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We consider a different L p -Minkowski combination of compact sets in R n than the one introduced by Firey and we prove an L p -Brunn-Minkowski inequality, p ∈ [0, 1], for a general class of measures called convex measures that includes log-concave measures, under unconditional assumptions. As a consequence, we derive concavity properties of the function t → µ(t 1 p A), p ∈ (0, 1], for unconditional convex measures µ and unconditional convex body A in R n . We also prove that the (B)-conjecture for all uniform measures is equivalent to the (B)conjecture for all log-concave measures, completing recent works by Saroglou.

Introduction

The Brunn-Minkowski inequality is a fundamental inequality in Mathematics, which states that for every convex subset A, B ⊂ R n and for every λ ∈ [0, 1], one has

|(1 -λ)A + λB| 1 n ≥ (1 -λ)|A| 1 n + λ|B| 1 n , (1) 
where

A + B = {a + b; a ∈ A, b ∈ B}
denotes the Minkowski sum of A and B and where | • | denotes the Lebesgue measure. The book by Schneider [START_REF] Saroglou | Remarks on the conjectured log-Brunn-Minkowski inequality[END_REF] and the survey by Gardner [START_REF] Gardner | The Brunn-Minkowski inequality[END_REF] famously reference the Brunn-Minkowski inequality and its consequences.

Several extensions of the Brunn-Minkowski inequality have been developed during the last decades by establishing functional versions (see e.g. [START_REF] Henstock | On the measure of sum-sets. I. The theorems of Brunn, Minkowski, and Lusternik[END_REF], [START_REF] Dubuc | Critères de convexité et inégalités intégrales[END_REF], [START_REF] Dancs | On a class of integral inequalities and their measuretheoretic consequences[END_REF], [START_REF] Uhrin | Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality[END_REF]), by considering different measures (see e.g. [START_REF] Borell | Convex measures on locally convex spaces[END_REF], [START_REF] Borell | Convex set functions in d-space[END_REF]), by generalizing the Minkowski sum (see e.g. [START_REF] Firey | Mean cross-section measures of harmonic means of convex bodies[END_REF], [START_REF] Firey | p-means of convex bodies[END_REF], [START_REF] Firey | Some applications of means of convex bodies[END_REF], [START_REF] Lutwak | The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem[END_REF], [START_REF] Lutwak | The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas[END_REF]), among others.

In this paper, we will combine these extensions to prove an L p -Brunn-Minkowski inequality for a large class of measures, including the log-concave measures.

Firstly, let us consider measures other than the Lebesgue measure. Following Borell [START_REF] Borell | Convex measures on locally convex spaces[END_REF], [START_REF] Borell | Convex set functions in d-space[END_REF], we say that a Borel measure µ in R n is s-concave, s ∈ [-∞, +∞], if the inequality µ((1 -λ)A + λB) ≥ M λ s (µ(A), µ(B))

holds for every λ ∈ [0, 1] and for every compact subset A, B ⊂ R n such that µ(A)µ(B) > 0, where M λ s (a, b) denotes the s-mean of the non-negative real numbers a, b with weight λ, defined as

M λ s (a, b) = ((1 -λ)a s + λb s ) 1 s if s / ∈ {-∞, 0, +∞}, M λ -∞ (a, b) = min(a, b), M λ 0 (a, b) = a 1-λ b λ , M λ +∞ (a, b) = max(a, b).
Hence the Brunn-Minkowski inequality tells us that the Lebesgue measure in R n is

1 n -concave.
As a consequence of the Hölder inequality, one has M λ p (a, b) ≤ M λ q (a, b) for every p ≤ q. Thus every s-concave measure is -∞-concave. The -∞concave measures are also called convex measures.

For s ≤ 1 n , Borell showed that every measure µ, which is absolutely continuous with respect to the n-dimensional Lebesgue measure, is s-concave if and only if its density is an α-concave function, with

α = s 1 -sn ∈ [- 1 n , +∞], (2) 
where a function f :

R n → R + is said to be α-concave, with α ∈ [-∞, +∞], if the inequality f ((1 -λ)x + λy) ≥ M λ α (f (x), f (y))
holds for every x, y ∈ R n such that f (x)f (y) > 0 and for every λ ∈ [0, 1].

Secondly, let us consider a generalization of the notion of the Minkowski sum introduced by Firey, which leads to an L p -Brunn-Minkowski theory. For convex bodies A and B in R n (i.e. compact convex sets containing the origin in the interior), the L p -Minkowski combination, p ∈ [-∞, +∞], of A and B with weight λ ∈ [0, 1] is defined by

(1 -λ) • A ⊕ p λ • B = {x ∈ R n ; x, u ≤ M λ p (h A (u), h B (u)), ∀u ∈ S n-1 },
where h A denotes the support function of A defined by

h A (u) = max x∈A x, u , u ∈ S n-1 .
Notice that for every p ≤ q,

(1 -λ) • A ⊕ p λ • B ⊂ (1 -λ) • A ⊕ q λ • B.
The support function is an important tool in Convex Geometry, having the property to determine a convex body and to be linear with respect to Minkowski sum and dilation:

A = {x ∈ R n ; x, u ≤ h A (u), ∀u ∈ S n-1 }, h A+B = h A +h B , h µA = µh A ,
for every convex body A, B in R n and every scalar µ ≥ 0. Thus,

(1 -λ) • A ⊕ 1 λ • B = (1 -λ)A + λB.
In this paper, we consider a different L p -Minkowski combination. Before giving the definition, let us recall that a function f :

R n → R is unconditional if there exists a basis (a 1 , • • • , a n ) of R n (the canonical ba- sis in the sequel) such that for every x = n i=1 x i a i ∈ R n and for ev- ery ε = (ε 1 , • • • , ε n ) ∈ {-1, 1} n , one has f ( n i=1 ε i x i a i ) = f (x). For p = (p 1 , • • • , p n ) ∈ [-∞, +∞] n , a = (a 1 , • • • , a n ) ∈ (R + ) n , b = (b 1 , • • • , b n ) ∈ (R + ) n and λ ∈ [0, 1], let us denote (1 -λ)a + p λb = (M λ p 1 (a 1 , b 1 ), • • • , M λ pn (a n , b n )) ∈ (R + ) n .
For non-empty subsets A, B ⊂ R n , for p ∈ [-∞, +∞] n and for λ ∈ [0, 1], we define the L p -Minkowski combination of A and B with weight λ, denoted by (1 -λ) • A + p λ • B, to be the unconditional subset (i.e. the indicator function is unconditional) such that

((1-λ)•A+ p λ•B)∩(R + ) n = {(1-λ)a+ p λb ; a ∈ A∩(R + ) n , b ∈ B ∩(R + ) n }.
This definition is consistent with the well known fact that an unconditional set (or function) is entirely determined on the positive octant (R + ) n . Moreover, this L p -Minkowski combination coincides with the classical Minkowski sum when p = (1, • • • , 1) and A, B are unconditional convex subsets of R n (see Proposition 2.1 below).

Using an extension of the Brunn-Minkowski inequality discovered by Uhrin [START_REF] Uhrin | Curvilinear extensions of the Brunn-Minkowski-Lusternik inequality[END_REF], we prove the following result:

Theorem 1.1. Let p = (p 1 , • • • , p n ) ∈ [0, 1] n and let α ∈ R such that α ≥ - n i=1 p -1 i -1
. Let µ be an unconditional measure in R n that has an α-concave density function with respect to the Lebesgue measure. Then, for every unconditional convex body A, B in R n and for every λ ∈ [0, 1],

µ((1 -λ) • A + p λ • B) ≥ M λ γ (µ(A), µ(B)), (3) 
where γ =

n i=1 p -1 i + α -1 -1 .
The case of the Lebesgue measure and p = (0, • • • , 0) is treated by Saroglou [START_REF] Saroglou | Remarks on the conjectured log-Brunn-Minkowski inequality[END_REF], answering a conjecture by Böröczky, Lutwak, Yang and Zhang [START_REF] Böröczky | The log-Brunn-Minkowski inequality[END_REF] in the unconditional case.

Conjecture 1.2 (log-Brunn-Minkowski inequality [START_REF] Böröczky | The log-Brunn-Minkowski inequality[END_REF]). Let A, B be symmetric convex bodies in R n and let λ ∈ [0, 1]. Then,

|(1 -λ) • A ⊕ 0 λ • B| ≥ |A| 1-λ |B| λ . (4) 
Useful links have been discovered by Saroglou [START_REF] Saroglou | Remarks on the conjectured log-Brunn-Minkowski inequality[END_REF], [START_REF] Saroglou | More on logarithmic sums of convex bodies[END_REF] between Conjecture 1.2 and the (B)-conjecture.

Conjecture 1.3 ((B)-conjecture [START_REF] Latała | On some inequalities for Gaussian measures[END_REF], [START_REF] Cordero-Erausquin | The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems[END_REF]). Let µ be a symmetric log-concave measure in R n and let A be a symmetric convex subset of R n . Then the function t → µ(e t A) is log-concave on R.

The (B)-conjecture was solved by Cordero-Erausquin, Fradelizi and Maurey [START_REF] Cordero-Erausquin | The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems[END_REF] for the Gaussian measure and for the unconditional case. As a variant of the (B)-conjecture, one may study concavity properties of the function t → µ(V (t)A) where V : R → R + is a convex function. As a consequence of Theorem 1.1, we deduce concavity properties of the function t → µ(t

1 p A), p ∈ (0, 1]
, for every unconditional s-concave measure µ and every unconditional convex body A in R n (see Proposition 2.4 below).

Saroglou [START_REF] Saroglou | More on logarithmic sums of convex bodies[END_REF] also proved that the log-Brunn-Minkowski inequality for the Lebesgue measure (inequality (4)) is equivalent to the log-Brunn-Minkowski inequality for all log-concave measures. We continue these kinds of equivalences by proving that the (B)-conjecture for all uniform measures is equivalent to the (B)-conjecture for all log-concave measures (see Proposition 3.1 below).

We also investigate functional versions of the (B)-conjecture, which may be read as follows:

Conjecture 1.4 (Functional version of the (B)-conjecture). Let f, g : R n → R + be even log-concave functions. Then the function

t → R n f (e -t x)g(x) dx is log-concave on R. We prove that Conjecture 1.4 is equivalent to Conjecture 1.3 (see Propo- sition 3.2 below).
Let us note that other developments in the use of the earlier mentioned extensions of the Brunn-Minkowski inequality have been recently made as well (see e.g. [START_REF] Bobkov | Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities[END_REF], [START_REF] Caglar | Divergence for s-concave and log concave functions[END_REF], [START_REF] Caglar | Functional versions of L p -affine surface area and entropy inequalities[END_REF], [START_REF] Gardner | The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities[END_REF]).

The rest of the paper is organized as follows: In the next section, we prove Theorem 1.1 and we extend it to m sets, m ≥ 2. We also compare our L p -Minkowski combination to the Firey combination and derive an L p -Brunn-Minkowski inequality for the Firey combination. We then discuss the consequences of a variant of the (B)-conjecture, namely we deduce concavity properties of the function t → µ(t 1 p A), p ∈ (0, 1]. In Section 3, we prove that the (B)-conjecture for all uniform measures is equivalent to the (B)conjecture for all log-concave measures, and we also prove that the (B)conjecture is equivalent to its functional version Conjecture 1.4. 

(1 -λ) • A + 1 λ • B = (1 -λ)A + λB, where 1 = (1, • • • , 1). Proof. Since the sets (1 -λ) • A + 1 λ • B and (1 -λ)A + λB are unconditional, it is sufficient to prove that ((1 -λ) • A + 1 λ • B) ∩ (R + ) n = ((1 -λ)A + λB) ∩ (R + ) n . Let x ∈ ((1 -λ)A + λB) ∩ (R + ) n . There exists a = (a 1 , • • • , a n ) ∈ A and b = (b 1 , • • • , b n ) ∈ B such that x = (1-λ)a+λb and for every i ∈ {1, • • • , n}, (1-λ)a i +λb i ∈ R + . Let ε, η ∈ {-1, 1} n such that (ε 1 a 1 , • • • , ε n a n ) ∈ (R + ) n and (η 1 b 1 , • • • , η n b n ) ∈ (R + ) n . Notice that for every i ∈ {1, • • • , n}, 0 ≤ (1 -λ)a i + λb i ≤ (1 -λ)ε i a i + λη i b i . Since the sets A and B are convex and unconditional, it follows that x ∈ (1 -λ)(A ∩ (R + ) n ) + λ(B ∩ (R + ) n ) = ((1 -λ) • A + 1 λ • B) ∩ (R + ) n .
The other inclusion is clear due to the definition of the set

(1 -λ) • A + 1 λ • B. Proof of Theorem 1.1. Let λ ∈ [0, 1] and let A, B be unconditional convex bodies in R n .
It has been shown by Uhrin [24] that if f, g, h : (R + ) n → R + are bounded measurable functions such that for every x, y

∈ (R + ) n , h((1 -λ)x + p λy) ≥ M λ α (f (x), g(y)), then (R + ) n h(x) dx ≥ M λ γ (R + ) n f (x) dx, (R + ) n g(x) dx , where γ = n i=1 p -1 i + α -1 -1 .
Let us denote by φ the density function of µ and let us set h = 1 (1-λ)•A+pλ•B φ, f = 1 A φ and g = 1 B φ. By assumption, the function φ is unconditional and α-concave, hence φ is non-increasing in each coordinate on the octant (R + ) n . Then for every x, y ∈ (R + ) n , one has

φ((1 -λ)x + p λy) ≥ φ((1 -λ)x + λy) ≥ M λ α (φ(x), φ(y)). Hence, h((1 -λ)x + p λy) ≥ M λ α (f (x), g(y)
). Thus we may apply the result mentioned at the beginning of the proof to obtain that

(R + ) n h(x) dx ≥ M λ γ (R + ) n f (x) dx, (R + ) n g(x) dx , where γ = n i=1 p -1 i + α -1 -1 .
In other words, one has

µ(((1 -λ) • A + p λ • B) ∩ (R + ) n ) ≥ M λ γ (µ(A ∩ (R + ) n ), µ(B ∩ (R + ) n )).
Since the sets (1 -λ)

• A + p λ • B, A and B are unconditional, it follows that µ((1 -λ) • A + p λ • B) ≥ M λ γ (µ(A), µ(B)).
Remark. One may similarly define the L p -Minkowski combination

λ 1 • A 1 + p • • • + p λ m • A m , for m convex bodies A 1 , . . . , A m ⊂ R n , m ≥ 2, where λ 1 , . . . , λ m ∈ [0, 1] are such that m i=1 λ i = 1
, by extending the definition of the p-mean M λ p to m non-negative numbers. By induction, one has under the same assumptions of Theorem 1.1 that

µ(λ 1 • A 1 + p • • • + p λ m • A m ) ≥ M λ γ (µ(A 1 ), • • • , µ(A m )), (5) 
where γ = n i=1 p -1 i + α -1 -1 . Indeed, let m ≥ 2 and let us assume that inequality (5) holds. Notice that

λ 1 • A 1 + p • • • + p λ m • A m + p λ m+1 • A m+1 = m i=1 λ i • A + p λ m+1 • A m+1 ,
where

A := λ 1 m i=1 λ i • A 1 + p • • • + p λ m m i=1 λ i • A m .
Thus,

µ m i=1 λ i • A + p λ m+1 • A m+1 ≥ m i=1 λ i µ( A) γ + λ m+1 µ(A m+1 ) γ 1 γ ≥ m+1 i=1 λ i µ(A i ) γ 1 γ
.

Consequences

The following result compares the L p -Minkowski combinations ⊕ p and + p .

Lemma 2.2. Let p ∈ [0, 1] and set p = (p, • • • , p) ∈ [0, 1] n .
For every unconditional convex body A, B in R n and for every λ ∈ [0, 1], one has

(1 -λ) • A ⊕ p λ • B ⊃ (1 -λ) • A + p λ • B.
Proof. The case p = 0 is proved in [START_REF] Saroglou | Remarks on the conjectured log-Brunn-Minkowski inequality[END_REF]. Let p = 0. Since the sets

(1 -λ) • A ⊕ p λ • B and (1 -λ) • A + p λ • B are unconditional, it is sufficient to prove that ((1 -λ) • A ⊕ p λ • B) ∩ (R + ) n ⊃ ((1 -λ) • A + p λ • B) ∩ (R + ) n . Let u ∈ S n-1 ∩ (R + ) n and let x ∈ ((1 -λ) • A + p λ • B) ∩ (R + ) n . One has, x, u = n i=1 ((1 -λ)a p i + λb p i ) 1 p u i = n i=1 ((1 -λ)(a i u i ) p + λ(b i u i ) p ) 1 p = (1 -λ)X + λY 1 p 1 p
, where X = ((a

1 u 1 ) p , • • • , (a n u n ) p ) and Y = ((b 1 u 1 ) p , • • • , (b n u n ) p ). Notice that X 1 p ≤ h A (u) p , Y 1 p ≤ h B (u) p and that • 1 p is a norm. It follows that x, u ≤ (1 -λ) X 1 p + λ Y 1 p 1 p ≤ ((1 -λ)h A (u) p + λh B (u) p ) 1 p . Hence, x ∈ ((1 -λ) • A ⊕ p λ • B) ∩ (R + ) n .
From Lemma 2.2 and Theorem 1.1, one obtains the following result:

Corollary 2.3. Let p ∈ [0, 1].
Let µ be an unconditional measure in R n that has an α-concave density function, with α ≥ -p n . Then for every unconditional convex body A, B in R n and for every λ ∈ [0, 1],

µ((1 -λ) • A ⊕ p λ • B) ≥ M λ γ (µ(A), µ(B)), (6) 
where

γ = n p + 1 α -1 .
Remarks.

1. By taking α = 0 in Corollary 2.3 (corresponding to log-concave measures), one obtains

µ((1 -λ) • A ⊕ 0 λ • B) ≥ µ(A) 1-λ µ(B) λ .
2. By taking α = +∞ in Corollary 2.3 (corresponding to 1 n -concave measures), one obtains that for every p ∈ [0, 1],

µ((1 -λ) • A ⊕ p λ • B) p n ≥ (1 -λ)µ(A) p n + λµ(B) p n .
Equivalently, for every p ∈ [0, 1], for every unconditional convex body A, B in R n and for every unconditional convex set

K ⊂ R n , |((1 -λ) • A ⊕ p λ • B) ∩ K| p n ≥ (1 -λ)|A ∩ K| p n + λ|B ∩ K| p n .
Let us recall that the function t → µ(e t A) is log-concave on R for every unconditional log-concave measure µ and every unconditional convex body A in R n (see [START_REF] Cordero-Erausquin | The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems[END_REF]). By adapting the argument of [START_REF] Marsiglietti | On the improvement of concavity of convex measures[END_REF], Proof of Proposition 3.1 (see Proof of Corollary 2.5 below), it follows that the function t → µ(t

1 p A) is p
n -concave on R + , for every p ∈ (0, 1], for every unconditional s-concave measure µ, with s ≥ 0, and for every unconditional convex body A in R n . However, no concavity properties are known for the function t → µ(e t A) when µ is an s-concave measure with s < 0. Instead, for these measures we prove concavity properties of the function t → µ(t

1 p A).
Proposition 2.4. Let p ∈ (0, 1], let µ be an unconditional measure that has an α-concave density function, with α ∈ [-p n , 0) and let A be an unconditional convex body in R n . Then the function t → µ(t

1 p A) is n p + 1 α -1 - concave on R + .
Proof. Let t 1 , t 2 ∈ R + . By applying Corollary 2.3 to the sets t

1 p 1 A and t 1 p 2 A, one obtains µ(((1 -λ)t 1 + λt 2 ) 1 p A) = µ((1 -λ) • t 1 p 1 A ⊕ p λ • t 1 p 2 A) ≥ M λ γ (µ(t 1 p 1 A), µ(t 1 p 2 A))
,

where γ = n p + 1 α -1
. Hence the function t → µ(t

1 p A) is γ-concave on R + .
As a consequence, we derive concavity properties for the function t → µ(tA).

Corollary 2.5. Let p ∈ (0, 1], let µ be an unconditional measure that has an α-concave density function, with α ∈ [-p n , 0), and let A be an unconditional convex body in R n . Then the function t → µ(tA) is 1-p n + γ -concave on

R + , where γ = n p + 1 α -1
.

Proof. We adapt [START_REF] Marsiglietti | On the improvement of concavity of convex measures[END_REF], Proof of Proposition 3.1. Let us denote by φ the density function of the measure µ and let us denote by F the function t → µ(tA). From Proposition 2.4, the function t → F (t

1 p
) is γ-concave, hence the right derivative of F , denoted by F ′ + , exists everywhere and the function t

→ 1 p t 1 p -1 F ′ + (t 1 p )F (t 1 p ) γ-1 is non-increasing. Notice that F (t) = t n A φ(tx) dx,
and that t → φ(tx) is non-increasing, thus the function t

→ 1 t 1-p F (t) 1-p n is non-increasing. Since F ′ + (t)F (t) 1-p n +γ-1 = t 1-p F ′ + (t)F (t) γ-1 • 1 t 1-p F (t) 1-p n , it follows that F ′ + (t)F (t)
1-p n +γ-1 is non-increasing as the product of two non-negative non-increasing functions. Hence F is 1-p n + γ -concave.

Remark. For every s-concave measure µ and every convex subset A ⊂ R n , the function t → µ(tA) is s-concave. Hence Corollary 2.5 is of value only if

1-p n + γ ≥ α 1+αn (see relation (2)
). Notice that this condition is satisfied if α ≥ -p n(1+p) . We thus obtain the following corollary:

Corollary 2.6. Let p ∈ (0, 1], let µ be an unconditional measure that has an α-concave density function, withp n(1+p) ≤ α < 0 and let K be an unconditional convex body in R n . Then, for every subsets A, B ∈ {µK; µ > 0} and every λ ∈ [0, 1], one has

µ((1 -λ)A + λB) ≥ M λ 1-p n +γ (µ(A), µ(B)), where γ = n p + 1 α -1
.

In [START_REF] Marsiglietti | On the improvement of concavity of convex measures[END_REF], the author investigated improvements of concavity properties of convex measures under additional assumptions, such as symmetries. Notice that Corollary 2.6 follows the same path and completes the results that can be found in [START_REF] Marsiglietti | On the improvement of concavity of convex measures[END_REF]. Let us conclude this section by the following remark, which concerns the question of the improvement of concavity properties of convex measures.

Remark. Let µ be a Borel measure that has a density function with respect to the Lebesgue measure in R n . One may write the density function of µ in the form e -V , where V : R n → R is a measurable function. Let us assume that V is C 2 . Let γ ∈ R\{0}. The function e -V is γ-concave if Hess(γe -γV ), the Hessian of γe -γV , is non-positive (in the sense of symmetric matrices). One has

Hess(γe -γV ) = -γ 2 ∇ • (∇V e -γV ) = γ 2 e -V (γ∇V ⊗ ∇V -Hess(V )),
where ∇V ⊗ ∇V = ∂V ∂x i ∂V ∂x j 1≤i,j≤n . Hence the matrix Hess(γe -γV ) is nonpositive if and only if the matrix γ∇V ⊗ ∇V -Hess(V ) is non-positive.

Let us apply this remark to the Gaussian measure

dγ n (x) = 1 (2π) n 2 e -|x| 2 2 dx, x ∈ R n .
Here V (x) = |x| 2 2 +c n , where c n = n 2 log(2π). Thus, ∇V ⊗∇V = (x i x j ) 1≤i,j≤n and Hess(V ) = Id the Identity matrix. Notice that the eigenvalues of γ∇V ⊗ ∇V -Hess(V ) are -1 (with multiplicity (n -1)) and γ|x| 2 -1. Hence if γ|x| 2 -1 ≤ 0, then γ∇V ⊗ ∇V -Hess(V ) is non-positive. One deduces that for every γ > 0, for every compact sets A, B ⊂ 1 √ γ B n 2 and for every λ ∈ [0, 1], one has

γ n ((1 -λ)A + λB) ≥ M λ γ 1+γn (γ n (A), γ n (B)), (7) 
where B n 2 denotes the Euclidean closed unit ball in R n . Since the Gaussian measure is a log-concave measure, inequality [START_REF] Caglar | Functional versions of L p -affine surface area and entropy inequalities[END_REF] is an improvement of the concavity of the Gaussian measure when restricted to compact sets A, B ⊂ 1 √ γ B n 2 .

Equivalence between (B)-conjecture-type problems

In the following proposition, we demonstrate that it is sufficient to prove the (B)-conjecture for all uniform measures in R n , for every n ∈ N * , to obtain the (B)-conjecture for all symmetric log-concave measures in R n , for every n ∈ N * . This completes recent works by Saroglou [START_REF] Saroglou | Remarks on the conjectured log-Brunn-Minkowski inequality[END_REF], [START_REF] Saroglou | More on logarithmic sums of convex bodies[END_REF].

In the following, we say that a measure µ satisfies the (B)-property if the function t → µ(e t A) is log-concave on R for every symmetric convex set A ⊂ R n . Proposition 3.1. If every symmetric uniform measure in R n , for every n ∈ N * , satisfies the (B)-property, then every symmetric log-concave measure in R n , for every n ∈ N * , satisfies the (B)-property.

Proof. The proof is inspired by [START_REF] Artstein-Avidan | The Santaló point of a function, and a functional form of the Santaló inequality[END_REF], beginning of Section 3.

Step 1: Stability under orthogonal projection Let us show that the (B)-property is stable under orthogonal projection onto an arbitrary subspace.

Let F be a k-dimensional subspace of R n . Let us define for every compactly supported measure µ in R n and every measurable subset A ⊂ F ,

Π F µ(A) := µ(Π -1 F (A)),
where Π F denotes the orthogonal projection onto F and Π -1

F (A) := {x ∈ R n ; Π F (x) ∈ A}.
Notice that Π -1 F (e t A) = e t (A × F ⊥ ), where F ⊥ denotes the orthogonal complement of F . Hence if µ satisfies the (B)-property, then Π F µ satisfies the (B)-property.

Step 2: Approximation of log-concave measures Let us show that for every compactly supported log-concave measure µ in R n there exists a sequence (K p ) p∈N * of convex subsets of R n+p such that lim p→+∞ Π R n µ Kp = µ in the sense that the density function of µ is the pointwise limit of the density functions of (µ Kp ) p∈N * , where µ Kp denotes the uniform measure on K p (up to a constant).

Let µ be a compactly supported log-concave measure in R n with density function f = e -V , where V : R n → R ∪ {+∞} is a convex function. Notice that for every x ∈ R n , e -V (x) = lim p→+∞ (1 -V (x) p ) p + , where for every a ∈ R, a + = max(a, 0). Let us define for every p ∈ N * ,

K p = {(x, y) ∈ R n × R p ; |y| ≤ 1 - V (x) p + }.
One has for every x ∈ R n , 1 -V (x) p Notice that K p is a symmetric convex subset of R n+p . The change of variable x = e -t x and y = e -t y leads to G p (t) = e t(n+p) v p µ p (e -t K p ), where µ p is the measure with density function h(x, y) = f (x)1 R p (y), (x, y) ∈ R n × R p .

Since a pointwise limit of log-concave functions is log-concave, we conclude that the function G is log-concave on R as the pointwise limit of the logconcave functions G p , p ∈ N * .

Recall that the (B)-conjecture holds true for the Gaussian measure and for the unconditional case (see [START_REF] Cordero-Erausquin | The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems[END_REF]). It follows from Proposition 3.2 that Conjecture 1.4 holds true if one function is the density function of the Gaussian measure or if both functions are unconditional.
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  Proof of Theorem 1.1 and consequences 2.1 Proof of Theorem 1.1 Before proving Theorem 1.1, let us show that our L p -Minkowski combination coincides with the classical Minkowski sum when p = (1, • • • , 1), for unconditional convex sets. Proposition 2.1. Let A, B be unconditional convex subsets of R n and let λ ∈ [0, 1]. Then,

v p R p 1 v p 1

 11 Kp (x, y) dy, the last inequality follows from an integration in polar coordinates, where v p denotes the volume of the Euclidean closed unit ball in R p . By denoting µ Kp the measure in R n+p with density function1 Kp (x, y), (x, y) ∈ R n × R p , where K p := {(x, y) ∈ R n × R p ; |y| ≤ 1 -V (x) p +} and where v p denotes the volume of the Euclidean closed unit ball in R p . Hence,G p (t) = 1 v p Kpf (e -t x)1 R p (y) dx dy.
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it follows that for every p ∈ N * , the measure Π R n µ Kp has density function

We conclude that lim p→+∞ Π R n µ Kp = µ.

Step 3: Conclusion Let n ∈ N * and let µ be a symmetric log-concave measure in R n . By approximation, one can assume that µ is compactly supported. Since µ is symmetric, the sequence (K p ) p∈N * defined in Step 2 is a sequence of symmetric convex subsets of R n+p . If we assume that the (B)-property holds for all uniform measures in R m , for every m ∈ N * , then for every p ∈ N * , µ Kp satisfies the (B)-property. It follows from Step 1 that for every p ∈ N * , Π R n µ Kp satisfies the (B)-property. Since lim p→+∞ Π R n µ Kp = µ (c.f. Step 2) and since a pointwise limit of log-concave functions is log-concave, we conclude that µ satisfies the (B)-property.

Similarly, let us prove that the functional form of the (B)-conjecture (Conjecture 1.4) is equivalent to the classical (B)-conjecture (Conjecture 1.3). Proposition 3.2. One has equivalence between the following properties:

1. For every n ∈ N * , for every symmetric log-concave measure µ in R n and for every symmetric convex subset A of R n , the function t → µ(e t A) is log-concave on R.

2. For every n ∈ N * , for every even log-concave functions f, g : R n → R + , the function t → R n f (e -t x)g(x) dx is log-concave on R.

Proof. 2. =⇒ 1. This is clear by taking f = 1 A , the indicator function of a symmetric convex set A, and by taking g to be the density function of a log-concave measure µ. 1. =⇒ 2. Let f, g : R n → R + be even log-concave functions. By approximation, one may assume that f and g are compactly supported. Let us write g = e -V , where V : R n → R ∪ {+∞} is an even convex function. One has

where for every a ∈ R, a + = max(a, 0). Let us denote for t ∈ R,

f (e -t x) 1 -V (x) p p + dx.

We have seen in the proof of Proposition 3.1 that