature choice. For instance, with “CSR-FV-256” sig-

nature and a sparsity rate of 90%, the computational cost is divided

by a factor of about 9 without any performance loss. With the same

“CSR-VLAT-256” signature, but with a sparsity rate of 99.9%, the

computational cost is divided by a factor of about 1000 while incur-

ring a mAP loss of only 0.9.

4.3. Comparison with the State of the Art

In the following, we compare the performances of our dimension-

ality reduction method with state of the art methods. We compute

the signatures: FV-64, FV-256, VLAT-64 and VLAT-256 reduced at

128 dimensions. We compute the performance of these signatures

on Holidays and Oxford datasets with and without the addition of

100k distractors.

The performance results are reported in Table 3 which is divided

in three parts. In the top part, we report several results obtained in re-

lated state of the art. The middle part illustrates the results obtained

by reproducing the dimensionality reduction method proposed in

[14] for fairness of comparison. We note that this method preserves

the performance of the original signature on Holidays dataset but on

Oxford dataset the performance is degraded. This is probably caused

by using the local color descriptor that is not relevant on this dataset.

In the bottom part, we report the results of the proposed method. We

observe, in the two datasets, that our method provides the same ro-

bustness as the state of the art when adding the distractors. However,

our method has the great advantage of having a much lower dimen-

sionality reduction cost. For example, in the case of C-VLAT-256,

the loss in mAP performance is of 6.4 on Holidays and of 0.6 on Ox-

ford. Using our method, in the case of CSR-VLAT-256, the loss in

mAP performance is of 6.3 on Holidays and of 1.0 on Oxford while

dividing the computational cost by a factor of around 1000.

Name Dim.
Holidays Oxford

+100k +100k

FV-64-PCA[17] 128 56.5 38.0 24.3 -

VLAD-64-PCA[17] 64 44.7 32.0 - -

VLAD-64-PCA[18] 128 - - 32.5 26.6

C-VLAT-64[19] 256 72.3 58.0 - -

VLAD-64-PCA[14] 128 - - 32.7 25.6

C-VLAT-64[14] 128 57.3 - 54.3 46.6

C-FV-64 128 77.4 69.9 36.6 35.7

C-FV-256 128 79.9 74.0 38.0 37.2

C-VLAT-64 128 75.4 69.3 42.1 41.3

C-VLAT-256 128 78.2 71.8 39.0 38.4

CSR-FV-64, τ = 0.9 128 77.5 69.9 35.9 34.7

CSR-FV-256, τ = 0.9 128 80.6 73.9 37.8 36.9

CSR-VLAT-64, τ = 0.99 128 75.6 68.8 40.9 39.9

CSR-VLAT-256, τ = 0.999 128 76.9 70.6 35.6 34.6

Table 3. Evaluation of the reduced signatures robustness by adding

of 100k distractors and comparison of state-of-the-art results on Hol-

idays and Oxford dataset (mAP in %).

5. CONCLUSION

In this paper, we introduce a method to reduce the dimensionality

of image signatures with very low storage and computational com-

plexities. Our method consists in a linear projection of the image

signature in a low dimensional subspace thanks to sparse projectors.

The sparse projectors are initialized using a sparse approximation

of dense projectors, and then corrected using a small matrix. This

second step allows to better recover the discriminative power of re-

duced signatures. We have carried out experiments on Inria Hol-

idays and Oxford datasets, which showed that our dimensionality

reduction method provides close performance to the state of the art,

while reducing storage and computational complexities of a factor in

between 10 to 1000 times.
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