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The history of the universe is an elliptic curve

Robert Coquereaux

Centre de Physique Théorique (CPT),
Aix Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France

Abstract

Friedmann-Lemâıtre equations with contributions coming from matter, curvature, cosmological
constant, and radiation, when written in terms of conformal time u rather than in terms of cosmic
time t, can be solved explicitly in terms of standard Weierstrass elliptic functions. The spatial
scale factor, the temperature, the densities, the Hubble function, and almost all quantities of
cosmological interest (with the exception of t itself) are elliptic functions of u, in particular they
are bi-periodic with respect to a lattice of the complex plane, when one takes u complex. After
recalling the basics of the theory, we use these explicit expressions, as well as the experimental
constraints on the present values of density parameters (we choose for the curvature density
a small value in agreement with experimental bounds) to display the evolution of the main
cosmological quantities for one real period 2ωr of conformal time (the cosmic time t “never ends”
but it goes to infinity for a finite value uf < 2ωr of u). A given history of the universe, specified
by the measured values of present-day densities, is associated with a lattice in the complex plane,
or with an elliptic curve, and therefore with two Weierstrass invariants g2, g3. Using the same
experimental data we calculate the values of these invariants, as well as the associated modular
parameter and the corresponding Klein j-invariant. If one takes the flat case k = 0, the lattice is
only defined up to homotheties, and if one, moreover, neglects the radiation contribution, the j-
invariant vanishes and the corresponding modular parameter τ can be chosen in one corner of the
standard fundamental domain of the modular group (equihanharmonic case: τ = exp(2iπ/3)).
Several exact – i.e., non-numerical – results of independent interest are obtained in that case.
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1 Introduction

Friedmann-Lemâıtre equation is studied in many places (articles, books, encyclopedias, etc.). The
subject is hardly new and it is known that the general solution to this differential equation involves
elliptic integrals [8], but few people tried to obtain explicit expressions. To our knowledge, the
first article where such an analysis is performed in a detailed manner, keeping all the contributions
coming from matter, curvature, cosmological constant, and radiation, is [2]. Explicit formulae for
all range of values of the reduced cosmological constant, and assuming1 k = +1 (the so-called
“closed case”), are given in the same reference. This work was quickly followed by [5], where the
same analysis was performed for the flat and open cases. Fifteen years later or so (see [3] and
the lectures [4]), the same analysis was reconsidered, in the light of experiments showing that the
cosmological constant was probably not zero, after all. . . A little bit more than thirty years after the
first paper we find it useful to return to this problem since the range of cosmological parameters
specifying our universe history has been made more precise thank’s to recent experiments, and
since the elliptic functions (essentially Weierstrass elliptic functions) that allow one to give explicit
expressions for the quantities of interest have been made available, with a very good precision, in
most computer packages. About this last point it seems that many people still prefer to perform
simplifying assumptions or use techniques of numerical integration to describe the evolution of
quantities of cosmological interest in terms of cosmic time. We think that using exact expressions
is highly preferable, not only for conceptual reasons, but also for practical reasons: some features of
the solutions (presence of local extrema, inflection points, behavior near the singularities, etc.) are
almost obvious if one uses exact expressions, because of the well-known properties of the involved
functions, but may be sometimes difficult to detect numerically. If one is interested in the evolution
of the solutions in terms of conformal time, i.e., ”before” the Big Bang, of ”after” the end of cosmic
time (infinity), the use of such expressions is, of course, required.

As it is clear from the very definition of elliptic functions, cosmological solutions of Friedmann
equations are periodic in conformal time, they are even bi-periodic if the latter is allowed to
take complex values. This is by no means in contradiction with the fact that many solutions (in
particular the one that seems to be dictated by experiments) describe a never-ending universe
starting with a Big Bang, since the “never-ending” qualifier refers to the cosmic time variable, not
to the conformal time variable. Rather than trying to study the evolution of the spatial scale factor
a(t) as a function of cosmic time t, the starting point of the method of resolution is to notice that
it is much better to give a parametric representation (a(u), t(u)) of a(t), because a(u), like most
functions of cosmological interest (not the function t(u)), turns out to be an elliptic function of
u, the conformal time. Actually, the resolution of Friedmann equations for the quantity 1/a, the
inverse of the scale factor, is almost immediate; this quantity is essentially equal to the temperature
T̃ of the Cosmic Microwave Blackbody (CMB) radiation (warning: in our paper the variable T will
denote another quantity that differs from T̃ by a scale factor).

The present article is supposed to be self-contained and does not require from the reader any
familiarity with Friedmann equations. We nevertheless still refer to the article [2] for a general
study of their analytic solutions, for all possible values of parameters, but here we shall restrict
our attention to those solutions that are compatible with the recent experiments. In particular the

1This assumption was then made by a majority of people, but at the same time the cosmological constant was
not fashioned and was almost always assumed to be zero in the cosmology community.
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evolution of density parameters and of other quantities of cosmological interest, that are displayed
in sec. 4.2 as functions of conformal time, are determined by using the experimental results for
the present-day values of density parameters and Hubble constant. Section 2 is certainly standard,
but it serves the purpose of specifying our notations. At the beginning of section 3, we remind
the reader that the main features of the evolution of the temperature, as a function of conformal
time, can be simply obtained by studying the classical motion of point in a potential. Then we
give explicit analytical solutions, with or without radiation (the latter case is of course simpler
but hides interesting physical phenomena that show up in a neighborhood of u = 0). In the
same section we define the Weierstrass invariants of the universe. In section 4 we use the values
of present-day densities coming from experiment (in particular from the Planck collaboration) to
calculate and display the behavior of most quantities of cosmological interest in terms of conformal
time. This is done by assuming a small (positive) value for the present value of the curvature
density, compatible with the experimental bounds. This section ends with a table giving the values
of various quantities at several important dates in the (conformal) history of the universe – the
fact, for instance, that the curvature density function has an extremum located in our past is a
phenomenon that is often overlooked. Special features of the case k = 0 (flat case) are discussed
in section 5. In that particular situation, the experimental data only allows one to determine up
to scale the lattice in the complex plane associated with the universe history. In other words, the
corresponding elliptic curve is only known up to isomorphism, but several exact results (values of
periods, value of conformal time when t→∞, etc. ) can nevertheless also be obtained in that case.
Section 6 contains miscellaneous comments. Several properties of elliptic functions in relation with
lattices, tori, elliptic curves, and modular considerations, are given in the appendix.

As it was already mentioned, the general method of resolution of Friedmann equation in terms
of elliptic functions was discussed in [2], but a good part of the discussion relating cosmology to
modular considerations is only described in the present paper. In this respect, let us summarize
some of the properties that will be discussed (see also the abstract): to each universe history
determined by the measurement of cosmological parameters one can associate an elliptic curve, or,
equivalently, a lattice in the complex plane, or a torus with a complex structure. If k = ±1, the
measurement of all the densities (summing up to 1) specifies in particular the Weierstrass invariants
g2 and g3. The period parallelogram can be chosen as a rhombus, symmetric with respect to the
real axis. Conversely, the history of the universe, described by the evolution of the temperature as
a function of conformal time is fully specified by the Weierstrass invariants, together with today’s
date (the value of the conformal time “now”), and a dimensionful quantity defining the centimeter,
for instance the Hubble constant. If k = 0, the lattice is only determined up to a complex homothety
and the elliptic curve only up to isomorphism (the invariants g2, g3 are obtained up to scale). If
one furthermore neglects the effect of radiation, the curve is equianharmonic, which corresponds
to a modular parameter equal to exp(2iπ/3) sitting in the corner of the boundary of the standard
fundamental domain for the modular group. In all cases one can determine the value of the Klein
j-invariant.
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2 Friedmann-Lemâıtre equations and elliptic functions

2.1 Natural variables for the Friedmann-Lemâıtre equations

It is usual to model space-time as a four-dimensional smooth manifold endowed with a pseudo-
riemannian structure specified by a metric. Assuming that our space-time neighborhood is, in first
approximation, homogeneous and isotropic, this metric is described, in local coordinates (t, χ, θ, φ),
i.e., in the domain of a chart, by the line element ds2. There are three possibilities (k = ±1 or 0):

ds2 = −dt2 + a(t)2 [dχ2 + s(χ)2 (dθ2 + sin2 θ dφ2)]

with s(χ) = sin(χ) if k = +1, s(χ) = sinh(χ) if k = −1, and s(χ) = χ if k = 0.

In conventional cosmology one assumes that the average local energy described by a rank-two tensor
T , the energy-momentum tensor, splits into three parts (G denotes the Newton constant):

• Vacuum contribution ρvac = Λ
8πG where Λ is the cosmological constant,

• Radiation contribution ρrad such that a4(t)ρrad(t) = const. = 3
8πGCr,

• Averaged matter contribution ρmat such that a3(t)ρmat(t) = const. = 3
8πGCm ,

Einstein’s equations read Eµν = 8πGTµν where E is the Einstein tensor. The cosmological term
described by Λ is sometimes written explicitly on the lhs of those equations but here it is included
as a part of T itself, on the rhs. The quantities Λ, Cr and Cm are constant, as well as ρvac, but ρrad
and ρmat are, a priori, time-dependent quantities. Assuming a Levi-Civita connection (no torsion),
the Einstein tensor is determined from the metric alone, and Einstein’s equations imply that the
evolution of a(t) is governed by the Friedmann equation:

1

a2
(
da

dt
)
2

=
Cr
a4

+
Cm
a3
− k

a2
+

Λ

3
. (1)

Lemâıtre [8] did, long ago, an analytic study of the solutions of Friedmann equations, with a
cosmological constant; his discussion, made in terms of a, the scale factor, and t, the cosmic
time, involves elliptic integrals. In order to discuss these equations it is however convenient [2] to
use another set of variables, i.e., to introduce a conformal time u, and a dimensionless reduced
temperature T (u), defined as:

du =
dt

a
and T (u) =

1

Λ
1/2
c a(u)

with
√

Λc =
2

3Cm
(2)

The variable u is natural, both geometrically (it gives three-dimensional geodesic distances) and
analytically, as we shall see below, since it is only when we express the cosmological quantities of
interest in terms of T (u) that these quantities can be written themselves as elliptic functions with
respect to a particular lattice.

Intuitively, this change of variables replaces the scale factor a, that measures the “size” of the
spatial universe, by its inverse, a quantity proportional to the temperature of the cosmic microwave
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radiation (see later). In a Big Bang cosmology, T is infinite at the Big Bang and decreases as
the universe expands. This change of variables replaces the cosmic time t by a parameter u, the
conformal time, that measures geodesic distances in dimensionless units. The previous equations
define u only up to an additive constant; in a Big Bang cosmology, it is natural to set u = 0 at
the Big Bang, so that u gives the dimensionless distance along the trajectory of a photon that
would have been emitted at the Big Bang. This is a perfectly natural way of measuring “time”.
Rather than describing the dynamics of the universe by a single function a(t) of one variable, we
therefore use the parametric equations (T (u), t(u)). The advantage is that the differential equation
for T (u) is very simple – see below – and can be integrated immediately in terms of standard elliptic
functions. Very often – and in particular, as we shall see later, for the cosmological solutions of
physical interest – the function t(u) approaches a logarithmic singularity when u approaches a finite
limit uf . In other words, when the cosmic time goes to infinity, the universe expands for ever (in
terms of t) and cools down (T ∼ 1/a → 0) but the conformal time goes to uf . So, even if the
universe is spatially closed (let us say that it is S3), an observer will never see the back of his head
if the cosmology is such that uf is finite and smaller than 2π, even if this observer waits for an
infinite (cosmic) time.

In this article we use the natural system of units for which ~ = c = 1. All quantities are therefore
homogenous with Lp, for some integer p, where L is a length (the cm, say). In particular the
quantities Cr, Cm and Λ have dimensions L2, L, L−2 respectively, a has dimension L and t has
dimension L−1. The Newton constant G is homogeneous with L2. Notice that T and u are
dimensionless.

With these new variables, Friedmann equation becomes

(dT/du)2 = αT 4 +
2

3
T 3 − kT 2 +

λ

3
(3)

where

λ =
Λ

Λc
and α = CrΛc (4)

are two constant dimensionless parameters: the reduced cosmological constant and the reduced
radiation parameter. We shall see later how these parameters can be extracted from the more
standard densities used to describe experimental results.

The next section will deal with analytic solutions, but the direct link with the theory of elliptic
functions should be already clear from the fact that, with our parametrization, the RHS of eq 3 is
a polynomial of degree four.

2.2 Hubble function and density “parameters”

As a rule we shall add an upper or lower index o to denote the present-day value of the cosmological
quantities. For instance to is the age of the universe (using cosmic time), u0 its age in terms of
conformal time, a0 is the present value of the scale factor, etc.
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The Hubble function describing the rate of expansion is defined, as usual, by H =
dLog(a)

dt
and

can be written, in terms of the reduced temperature T (u) as

H(u) = −Λ1/2
c

dT

du
(5)

In natural units, most quantities used in cosmology are dimensionless, but the Hubble function is a
dimensionful quantity homogenous to an inverse length, so we may consider that the present value
of Ho = H(u0), or rather of (Ho)

−1, defines what the centimeter is (today).

Notice that
H2 = αΛc T

4 + 2/3 Λc T
3 − kΛc T

2 + Λ/3 (6)

Multiplying this equation by 1/H2, one obtains the famous relation2 :

1 = Ωr + Ωm + ΩK + ΩΛ (7)

with

ΩK = −kT 2 Λc
H2

, Ωm =
2

3
T 3 Λc
H2

, ΩΛ =
λ

3

Λc
H2

, Ωr = αT 4 Λc
H2

(8)

Equivalently,

ΩK = − k

a2H2
, Ωm =

Cm
a3H2

, ΩΛ =
Λ

3H2
, Ωr =

Cr
a4H2

(9)

We remind the reader that those quantities3, although often called “density parameters”, are func-
tion of time (u or t). For this reason it is usual to introduce the notations Ωo

m, Ωo
r, Ωo

K and Ωo
Λ

to denote their present-day values. Obviously, Ωm and Ωr are positive but ΩΛ and ΩK could be
of both signs. It is quite common to call Ω = Ωm + Ωr + ΩΛ the “total density parameter”. Since
−ΩK = Ω − 1 and since, for historical reasons, ΩK is negative when k = +1 and vice-versa, one
sees that k = +1, 0 or −1, respectively, if Ω > 1, = 1, or < 1.

The constant parameters Λ, k, Cm and Cr entering the original Friedmann equation are expressed
as follows in terms of the time dependent density parameters:

Λ = 3H2ΩΛ, k = −sign(ΩK), Cm =
Ωm

|ΩK |3/2H
, Cr =

Ωr

|ΩK |2H2
(10)

In the closed case (k = +1), rather than Cm or Λc, one often uses the mass M

M = 2π2a3ρm =
π

2G
√

Λc
=

3π

4G
Cm (11)

2Ωor being non zero, but very small, it is sometimes dropped from equation 7, and because ΩoK is experimentally
compatible with 0, it is also often dropped from many presentations. It is interesting to remember that thirty years
ago, it was another parameter (namely ΩΛ) that was often forgotten from many presentations.

3 The densities Ωr(u), Ωm(u), ΩΛ(u) were respectively called αS(τ), Ω(τ) and λS(τ) in ref. [2].
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to parametrize the matter contents of the universe.

If k = ±1, the constant parameters α and λ, introduced in equation (4) can be expressed as follows
in terms of the time dependent density parameters:

α =
4

9

Ωr|ΩK |
Ω2
m

λ =
27

4

ΩΛΩ2
m

|Ω3
K |

(12)

If k = 0, the measurements (now) of Ωr, Ωm and ΩΛ give no information on the individual values
of α and λ, but they are nevertheless related — at all times – by the relation:

α3λ =
16

27

Ω3
r ΩΛ

Ω4
m

(13)

2.3 Temperature, units and dimensions

The reason for calling T a dimensionless “reduced temperature” is that it is proportional to the
temperature T̃ of the black body radiation. Indeed, ρrad = 4σT̃ 4 where σ is the Stefan-Boltzmann
constant. Since ρrad = 3

8πGαΛcT
4, one finds

T̃ 4 =
3

8πG

αΛc
4σ

T 4 (14)

With ~ = c = 1, the value of the Stefan-Boltzmann constant is σ = π2k4
B/60 = 59.8 cm−4, where

kB is the Boltzmann constant. Notice that T̃ is in degrees Kelvin, hence dimensionless, but the
Boltzmann constant kB (as kB T̃ ) is an energy, hence homogenous to an inverse length, as it should.
We call To and T̃o the present values of the time-dependent quantities T and T̃ .

As already recalled, in this system of units all quantities are either dimensionless or have a dimension
which is some power of a length ([cm]). We gather the relevant information as follows:

t ∼ a ∼ Cm ∼ [cm], G ∼ Cr ∼ [cm2], H ∼ kB ∼ energy ∼ [cm−1]

Λ ∼ Λc ∼ [cm−2], ρvac ∼ ρrad ∼ ρm ∼ σ ∼ [cm−4]

Finally we list the dimensionless quantities:

Ωm ∼ ΩΛ ∼ ΩK ∼ Ωr ∼ q ∼ T ∼ T̃ ∼ u ∼ α ∼ λ ∼ [cm0 = 1]

Remember that k, α, λ,Λ,Λc are constant parameters.
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Figure 1: Potential for the associated mechanical system. Case α 6= 0

3 Solutions

3.1 Qualitative Behavior of Solutions

Friedmann equation in {u, T} variables (eq 3) can also be written

(
dT

du
)2 + Vα,k(T ) =

λ

3
with Vα,k(T ) = −αT 4 − 2

3
T 3 + kT 2 (15)

This is the equation of a one-dimensional mechanical system with “coordinate” T, potential Vα,k(T )
(displayed in Fig 1) and total energy λ/3. We shall also set

Qα,k(T ) = −Vα,k(T ) + λ/3 (16)

When no confusion arises we write V = Vα,k, Q = Qα,k. Formally, du = dT/
√
Q.

The kinetic energy being non negative, the associated mechanical system describes a horizontal
line in the (V (T ), T ) plane but never penetrates under the curve Vα,k(T ) –this would correspond
to u imaginary. The length of the vertical line segment between a point belonging to the curve and
a point with same value of T but belonging to the horizontal line λ/3 (on which the associated
mechanical system moves) is a measure of (dT/du)2.

For a given value of α, the radiation parameter, and for k = ±1, the curve Vα,k(T ) has typically two
bumps (two local maxima). For k = 1 (closed universe), the right maximum occurs for a positive
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Figure 2: Potential for the associated mechanical system. Case α = 0

value of T and V (T ) whereas, for k = −1 (open case), this maximum is shifted to T = 0 and
V (T ) = 0. For k = 0 (flat case), the right maximum disappears and we are left with an inflection
point at T = 0, V (T ) = 0. If α = 0, the curve V (T ) becomes a cubic (Fig. 2) and the LHS
maximum disappears: it moves to −∞ as α goes to 0.

Warning: figure 1 gives only the qualitative features of the curve Vα,k(T ). Indeed, for reasonable
values of α and λ, i.e., values compatible with experimental constraints, the vertical coordinate of
the left maximum should be at least 1000 times higher than the vertical coordinate of the right
maximum. Let us call λ±/3 the ordinates of the non-zero extrema of the potential Vα,k(T ) (see
fig. 1). For small values of α, the values of these extrema (maxima if k = +1) are given by
λ− ' k(1− 3αk) and λ+ ' 1

16α3 (1 + 12kα); the former goes to k, and the latter to infinity when α
goes to 0. Actually, if k = 0, one has exactly λ− = 0 and λ+ = 1/(16α3).

All the recent experimental results (see sec. 4.1) seem to agree on the fact that Λ is non-zero and
positive. As a consequence, λ is also positive. This will be assumed in the rest of this paper. At
the end of sec. 4.1 we will show, using the experimental values (or bounds) on the densities, that
if k = 1, then λ− < λ < λ+, and if k = 0 or −1, then 0 < λ < λ+. Actually, if k = 0 the right
maximum of the potential disappears: (λ− = 0) and if k = −1, the (right) maximum becomes a
(left) minimum and moves to the non-physical region

In other words, the associated mechanical system moves along an horizontal line like the one
displayed in fig. 1, with an ordinate located between the two extrema of the potential Vα,k(T ).
Typically, a given universe starts from the right of the picture (an infinite T corresponding to the
Big Bang) and moves to the left until it reaches the vertical axis (T = 0). This takes place in a finite
conformal time uf but corresponds to a cosmic time t going to infinity, so that, in the universe in
which we live, “History” stops there. However, the solution can be continued for T < 0 (a negative
radius a) until the system bumps against V (T ) and goes back to right infinity; the system then
jumps to left infinity, follows the same horizontal line (but now from left to right) till it bumps
against V (T ) again, and comes back. This round trip of the associated mechanical system is done
in a (conformal) time 2ωr – a period of the corresponding elliptic function. If k = 1 there is an

8



u

T HuL

u

T HuL

u

T HuL

u

T HuL
u

T HuL

u

T HuL

u

T HuL

u

T HuL

Figure 3: Qualitative behavior of T (u). Typical plots for cases (i) (k = 1, α = 0), assuming λ ≥ 1, (ii)

(k = 0, α = 0), assuming λ ≥ 0, (iii) (k = −1, α = 0), and case (iv) α 6= 0, assuming λ− ≤ λ ≤ λ+. The

function T (u) is doubly periodic for complex u, and periodic, with period 2ωr, if the conformal time u is

real (graphs on the left). Only the decreasing positive branch of T (u), in the first period, is “physical” i.e.,

describes the history of our universe (graphs on the right). In the first three cases the inflection point occurs

respectively for T > 0, T = 0, and T < 0. We have the same type of behavior when α 6= 0 but the curve

also develops a negative connected branch (see details in fig. 4).

inflection point for T (u) coming from the existence of a positive right maximum for the curve V (T ):
the expansion speeds up anyway, but there is a time uI for which the rate of expansion vanishes. If
k = 0 the right maximum disappears and there is no inflection point for T (u). In the case k = −1
the inflection point of T (u) moves to the non-physical region.

Since the radius a is proportional to 1/T , the discussion in terms of a is of course different: the
system starts with a = 0 (Big Bang), and expands forever; as λ > 1 the expansion speeds up in
all three cases k = ±1, k = 0. Let us stress the fact that only the first part of the motion of
the associated mechanical system (from right-infinity to the intersection with the vertical axis) is
physically relevant for the history of the universe in which we live.

The above elementary discussion shows immediately that, as a function of the conformal time u,
the behavior of the reduced temperature T (u) is described by fig 3. Notice that, if α = 0 the
connected negative branch(es) of this curve disappears. Call uf the first positive zero of T , i.e.,
the first positive value of u for which T (uf ) = 0. Only that part of the curve corresponding to the
interval 0 ≤ u ≤ uf matters, for the universe in which we live.

3.2 Notations for special values of the conformal time

The end of time. Call uf =
∫∞

0 dT/
√
Q(T ). The conformal time reaches uf when the reduced

temperature T becomes equal to 0. This corresponds to an infinite value of cosmic time. The value
uf is given by the previous integral but one can also determine numerically its value by looking at
the first zero of the function T (u) along the real axis. We call uf “the end of time”, but this is only
a shortening for “the value of the conformal time at the end of cosmic time”, since, after that, the
conformal time goes on....

9
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T

Figure 4: Qualitative behavior of T (u), radiation being taken into account. Special values of the

temperature (extrema Ta, Tb) and of the conformal time (uf , ug, uf + ug, 2ωr) are displayed on the figure.

The width of the connected negative branch (between the two asymptotes) is 2δc = 2ωr − (uf + ug), it goes

to 0 when the effect of radiation is neglected, at the same time the connected negative part of the curve

is shifted towards −∞ i.e., the smallest (negative) extremum Ta becomes very large. Experimentally, the

contribution of radiation is small, which means that 2δc is very small compared to 2ωr. The physical branch

of the history of the universe is the interval [0, uf ].

After the end of time: the negative history. If α = 0 (no radiation), and for given λ, call TM
the solution of the equation V (T ) = λ. If α 6= 0, call Ta ≤ Tb the two solutions of the same
equation (see graphs 1 and 2). In the first case, call δM =

∫ 0
TM

dT/
√
Q(T ). In the second case, call

δM =
∫ 0
Tb
dT/

√
Q(T ). As a function of conformal time, the reduced temperature T has a (negative)

minimum TM (if α = 0), or Tb (if α 6= 0) which is obtained for uM = uf + δM . This occurs after
the end of time. After the end of time uf , the reduced temperature T (u) becomes negative and
continues to decrease until it reaches TM (or Tb) then it starts to increase and vanishes again when
u = ug, with ug = uf + 2δM .

After the negative history: a new beginning. When u > ug, the temperature is again positive, it
starts from zero and increases to infinity (big crunch), this happens when u = uf + ug = 2uM .
Although it could be a perfectly allowed region, it is not the branch of the universe in which we live.
If the chosen cosmological model uses α = 0, the value 2uM = 2

∫∞
TM

dT/
√
Q(T ) coincides with 2ωr,

the real period. Otherwise (i.e., if we take α 6= 0), the curve T (u) develops a negative connected
branch for u between 2uM and the period 2ωr: the radiation conformal shift4 2δc = 2ωr − 2uM ,
that vanishes if α = 0, measures the size of this unphysical branch; as we see from graph 1, it can
be obtained numerically as the integral δc =

∫ Ta
−∞ dT/

√
Q(T ).

The complex history. Under the potential, i.e., for Ta < T < Tb (using α 6= 0), or for −∞ < T < TM
(using α = 0), the polynomial Q(T ) is negative and the conformal time is purely imaginary. As a
function of the complex argument u, the function T (u) is doubly periodic in the complex plane. We

4in ref [2] the number 2δc was called uc
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have already determined one (real) half-period ωr, by integrating dT/
√
Q(T ) along the branches∫ Ta

∞ +
∫∞
Tb

, integration between iTa and iTb gives us the (complex) half-period iωi. So, in terms of

real quantities, we have: ωi =
∫ Tb
Ta

dT/
√
|Q(T )|. If one uses α = 0, we just replace Ta by −∞.

Let us summarize the previous discussion (see also fig. 4), by the following :

uf =

∫ ∞
0

dT√
Q(T )

, δM =

∫ 0

Tb

dT√
Q(T )

, δc =

∫ Ta

−∞

dT√
Q(T )

, ωi =

∫ Tb

Ta

dT√
|Q(T )|

uM = uf + δM , ug = uf + 2δM , 2ωr = uf + ug + 2δc = 2uM + 2δc.

If one uses α = 0, one sets Ta →∞, Tb = TM , and therefore δc = 0, ωr = uM .

(17)

The conformal time at the inflection point uI . From the associated mechanical system, see figs 1
or 2, we see that when the reduced cosmological constant λ is such that λ− < λ < λ+ (case α 6= 0),
or is such that 1 < λ (case α = 0), the curve T (u) has an inflection point between 0 and uf , and
another one (after the negative history) when u > ug. This occurs both for models with k = 1 and
k = −1, but this point is “physical”, i.e., it occurs for a positive temperature, only if k = 1. Its
position uI can be determined by solving T ′′(u) = 0. Rather than solving this equation, one may
notice that, assuming k = +1, the value T (uI) is also equal to T+, the positive real value of T for
which the potential V (T ) is maximal (T+ is α-dependent, but T+ = 1 if α = 0), therefore, uI can
be found by solving the equation T (uI) = T+, if α 6= 0, or the equation T (uI) = 1, if α = 0. Notice
that if k = 0 the second derivative of T vanishes when T = 0, i.e., when u = uf (end of time), but
does not change sign: there is no inflection point in the physical region.

The conformal time now u0. The above special values of the conformal time depend on the pa-
rameters used to construct the cosmological model (a universe history). In contradistinction, the
conformal time u0 just specifies the date “today”, i.e., where we are on the curve describing a
universe history. This value u0 is defined by the equation T (u0) = To where To is in principle taken
from experiment (see equation 14).
Assuming α = 0 to simplify, we have obviously 0 < uf < uM = ωr < ug < ug+uf = 2ωr. If TI > 0,
i.e., if k = 1, it is of course physically interesting to know if uI is smaller or larger than u0. Using
the experimental results on the present day values of the densities we will see that uI is very close
to uf and still in our future, in other words uo < uI < uf . If k = 0 this inflection point disappears.

Periods and Weierstrass invariants. We saw how to determine two periods 2ωr and 2ωi by inte-
gration (see above). As it is discussed in sections 3.3.1 and 3.3.2, as well as in the Appendix,
another way to encode the lattice with respect to which the cosmological quantities are elliptic (in
particular, doubly periodic) is to introduce the Weierstrass invariants g2, g3. We shall come back
to it, but let us only mention now that several mathematical computer packages offer facilities to
convert Weierstrass invariants (g2, g3) into complex half-periods (ω1, ω2), and vice versa, but the
reader should remember that, given the two invariants, the choice of a base in the corresponding
lattice of the complex plane is not unique (cf. Appendix), and the result returned for the periods by
a computer package will depend upon the package and may even depend upon the program version!
Calling ∆ = g3

2 − 27g2
3 = 2−43−3λ(λ− λ+)(λ− λ−) the modular determinant, and assuming ∆ < 0

as it seems to be experimentally the case (see sec. 4.1), we can choose5 for elementary periodicity

5At the moment, with Mathematica version 10, [13] the two half-periods returned by the command {ω1, ω2} =
WeierstrassHalfPeriods[{g2, g3}] are such that ωr + iωi = 2ω2 and −iωi = ω1.
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cell the rhombus {0, ωr− iωi, ωr + iωi, 2ωr}, where the numbers ωr and ωi are real; in particular its
diagonal {0, 2ωr} is real, and as a function of the real variable u, the number 2ωr is the fundamental
period.

3.3 Analytical solutions

3.3.1 The case without radiation (α = 0)

For a solution starting with a Big Bang the contribution of the term αT 4 to the Friedmann equation
is only important when the universe is very young. As the discussion is in any case easier in that
case, we shall first assume α = 0. The RHS of eq 3 is then a cubic polynomial, and setting
T = 6y + k/2 brings this equation to the form

(dy/du)2 = 4y3 − g2y − g3 (18)

where the parameters g2 and g3, called the Weierstrass invariants, are given by

g2 = k2/12 and g3 =
1

63
(k − 2λ) (19)

The analytic solution, for the reduced temperature T , is immediate: as a function of u, it is the
(scaled and shifted) Weierstrass elliptic function6 y = P corresponding to the invariants g2 and g3.

T (u) = 6P(u; g2, g3) +
k

2
(20)

Since P(u) =
1

u2
+O(u2) as u→ 0, i.e., near the Big Bang, we see that T (u) ∼ 6

u2
+ k/2 (u→ 0)

but, on physical grounds, one should not use this approximation of T (u) for small u since one
cannot neglect the effect of radiation (the α term) near the Big Bang.
The end of time7 occurs at the first zero, uf , of T (u). Calling ug the next zero, we have uf+ug = 2ωr
where the RHS is the period along the real axis.

Since T vanishes for u equal to uf and ug = 2ωr−uf , the elliptic function 1/T has a pole for these
two values, with a behavior dictated by the dominant term

√
λ/3 in the RHS of eq 3, so that we can

write it immediately8 in terms of the Weierstrass function ζ(u). We obtain in this way an alternative
explicit expression for the reduced temperature T (u) (remember that T (u) = 1/(a(u)

√
Λc)):

1

T (u)
=

√
3

λ
{ζ(u− ug)− ζ(u− uf ) + ζ(ug)− ζ(uf )} (21)

The dedicated reader can check that the following provides still another expression for the same
function T (u). In this formula, σ(u) = σ(u; g2, g3) denotes the Weierstrass σ function of the same

6See sec. 6.
7Physically, the cosmic time t(u) develops a logarithmic singularity when u→ uf , this is indeed “the end of time”.
8See the last paragraph of the appendix.
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lattice. Rather than using the information that we have about the the poles and principal parts of
1/T , it uses the fact that we know its poles and zeroes.

T (u) = TM ×
σ2(

uf + ug
2

)

σ2(
uf − ug

2
)
×
σ(u− uf )σ(u− ug)
σ(u)σ(u− uf − ug)

(22)

Here TM = Tb = T (ωr), see figs 1,2, is the minimum value of T (u); it can be determined from
dT/du = 0, i.e., as TM = 6 e2 + 1

2 where e2 is the real cubic root of the polynomial 4y3 − g2y − g3.
This is numerically easy to find but it can also be given in closed form: e2 = a+ + a−, where
a± = −1

2(−g3 ±
√
−∆/27)1/3, with ∆ = g3

2 − 27g2
3.

Eq 20 looks simpler than eqs 21 or 22 but the latter is numerically as convenient as the first and,
as we shall see, generalize straightforwardly to the α 6= 0 case.

The cosmic time. Integrating eq 2 we obtain√
Λ

3
t(u) = ln[

σ(uf + u)

σ(uf − u)
]− 2u ζ(uf ) (23)

This function is not elliptic, it has a logarithmic singularity at u = uf . In a neighborhood of uf ,

to the left, we have
√

Λ
3 t(u) ∼ −ln(uf − u). Between uf and ug the cosmic time is not real.

3.3.2 The case with radiation (α 6= 0)

From the analytic point of view, what happens is that the two poles of T (u) become distinct, each
one of them is therefore of first order, since T (u) is still elliptic of order 2. The RHS of eq 3 is now
a quartic polynomial Q(T ) = −V (T ) + λ/3, but such a polynomial can be brought to a cubic form
by a simple change of variables. Let Tj be any one of the (possibly complex) roots of the equation
Q(T ) = 0, then the fractional linear transformation

y =
Q′(Tj)

4

1

T − Tj
+
Q′′(Tj)

24
(24)

brings eq (3) to the same form as before (eq 18), but the invariants g2 and g3 are now given by

g2 =
k2

12
+
αλ

3
and g3 =

1

63
(k − 2λ)− αλk

18
(25)

Again, we have y = P(u; g2, g3) and one can solve eq 24 for T in terms of y to get an explicit
expression for the function T (u). However, in the present case, it is much simpler to express T
in terms of the Weierstrass zeta function ζ = ζ(u; g2, g3). The obtained expression is exactly the
same as the one (eq 21) obtained in the previous section, with the difference that the invariants
g2, g3 are now given by eq 25, and that uf + ug 6= 2ωr since we have uf + ug + 2δc = 2ωr with

2δc = 2
∫ Ta
−∞ dT/

√
Q(T ) 6= 0. With α 6= 0, and assuming9 λ− ≤ λ ≤ λ+, the polynomial Q(T ) has

two real roots Ta ≤ Tb < 0 (we had only one, TM = Tb, in the case α = 0 and λ > 1).

9This corresponds to the experimental situation, see our discussion in sec. 4.1.

13



The cosmic time. Equation (23) is modified as follows:√
Λ

3
t(u) = ln[

σ(uf )σ(u− ug)
σ(ug)σ(u− uf )

] + u (ζ(ug)− ζ(uf )) (26)

Compared to the case α = 0, modifications in the interval 0 ≤ u ≤ uf occur for very small u.

4 Experimental constraints and evolution of cosmological quanti-
ties with conformal time

The experimental values given for Ωo
m and Ωo

Λ in table 2 of [12] assume Ωo
K = 0 (the spatially flat

“base ΛCDM model”). This very special value of the curvature density is certainly compatible with
present-day experiments but, using observations of the CMB together with the results coming from
detection of gravitational lensing, it seems (formula 67b of [12]) that one can only constrain Ωo

K

to percent level precision: 100 Ωo
K = −1.0+1.8

−1.9. This small value found for Ωo
K is often described

in the literature by sentences like “the universe is spatially flat”. From the analytical and geo-
metrical points of view, the flat case k = 0 (that implies ΩK = 0 at all times since densities have
constant sign and k = −sign(ΩK)) is however very special, see section 5. For conceptual —and
philosophical— reasons, some people may find cases k = 0 and k = −1 a bit unpleasant, see in
particular the discussion in pages 748, 749 of [9], while some other people, also for conceptual —and
philosophical— reasons, prefer to take k = 0. In general we do not assume spatial flatness, and in
the next three subsections we shall use values of Ωo

m and Ωo
Λ that allow for a non-zero curvature

density Ωo
K within the experimental bounds. For definiteness, and since the latter is only con-

strained to be smaller than a few percents (not such a small number), we shall take Ωo
K = −0.01,

so k = +1 (closed case). Subsection (5) will be devoted to the case k = 0.

4.1 Experimental present values for density parameters, CMB temperature,
and Hubble function

Newton constant and Stefan-Boltzmann constants. With ~ = c = 1, the value of the Stefan-
Boltzmann constant is σ = π2k4

B/60 = 59.8 cm−4, where kB is the Boltzmann constant and the
Newton constant (sometimes called “Planck area” in those units) is G = 2.61 10−66cm2.

CMB temperature. The present day value of the CMB temperature given by [12] is T̃o = 2.7255 K.

Hubble parameter. The present value of the Hubble “constant” (i.e., now), given by [12] is Ho =
100 h kmsec−1Mpc−1, with h ' 0.688 ± 0.008. Its mean experimental value, in natural units, is
therefore Ho = (7.437 ± 0.13) 10−29 cm−1. In the following we shall take h (later called ho) equal
to 0.688.

Radiation density Ωr. From eq. 14 and using the present day experimental value of the CMB tem-
perature T̃o, one finds αΛc T

4
o = 5.23 10−63 cm−2. From eq. 8 for Ωr, and using the experimental

value for Ho, one finds Ωo
r = (5.45± 0.20) 10−5. This value is therefore obtained from the measure-

ments of T̃o and Ho. Taking into account the effect of all relativistic particles (massless neutrino)
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is not expected to change this value much. The term Ωo
r, which is well determined but very small

compared to the other terms, is often dropped from eq 7 written 1 = Ωo
r + Ωo

K + Ωo
Λ + Ωo

m. It is
certainly legitimate to perform this approximation at present times, but of course not at all times
and certainly not at the beginning of the expansion.

Curvature density (cf. discussion at the beginning of this section). In contradistinction to the
latter, the present day curvature density Ωo

K is not well determined, but it seems to be also quite
small. For this reason it may look legitimate to drop the term Ωo

K from equation eq. 7. Doing so is
certainly valid at present times, but setting k = 0 (which implies ΩK = 0 at all times) is a strong
and disputable hypothesis on the topology and the dynamics of the mathematical model chosen
for our universe. In any case we want to study and display the evolution of ΩK as a function of u.
We take Ωo

K = −0.01, a value compatible with the experimental bounds. This implies10 k = +1.

Matter density. According to the recent measurements (see in particular [12]), Ωo
m is about 0.3. The

value quoted by [7] for CMB + WMAP + BAO is Ωo
m = 0.293±0.010. For definiteness, we shall take

Ωo
m = 0.293 in the following numerical experiments. One could for instance assume a contribution

of 0.047 from baryons and 0.246 from dark matter but the fact that matter density seems to be
dominated by its so-called “dark matter” component (compared to its baryonic component) is
irrelevant for the present analysis since both contribute in the same way to Friedmann equations.

Vacuum density (often called “dark energy density”). The experimental constraints — see those
given by [12], in particular fig. 25 of [12] — are Ωo

Λ = 0.707± 0.010. We shall take Ωo
Λ = 0.717.

From equation 13 and using the experimental values of Ωo
r, Ωo

m and Ωo
Λ, one finds λα3 ' 8.20 10−12.

This value is independent of the hypothesis made about the curvature density (in particular it also
holds if k = 0).

If we assume k = ±1, the equations 12 make sense and give individual values — or constraints
— for the parameters α and λ. The sum of the four densities should be 1 at all times, but since
they enter multiplicatively in the expressions of α and λ, one obtains reasonable bounds by keeping
Ωo
K as a free variable in eqs 12. Doing so leads to α ' 2.70 10−4 |Ωo

K | and λ ' 0.415/|Ωo
K |3. If

we assume that the present day value of the curvature density is bounded, in norm, by 10−2, we
find α < 2.7 10−6 and λ > 4.1 105. As already written, we shall use |Ωo

K | = 10−2 in the following
numerical experiments.

Warning: if we assume k = 0, so that ΩK is strictly zero at all times, we cannot use eqs 12 to
provide individual values (or bounds) for α or λ. The only constraint that we have is on the value
of λα3.

We called λ±/3 the ordinates of the left and right maxima of the potential Vα,k(T ) of the associated
mechanical system (see fig. 1 in sec. 3.1).
If k = 0, one has λ+ = 1

16α3 and λ− = 0. The numerical value obtained previously for the product
λα3 is clearly much smaller than 1

16 . Therefore λ << λ+. On the other hand, experimentally, Λ
and therefore λ, are positive. So we have the constraint λ− = 0 < λ << λ+.

10The spatial universe is then, topologically, a sphere S3 ∼ SU(2) or a quotient of the latter by a (discrete) binary
polyhedral subgroup of SU(2).
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If k = +1, from the experimental bounds on Ωo
K , we conclude, as before, that the value of α is itself

very small, so that we can use for λ± the approximations λ− ' (1 − 3α) and λ+ ' 1
16α3 (1 + 12α)

given in 3.1, or even λ− ' 1 and 16λ+α
3 ' 1, but λ is at the same time much larger than 1 and

such that λα3 ' 8.20 10−12. As a result: λ− < λ << λ+.
The case k = −1 can be discussed similarly, but here λ− is negative and corresponds to a minimum
of the potential; it is also associated with an inflection point of the curve T (u) but this occurs when
T is negative, i.e., in the unphysical region (after the end of time).

In all cases, the constraint λ− < λ < λ+ tells us (see fig. 1) that, as a function of conformal time
u, the temperature will decrease from plus infinity to 0, for some value uf (the end of time), it
will then become negative until it reaches a minimum (the associated mobile bumps against the
potential since λ � λ+), and goes back to (plus) infinity. This branch is followed, since α 6= 0,
by a round trip of the mobile in the non-physical region (a negative branch of the curve T (u)). In
the case k = 1 the curve T (u) has an inflection point in the physical region; this inflection point
disappears if k = 0, and moves to the unphysical region if k = −1, but in the three cases, given the
experimental constraints on the densities and the corresponding bounds on λ, the overall features
of the temperature, as a function of the conformal time, are the same.

4.2 Evolution of the cosmological quantities as functions of conformal time

In the cases k = ±1, from the independent measurements of Ho, Ωo
m, Ωo

Λ and T̃o, one can determine
the evolution of all cosmological quantities in terms of the conformal time u. Here we take k = +1.
The various quantities are obtained, in turn, as follows. Eq. 14, using T̃o, give the product αΛcT

4
o .

Then eq. 8, with Ho, gives Ωo
r. The densities Ωo

m and Ωo
K , together with eq. 7 gives Ωo

K . The
parameters α and λ are then obtained from eq. 12. Λ comes from Ωo

Λ and Ho, using eq. 8. This
gives Λc since λ is known, and also To, since αΛcT

4
o is known. Eqs. 25 give the two invariants g2 and

g3. The Weierstrass functions are then perfectly determined. The different cosmological quantities
of interest, as functions of u, are finally given by eqs. 5, 21, together with 16, 17 (or 20 if radiation
is negelected), and 8.

Temperature T̃

As a function of conformal time, the evolution of the usual temperature T̃ is displayed in fig. 5.
Remember that it is obtained by multiplying T by the known (and constant) scaling factor given
by eq. 14. As already mentioned several times, this function is periodic in the complex plane, and
in particular along the real axis, but the physical branch (i.e., the history of our universe) is only
given by the interval [0, uf ], the value uf being the “end of time”, which corresponds to t→∞ in
terms of cosmic time. With k = 1, i.e., in a universe with the topology of S3 (or a discrete quotient
of the latter), the fact that uf ≤ 2π means that an observer looking forward will never be able to
see the back of his head, even if he waits for a very long time.
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Figure 5: Evolution of the universe temperature T̃ as a function of conformal time. Cases: (i) In
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branch is the interval [0, uf ] where the curve intersects the real axis (first zero): uf is the end of time. The

curve possesses a negative branch in the interval [uf + ug, 2ωr] which is not displayed (see figs 3, 4 and 13).
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Figure 6: Evolution of the radiation density Ωr(u) as a function of conformal time. Cases: (i) Near

the Big Bang. (ii) In the interval [0, uf ], the physical branch. (iii) Around the present value uo. (iv) For a

real period [0, uf + ug . 2ωr]. In the tiny interval [uf + ug, 2ωr] the curve has two infinite positive branches

that are not displayed.

Radiation, matter, vacuum, curvature densities Ωr, Ωm, ΩΛ, ΩK and Ω = Ωm + ΩΛ + Ωr

The curves displaying the behavior of those densities, as functions of conformal time, are respec-
tively given in figures 6, 7, 8, 9, 10. We already commented about the fact that we choose (arbitrar-
ily) the value Ωo

K = −0.01 (so k = +1), which is non-zero, but compatible with the experimental
bounds, to perform the calculations leading to the following plots. The values obtained for the
conformal time u of the various points of interest (extrema, inflection point, present day value, end
of time, etc.), as well as the values obtained for the modular parameters (Weierstrass invariants,
periods, j-function, etc), are quite sensitive to the choice of Ωo

K ; however, the overall features of the
curves are rather stable, given the present values of the other densities.
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Hubble function H and deceleration function q

Rather than plotting the Hubble function H(u) × cm, we give in fig. 11 the evolution of the h
coefficient as a function of conformal time. As usual, H = (100h 105 cm)/(sMpc), so H × cm =
1.0810076 10−28 h, with ho = 0.688, the present value of h.

Another useful quantity is the deceleration function — a misnomer11 since we seem to live (now)
in an accelerating expanding universe: q = −a(da/dt)−2(d2a/dt2) = Ωm/2 − ΩΛ + Ωr. It can be
expressed in terms of T (u) as follows:

q =
−λ

3 + 1
3T

3 + αT 4

λ
3 − kT 2 + 2

3T
3 + αT 4

The behavior of this function q(u) is given in fig. 12.

11In the old books it is not uncommon to find q defined as Ωm/2 since it was then fashioned to set to zero both
the vacuum and the radiative contributions.
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Figure 12: Evolution of the deceleration function q(u) as a function of conformal time. Cases: (i)

Near the Big Bang. (ii) In the interval [0, uf ], the physical branch. (iii) Around the present value uo. (iv)

For a real period [0, uf + ug . 2ωr]. In the tiny interval [uf + ug, 2ωr] the curve has two infinite positive

branches that are not displayed.
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Figure 13: Evolution of T̃ (u) and h(u) in the (unphysical) tiny interval [uf + ug, 2ωr]

The behavior of T̃ and h in the small interval [uf + ug, 2ωr]

In the plots 6 – 12 , we did not display the branches of the curves in the tiny interval [uf +ug, 2ωr],
located just before the period 2ωr and far above the physical region [0, uf ]. Nevertheless, for

completeness sake, we display in fig. 13 the behavior of the functions T̃ (u) and h(u) —the latter
being essentially the derivative of the former— in this interval. We remind the reader that this
interval shrinks to zero when the radiation term (in αT 4) is set to zero in the Friedmann equations.

The behavior of a and t

Finally, we display in fig. 14 the evolution of a(u), the spatial scale factor (essentially the inverse
of T (u)), and of the cosmic time t(u), as functions of the conformal time u.
The function t(u) is not elliptic and has a logarithmic singularity when u→ uf . In this neighbor-

hood,
√

Λ
3 t(u) ∼ −ln(uf−u),

√
Λ
3 a(u) ∼ 1

uf−u , i.e., a(t) ∼
√

3
Λ et
√

Λ/3 and the universe approaches the

empty de Sitter space-time. For u = uo (now), one finds ao = 1.42 1011 yr and to = 1.38 1010 yr.
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Figure 14: Evolution of the spatial scale factor a(u)/cm as a function of conformal time, (i) in the interval
[0, uf ], the physical branch. (ii) For a real period [0, uf + ug . 2ωr]. In the tiny interval [uf + ug, 2ωr] the
curve is not displayed. (iii) Evolution of the cosmic time t(u)/cm as a function of conformal time.

Near the Big Bang, we have
√

Λ/3 a(u) = (P(uf ) − P(ug))u + 1
2 (P ′(ug) − P ′(uf ))u2 + O(u)3 and√

Λ/3 t(u) = 1
2 (P(uf ) − P(ug))u

2 + 1
6 (P ′(ug) − P ′(uf ))u3 + O(u)4 so, a(t) ∼

√
2 (Λ

3 )−1/4(P(uf ) −
P(ug))

1/2 t1/2.

If radiation is neglected, the first term in the Taylor expansions of a(u) and t(u) vanish, since in that
case P(uf ) = P(ug) = −k/12, and we have instead a(t) ∼ (Λ

3 )−1/6 31/3 ( 3
2 )1/3 (P ′(ug)− P ′(uf ))1/3 t2/3.

We recover, in both cases, the known results for the power-law behavior of a(t) which can also be
derived directly by keeping only the leading term in the differential equation for the function a(t).

4.3 Tables

The experimental inputs are in boldface. Ωr(uo) is exactly deduced from the measurements of the
temperature T̃ [uo] and the Hubble constant Ho. Remember that we choose for ΩK [uo] an arbitrary
non-zero negative value compatible with the experimental bounds (so k = +1). We recall the
notations used for special values of the conformal time u: 0 (Big Bang), uo (present value), uf
(first zero of T , i.e., end of cosmic time: t→∞), ug (second zero of T ), 2ωr (real period of T ), uI
(inflection point for T ), uk (value of u for which ΩK as an extremum in the interval [0, uf ]). The
other quantities are either standard in cosmology (their definitions have been recalled in the text),
or they are related to modular considerations: the Weierstrass invariants g2, g3 have been defined
in sections 3.3.1, 3.3.2, see also the end of sec. 3.2 for the half-periods (ω1, ω2), and we refer to
the appendix for the other quantities (modular discriminant ∆, modular parameter τ and Klein
invariant j).

Ho ∗ cm =7.4410−29 ao/cm =1.31 1028 to/cm =1.31 1028 Ho ∗ to =0.973
Λ ∗ cm2 =1.19 10−56 Λc ∗ cm2 =2.90 10−62 λ =409049. α =2.72 10−6

ρm[uo] ∗ cm4 =7.41 107 ρvac ∗ cm4 =1.81 108 Cm/cm =3.91 1030 qo =− 0.57
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u[0] =0 uk =0.272 uo =0.330 uI =0.441 uf =0.444

T̃ [0] =∞ T̃ [uk] =4.626 T̃ [uo] =2.725 T̃ [uI ] =0.062 T̃ [uf ] =0
T [0] =∞ T [uk] =74.22 T [uo] =42.72 T [uI ] =1 T [uf ] =0

Ωm[0] =0a Ωm[uk] =0.675 Ωm[uo] =0.293 Ωm[uI ] =4.89 10−6 Ωm[uf ] =0
ΩΛ[0] =0 ΩΛ[uk] =0.338 ΩΛ[uo] =0.717 ΩΛ[uI ] =1. ΩΛ[uf ] =1.
ΩK [0] =0 ΩK [uk] =− 0.014 ΩK [uo] =−0.01 ΩK [uI ] =− 7.33 10−6 ΩK [uf ] =0
Ωr[0] =1b Ωr[uk] =2.043 10−4 Ωr[uo] =5.2199210−5 Ωr[uI ] =1.992 10−11 Ωr[uf ] =0

a[0] =0 a[uk]/cm =7.90 1028 a[uo]/cm =1.34 1029 a[uI ]/cm =5.86 1030 a[uf ]/cm = ∞
t[0] =0 t[uk]/cm =7.00 1027 t[uo]/cm =1.31 1028 t[uI ]/cm =7.22 1028 t[uf ]/cm = ∞

g2=0.454 g3=− 3787.
ω1 =− 0.387 i ω2 =0.336 + 0.194 i ωr =0.671 ug =0.889

τ =− 0.50 + 0.86i j =− 2.412 10−10 ∆ =− 3.87 108

4.4 Comments

Very quickly after the Big Bang, taking into account the radiation term in Friedmann equations,
i.e., using eq. 21 together with eq. 17 rather than using only eq. 20, only changes, in the previous
table, the third decimal digit in the values of all quantities of interest, at least in the “physical
branch” of the history (u < uf ). However the influence of this term is very important when u→ 0.
See in particular the values of the densities at the point u = 0. Analytically the curve T (u) also
develops a connected negative branch, between uf + ug and 2ωr, but this is physically irrelevant
since it occurs long after the end of time uf . If radiation is neglected (α = 0), the quartic term in
Friedmann equations disappears, and 2ωr = uf + ug.

The (negative) curvature density ΩK has a minimum for a value uk in the physical branch, see fig. 9
and the table in sec. 4.3, showing that 0 < uk < uo, so this happened in our past. It is incorrect to
think or claim that the experimental smallness of Ωo

K implies that it was even smaller in the past:
indeed, although ΩK goes to 0 at the Big Bang, it has – actually it had – an extremum for u = uk.

If one takes radiation into account, as one should, one finds that the matter density Ωm is zero at
the Big Bang, and quickly increases — see fig. 7 — to reach a maximum almost equal to 1 because
the other densities are negligible in this region. Using the same experimental values as before,
the maximum is reached for a value of conformal time um ' 0.10526. After that, Ωm stabilizes
for a while and starts to slowly decrease (Ωo

m ' 0.293 nowadays) to reach 0 at the end of time.
The sharp increase of Ωm at the Big Bang is already encoded in the Friedmann equations (with
radiation, of course). Notice that we do not introduce any inflation mechanism in this paper. Near
u = 0+, this density behaves as 2u

3
√
α

. If one incorrectly forgets the radiative term contribution, the

matter density behaves instead as 1 + u2

4 when u → 0; notice that the former expression does not
go continuously to the latter when α→ 0.

aIf one does not include the radiation density in the Friedmann equations, i.e., if one sets Ωr = 0 at all times, one
finds Ωm[0] = 1 instead of 0, in agreement with the fact that, in that case, Ωm[0] + ΩΛ[0] + ΩK [0] = 1.

bThis is in agreement with the fact that Ωm[0] + ΩΛ[0] + ΩK [0] + Ωr[0] = 1, see previous footnote.

22



With the given experimental values, one finds 0 < um < uk < uo < uI < uf . The inflection point
uI of T (u) is therefore still in our future, but it is located very near the end of time uf , and is hard
to see on the figures.

The table gives uf = 0.444, therefore, looking forward, you cannot hope to see the back of your
head (assuming k = 1) since uf < 2π, even if you wait a very long time. However, as already
mentioned, this value is quite sensitive to the (arbitrary) chosen input for Ωo

K , so, there is still
hope!

In contradistinction with other quantities (like g2, g3, λ, α, etc. ), the numerical values found for to,
the cosmic time, now, and ao, the cosmic scale factor, now, are quite stable with respect to the
choice of Ωo

K . In terms of cosmic time, here are a few important dates in the history of the universe:
t(0) = 0, t(um) = 4.58 108 yr, t(uk) = 7.40 109 yr, t(uo) = to = 1.38 1010 yr, t(uI) = 7.63 1010 yr,
t(uf ) =∞.

One should remember that the function T , introduced in the first section, differs from the usual
temperature T̃ by a multiplicative dimensionless factor ( 3

8πG
αΛc
4σ )1/4, see eq. 14. Using the values of

the previous table, this factor is about 6.23 10−2. It is quite sensitive to the input chosen for ΩK .

Analytically, the main qualitative feature that distinguishes the case α 6= 0 from the case α = 0 is
that, in the former, the two poles of T (u) are distinct, consequently, each of them is of first order.

Because of the smallness of the j-invariant, the modular parameter τ appears to be numerically
very close to exp(2iπ/3), but it cannot be equal to this special value since k = 1 and αλ > 0 imply
g2 6= 0 (see eq. 25), so j, given by eq. 35, is strictly non-zero. We shall return to this in sec. 5.2.

5 Some specific features of the flat case k = 0

If one assumes k = 0 from the very beginning, the Friedmann equation simplifies (the quadratic
term vanishes), and becomes (dTdu )2 = αT 4 + 2

3T
3 + λ

3 , with, as usual, λ = Λ
Λc

,
√

Λc = 2
3Cm

and

α = CrΛc. We have immediately Ωm
ΩΛ

= 2
λT

3, Ωr
Ωm

= 3
2αT but this information, taken at conformal

time uo, is insufficient to obtain separately To, α or λ. In other words, given the values of Ho, T̃o,
Ωo
m, Ωo

Λ, and Ωo
r (the sum of the last three being set to 1), one cannot obtain explicit values for

all the cosmological quantities appearing in the table given in section 4.3, for instance one cannot
obtain the values of λ, of α, or of the conformal time “now” i.e., uo: one extra piece of data, that
could be for instance Λc, is missing. However, as we shall see below, the experimental data singles
out a well-defined isomorphism class of elliptic curves.

5.1 General study

If we don’t neglect radiation, the invariants are given by equations 25 where we set k = 0. So

g2 = αλ/3, and g3 = −2λ/63 (27)

23



From equations 8, one immediately obtains:

27

16
λα3 =

Ω3
r ΩΛ

Ω4
m

(28)

As λα3 does not depend upon the value of the conformal time, it can be evaluated by replacing the
densities by their present-day values. Notice that this quantity is positive, although rather small;
indeed, using the same experimental values as in the previous section, one finds λα3 ' 8.20 10−12.

We cannot, in the case k = 0, obtain separately the values of λ or α from the measurement
of densities. However, since the product λα3 is fixed, we can investigate what happens under
scaling. The value of the cosmological constant Λ being determined, changing the parameter Λc (or,
equivalently the “mass” of the universe) amounts to change the value of their ratio, λ. We therefore
set α′ = α s2 and λ′ = λ/s6, where s is an arbitrary parameter; in this way λ′ α′3 = λα3 is kept
fixed. From the expressions of the Weierstrass invariants g2 and g3, we find immediately g′2 = g2/s

4

and g′3 = g3/s
6. Setting ∆ = g2

3−27g3
2, j = g2

3/∆ and using the same definitions for ∆′ and j′ in
terms of the prime invariants g′2, g

′
3, we notice that ∆′ = g′2

3 − 27g′3
2 = (g2

3 − 27g3
2)/s12 = ∆/s12

so that j′ = j. The quantity ∆ is known as the modular discriminant, and j as the Klein invariant
(see the Appendix for details). In other words, if one assumes k = 0, the measurement of Ωo

m, Ωo
Λ,

and Ωo
r (the sum of the three being set to 1), Ho and T̃o does not specify a single lattice in the

complex plane, or the corresponding field of elliptic functions, but a class of homothetic lattices.
Equivalently, this experimental data does not single out an elliptic curve but an isomorphism class
of elliptic curves specified by the j-invariant. If one introduces rescaled conformal time parameters
u′ = s u (with the same rescaling for periods, of course), the invariants g2, g3, and the discriminant
∆, are rescaled as previously, in agreement with the general results recalled in the Appendix.

In terms of cosmological parameters the modular discriminant ∆ is readily evaluated, one finds ∆ =
λ2

2×63 (−1 + 16λα3), so that ∆ < 0⇔ λα3 < 1/16, a condition that obviously holds experimentally,

since λα3 ' 8.20 10−12. ∆ is therefore negative. From the expression of Weierstrass invariants g2,
g3, one obtains the Klein invariant

j = 1 +
1

−1 + 16λα3
= 1 +

1

−1 + 256
27

ΩΛ Ω3
r

Ω4
m

(29)

Using the same experimental values as in the previous section, namely Ω0
m = 0.293, Ω0

Λ = 0.717,
and Ω0

r = 5.20 10−5 one finds j ' −7.50 10−14.
A value of j being given, there are several methods to find a modular parameter τ , in the upper
half-plane , such that j(τ) = j. One method to determine this parameter (defined only up to a
modular transformation) is recalled in the Appendix, but in our case, the numerical precision on
the – very small – value of j is insufficient to distinguish τ from the boundary point exp(2iπ/3)
where j is exactly 0, the latter situation occurring when the radiation contribution to Friedmann
equation is neglected (next subsection).

The expressions giving the function T (u), the densities, etc, in terms of Weierstrass functions, are
the same as in the previous section, but for the fact that the invariants g2, g3 are slightly simpler
since k=0. The overall features of the curves showing the evolution of cosmological quantities of
interest are also similar, but for the fact ΩK is now strictly zero, and that there is no inflection
point in the physical region for the curve T (u), as it is a priori clear by looking at the behavior of
the associated mechanical system for k = 0, in fig. 1 and 2.
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5.2 Neglecting radiation

k being set to 0, let us assume moreover that we neglect the radiative contribution (i.e., we also set
α = 0). This is of course only an approximation, as the density Ωr, as measured today, and although
small, is clearly non-zero. Nevertheless, this limit case allows one to obtain several interesting

exact results. Setting T = 6 y in the Friedmann equation gives: dy
du

2
= 4y3 + λ

108 . The solution is
immediate: y is the Weierstrass elliptic function, with invariants g2 = 0 and g3 = −λ/108.

T (u) = 6P(u; g2 = 0, g3 = − λ

108
)

The end of time uf , i.e., the first (real) positive zero of T will exist only if g3 < 0, i.e., iff λ > 0,
otherwise it is complex. Since, experimentally (nowadays), the cosmological constant Λ is positive,
we have also λ > 0 and uf exists. The determination of the zeros of the Weierstrass P function,
in one periodicity cell, is in general a difficult problem — see the article [6] where the problem is
solved in full generality – but in the present case, one does not need to use these techniques. Indeed,
it is not too difficult, using elliptic integrals, to solve the particular equation P(u, 0, 4) = 0, i.e., for
g2 = 0, g3 = 4. One finds the solution u = i

6 B(1
6 ,

1
3), where B is the Euler beta function. Since, by

scaling (see Appendix), P(u; g2, g3) = s2P(u; g2/s
4, g3/s

6), we have P(u; 0, g3) = s2P(u; 0, g3/s
6).

If g3/s
6 = 4, the solution is known (cf supra), so we take s = (g3/4)1/6, and P(u; 0, g3) will vanish

for a value uf = i
6 B(1

6 ,
1
3) 1

(g3/4)1/6 . We summarize the discussion as follows:

Consider the equation P(u; 0, g) = 0. If g > 0 there is no real solution. If g < 0, there are two real
zeroes (uf and ug) in each periodicity cell, uf + ug being the smallest real period, and the position
of the first is:

uf =
Γ(1/6) Γ(1/3)

22/3 3 (−g)1/6
√
π

Here Γ is the Euler Gamma-function. In cosmology, with k = 0 and λ > 0, one has g3 = −λ/108.
Therefore the end of time uf that solves the equation T (uf ) = 6P(uf ; 0, g3) = 0 is given by :

uf =
22/3
√

3 Γ(1/3) Γ(7/6)

λ1/6
√
π

(30)

In the theory of elliptic functions, the case g2 = 0 is often referred to as the equianharmonic case.
This name12 already appears in Abramowitz and Stegun [1], where it refers to the case g2 = 0,
g3 = 1; the case where g2 = 0 and g3 is an arbitrary complex number can be obtained from the
latter by scaling and it is therefore justified to keep the same terminology. For g2 = 0, g3 = 1, the

equianharmonic half-periods are known [1, 10]: (Γ(1/3)3

4π , eiπ/3 Γ(1/3)3

4π ). The quantity called ωr in
this paper (half the smallest real period for the temperature, expressed as a function of conformal
time) is then immediately obtained by scaling, one gets:

ωr =
3 Γ(1/3)3

2 22/3 λ1/6 π
(31)

This universe is therefore very special, not only geometrically, since we have set k = 0, but also
because of its dynamics. Indeed, when the first Weierstrass invariant vanishes (g2 = 0), the Klein j-
invariant vanishes and the modular parameter (ratio of the periods) of the associated elliptic curve

12which means “equally anharmonic” since it is related to a geometrical configuration where the anharmonic ratio
(cross ratio) is a cube root or a sixth root of unity.
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(or of the corresponding lattice, see our discussion in the Appendix) can be chosen at the corner13

(e2iπ/3) of the boundary of the fundamental domain for the full modular group. The discussion
carried out in the previous subsection holds: when k = 0 the available experimental data does
not single out a specific elliptic curve but an isomorphism class of elliptic curves specified by the
j-invariant. If moreover one takes α = 0, like in this section, the j-invariant is zero (equianharmonic
case).

6 Miscellaneous (slightly eccentric) comments

The elliptic curve associated with a given cosmology: is the universe special ? The flat
case (k = 0) with no radiation pressure (α = 0⇔ Ωr(u) = 0) is clearly special since the associated
modular parameter sits in a corner, exp(2iπ/3), of the fundamental domain (equianharmonic case).
Whether or not k = 0 is a debatable issue: it seems to be experimentally clear, nowadays, that
Ωo
K is “small”, but ΩK is a time-dependent function and one should not set it to zero at all times

unless one can argue, on some theoretical grounds, that the constant k should be 0, rather than 1
or −1 (see the comments in sec. 4). Assuming k = 0 is certainly convenient from an experimental
point of view and may be to the liking of partisans of the inflation mechanism (although widely
accepted, one should remember that strong criticisms have been voiced against inflation). On
the other hand, considering that space is flat, or asymptotically flat, and that it is filled in first
approximation with an ideal fluid whose density goes to zero at infinity, may be perceived by some
people as a retrograde idea going against the evolution of the scientific concepts that were at the
roots of General Relativity and Friedmann equations. Any kind of hypothesis made on k will also
trigger epistemological or philosophical debates, for instance: should one believe that the universe
“exists” by itself, independently of our more or less elaborated fits?
The no-radiation pressure hypothesis is of different nature, as it is clearly only an approximation:
although small, Ωo

r is non-zero and it is well-measured. Whether or not k = 0, one comment
that one can make is the following: for the Weierstrass P function to have real values —the CMB
temperature is real— on the real axis (conformal time), one needs the associated lattice to be
identical with its conjugate, equivalently g2 and g3 should be real; this is automatic (see eqs. 25)
in the framework of Friedmann equations, then the j-invariant is real as well, so the modular
parameter τ , taken in the standard fundamental domain, should belong either to the boundary of
the domain, or to the half-axis i y, with y > 1, since these geodesic arcs are precisely those subsets
where j takes real values. It seems unreasonable to extend this kind of discussion further... Elliptic
curves can be “special” for a variety of arithmetical reasons, but it is clear that human experiments,
in cosmology, do not give exact results in the sense of arithmetics!

Aeons. The solutions of Friedmann equations, written as differential equations with respect to
conformal time u, and almost all quantities of cosmological interest related to these solutions, are
periodic functions of u, and are actually bi-periodic (elliptic functions) when the variable u is
extended to the complex plane. They automatically describe a denumerable infinity of identical
cosmologies (depending upon the choice of the parameters, only one interval within each real period
may describe a possible physical history). For a wide range of parameters — including the values

13Choosing e2iπ/3 or eiπ/3 is irrelevant: both values are equivalent under the modular transformation τ 7→ τ + 1.
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Figure 15: The temperature T as a function of the complex conformal time: (i) The real part of T (u)

for an argument running in a domain containing several complex periods, (ii) Plot of the parametric region

defined by X = Re(T (u)), Y = Re(T (u)), with u = x+ iy running in the same set as in (i).

that are experimentally measured — the temperature function, an elliptic function of u, goes to
zero when the conformal time reaches a finite value uf , corresponding, in terms of cosmic time,
to t → ∞. This happens, of course, in each period. In other words, Friedmann equations, from
the very beginning, describe an infinite sequence of identical FLRW spacetimes, each one lasting
an infinite number of years, in terms of cosmic time. This observation (that was explicitly made
in ref. [2]) may inspire science-fiction writers and may trigger deep philosophical or metaphysical
thoughts about the notion of reality or eternity, but it does not convey much physical meaning: a
periodic function is a function on a circle, a bi-periodic function is a function on a torus, and each
period of T (u) describe the “same” universe. The fact of perceiving those universes as distinct does
not mean much. . . unless, of course, one can introduce a way to make them (slightly) different,
and a way to communicate —i.e., to send information— from one period to the next. In a slightly
different framework, such a connection was proposed recently in [11] and popularized under the
denomination “conformal cyclic cosmology”, the name “aeon” was then chosen to denote each
member of the infinite sequence of spacetimes. Along that same line of thought, and taking into
account the fact that all the functions of interest are bi-periodic, one could go one step further and
talk about “complex aeons” when considering the doubly periodic lattice of identical (or almost
identical) spacetimes obtained by allowing the conformal time to be complex: see fig. 15. We did not
try, in the present article, to suggest any perturbation to the background provided by homogeneous
and isotropic cosmologies, or to suggest a mechanism that could connect the different aeons that
are rooted in the structure of Friedmann-Lemâıtre differential equations.

Appendix: a short memo on elliptic functions and elliptic curves

Elliptic functions.

Given two independent vectors of the plane, i.e., equivalently two non-zero complex numbers ω1 and ω2

such that ω2/ω1 is not real, one can build the lattice L generated by 2ω1 and 2ω2 as the infinite set
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{m 2ω1 + n 2ω2}, where m,n are arbitrary integers. The two complex numbers 2ω1 and 2ω1 are called14

the periods of the lattice, and {ω1, ω2} are the half-periods. An elliptic function with respect to L is a non-
constant meromorphic function of the complex variable u that is periodic with respect to the given lattice,
i.e., doubly periodic.

The Weierstrass elliptic function15 P associated with the lattice L is defined as

P(u) =
1

u2
+

∑
ω∈L−{0}

(
1

(u− ω)2
− 1

ω2
) (32)

From this definition it is clear that P is periodic with respect to L (i.e., doubly periodic), that it is even,
that it has a pole of order two at the origin (and at all other vertices of L), that it is meromorphic, and that

P ′(u)2 = 4P(u)3 − g2P(u)− g3 (33)

where g2 = 60
∑
ω∈L−{0}

1
ω4 , and g3 = 140

∑
ω∈L−{0}

1
ω6 . These two (complex in general) numbers are called

the Weierstrass invariants of the lattice L. Near the origin, P(u) ∼ 1

u2
+ g2

20u
2 + g3

28u
4 + . . .

The Weierstrass elliptic function P is a function of the complex variable u, but it depends on the chosen
lattice L. In order to make this dependence explicit one writes P(u;L) although it is quite standard to
denote the same function by P(u; g2, g3) or P(u|ω1, ω2).

Modular considerations

A lattice L can be specified by a pair of half-periods (ω1, ω2), but given any 2 × 2 matrix with integer
coefficients a, b, c, d and determinant 1 (i.e., an element of the infinite discrete group SL(2,Z)), one obtains

a new pair of periods for the same lattice L by setting

(
ω′1
ω′2

)
=

(
a b
c d

)
.

(
ω1

ω2

)
. The invariants g2, g3 only

depend on the lattice: the invariants calculated from any two pairs of periods of the same lattice are the
same. Conversely, given g2 and g3, one can determine a pair of periods for the lattice L, but the previous
comment shows that this pair is not uniquely determined.

Rather than choosing different pairs of periods for the same lattice, one can also rescale the lattice itself
by an arbitrary (real or complex) non-zero number s, and in particular replace the pair of half-periods
(ω1, ω2) by (s ω1, s ω2). One gets another lattice, homothetic –by definition– with the first. The lattice is
different, its Weierstrass invariants are different (one finds g2(s ω1, s ω2) = s−4 g2(ω1, ω2) and g3(s ω1, s ω2) =
s−6 g3(ω1, ω2)) and the corresponding P-function is also different, but the former is simply related to the
latter: one has the homogeneity relation: P(s u|s ω1, s ω2) = s−2 P(u|ω1, ω2). In particular, choosing
s = 1/ω1, one obtains:

P(u|ω1, ω2) =
1

ω2
1

P(
u

ω1
|1, τ =

ω2

ω1
) (34)

Using an homothety with scale factor 1/ω1, one can replace the basis {ω1, ω2} by {1, τ} with τ = ω2/ω1.
It does not cost anything to assume that τ = ω2/ω1 belongs to the upper half-plane (if it does not, just
permute the two periods).

The value of τ = ω2/ω1, called the modular parameter, clearly does not change if one only rescales the
periods; however if one uses another set of periods {ω′1, ω′2} for the same lattice (rescaled or not), one will

14About half the planet calls (ω1, ω2) what we call (2ω1, 2ω2).
15Not to be confused with the pathological Weierstrass function that is continuous everywhere and differentiable

nowhere.
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Figure 16: Standard fundamental domain for the modular group, and its neighbors. Each point of
the domain specifies a lattice in the complex plane, up to homothety. The boundary point e2iπ/3

describes a flat universe without radiation (equianharmonic elliptic curve).

have in general τ ′ 6= τ . As the periods are only defined up to the action of SL(2,Z), the same is true for τ .
In other words, one can find four integers a, b, c, d, with ad− bc = 1, such that τ ′ = (aτ + b)/(cτ +d). Notice
that τ ′ also belongs to the upper half-plane. Conversely, one proves that if τ and τ ′ are related in this way,
they are associated with the same lattice or with two homothetic lattices.
The j-invariant, or Klein invariant16, of a lattice is defined as the complex number

j(L) =
g2(L)3

∆
where ∆ = g2(L)3 − 27g3(L)2 (35)

From the homogeneity transformations of g2 and g3 one sees that j(L) is invariant under lattice rescaling.
Actually, a detailed analysis leads to the following result: Given L and L′, two lattices in C, then j(L) = j(L′)
if and only if L and L′ are homothetic. As a function of τ , the meromorphic function j is invariant with
respect to the action of the modular group, and one has the following famous expansion (Fourier series),
usually written in terms of q = e2iπτ , where all the coefficients are positive integers:

1728 j(τ) = 1/q + 744 + 196884 q + 21493760 q2 + . . . (36)

An arbitrary complex number j being given, there are several ways to invert the Klein function, i.e., to find
a value of τ (up to a modular transformation) solving the equation j(τ) = j. This can be done for instance
as follows: solve the cubic equation 256(1 − x)3/x2 = 1728 j in x, then write x = `(1 − `) and solve this

quadratic equation in `. One obtains finally τ = i 2F1(1/2,1/2,1,1−`)
2F1(1/2,1/2,1,`) where 2F1 is the Gauss hypergeometric

function. The first step of the method amounts to solve a sextic equation for ` and there are a priori six
possible choices17 for the solution (six values for a cross-ratio), but τ , up to a modular transformation, will
not depend upon this choice.

Elliptic curves

Choose a lattice L. If we set x = P(z) and y = P ′(z), we have y2 = 4x3 − g2x − g3. Using homogenous
coordinates x = X/U , y = Y/U , one gets the equation of a cubic in the complex projective plane: Y 2U =
4X3 − g2XU

2 − g3U
3. The homothetic lattice sL determines an isomorphic cubic (use the homogeneity

relations for g2, g3,P,P ′, and set x = X̃/U , y = Ỹ /U , with X̃ = X/s3 and Ỹ = Y/s3).

16It is convenient to set J(τ) = 1728 j(τ) but it is not uncommon to see J called j (or vice-versa) in the literature.
17The modular function `, as a function of τ is usually called λ(τ) in the literature, but we changed the notation

for `(τ), as λ already refers to the reduced cosmological constant.
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An elliptic curve is a projective variety isomorphic to a non-singular curve of degree 3 in the complex
projective plane, together with a distinguished point. Every such cubic can be brought to the Weierstrass
form (i.e., to the previous form). This (complex) curve is parametrized by setting x = P(z) and y = P ′(z),
for some lattice specified by g2 and g3.

A function (like P) defined on the complex plane C and periodic w.r.t. a lattice L is, by definition, a function
on C/L. The latter manifold is, topologically, and by construction, a torus (it is obtained by identifying
the opposite sides of a period parallelogram). All 2-tori are diffeomorphic as real manifolds, but a torus
constructed as previously is also a complex manifold because the choice of a lattice specifies a complex
structure (two proportional lattices determine the same complex structure). Up to isomorphism, an elliptic
curve can therefore also be defined as a 2-torus endowed with a complex structure.

Elliptic functions (continuation).

Taking into account equation (33), any elliptic function, for a given lattice, can be written as a rational
function of P and its first derivative P ′. In particular, any rational function of an elliptic function f is
also elliptic (with respect to the same lattice) but its order will coincide with the order of f only if the
transformation is fractional linear, like the transformations (20) or (24). It is known, since Liouville, that
if a is an arbitrary complex number (including infinity), the number of solutions of the equation f(u) = a,
called the order of f , is independent of a, if multiplicities are properly counted. The order of an elliptic
functions is at least two and the Weierstrass P function of a lattice can be defined as the elliptic function of
order 2 that has a pole of order 2 at the origin and is such that 1/u2 − P(u) vanishes at u = 0.

The Weierstrass ζ function is the primitive of −P which is such that ζ(u) − 1/u vanishes at the origin.
The odd meromorphic function ζ has a pole of first order at all the vertices of the lattice defined by the
invariants (g2, g3). Warning: ζ is not periodic (hence not elliptic !) but it is quasi-periodic: if a 6= b then
ζ(u− a)− ζ(u− b) is elliptic of order 2 with poles at u = a and u = b.

The Weierstrass σ function is defined as an entire function that vanishes at u = 0 and whose logarithmic
derivative is ζ(u). It is not elliptic, but if a1, a2, b1, b2 are complex numbers such that a1 +a2 = b1 + b2, then
σ(u− a1)σ(u− a2)/σ(u− b1)σ(u− b2) is elliptic of order 2 with poles at b1, b2 and zeroes at a1, a2.
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