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Abstract

This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic
non-negative random variables. Such a model is defined through a univariate survival function that
is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum
of the n variables or through a doubly mixed multinomial distribution. Several other properties
including correlation measures are derived. Three processes in insurance theory are discussed for
which the claim interarrival periods form a Schur-constant model.
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1 Introduction

Schur-constant models play a special role in the analysis of lifetime data. Their properties have been
studied by several authors including Barlow and Mendel (1993), Caramellino and Spizzichino (1994),
Nelsen (2005), Chi et al. (2009) and Nair and Sankaran (2014). Traditionally, the lifetimes considered
are absolutely continuous random variables valued in IR+. The present work aims to discuss Schur-
constant models for discrete survival data valued in IN0 = {0, 1, . . .}.

Let (X1, . . . , Xn) be a vector of n (≥ 2) arithmetic non-negative random variables, called lifetimes.
It is said to have a Schur-constant joint survival function if for all (x1, . . . , xn) ∈ INn

0 ,

P (X1 ≥ x1, . . . , Xn ≥ xn) = S(x1 + . . .+ xn), (1.1)

where S is an admissible function from IN0 to [0, 1]. Clearly, such a survival function S is both
Schur-convex and Schur-concave (see Marshall et al. (2011)), hence the appellation of Schur-constant.

By (1.1), the n variables Xi of this vector are exchangeable. Moreover, any subvector is also
Schur-constant. As in the continuous case, a Schur-constant model translates a no-aging property,
i.e. the residual lifetimes of any two components, Xi − xi and Xj − xj say, have the same conditional
distributions, even if they have different ages xi and xj :

P (Xi − xi ≥ t|X1 ≥ x1, . . . , Xn ≥ xn) = S(x1 + . . .+ xn + t)/S(x1 + . . .+ xn)

= P (Xj − xj ≥ t|X1 ≥ x1, . . . , Xn ≥ xn).

1



Concerning the function S, putting x2 = . . . = xn = 0 in (1.1) gives P (X1 ≥ x1) = S(x1), so
that S is at least a univariate survival function. In fact, S is a multivariate survival function, which
means that S(0) = 1, S(∞) = 0 and the probability mass associated by S to any rectangle in INn

0 is
nonnegative.

As a first result, we will show that this admissibility condition is equivalent to the property of
n-monotonicity of S on IN0. A function f(x): IN0 → IR is said to be n-monotone if it satisfies

(−1)j ∆jf(x) ≥ 0, j = 0, . . . , n, (1.2)

where ∆ is the forward difference operator (i.e. ∆f(x) = f(x+ 1)− f(x)) and ∆j is its j-th iterated.
Multiple monotone functions on IN0 have received little attention so far in the literature. Recently,
Lefèvre and Loisel (2013) have studied the property of monotonicity for probability distributions, in
the continuous and discrete cases.

It is worth indicating that the multiple monotonicity on IR+ is a much more standard concept.
Williamson (1956) has investigated in detail the properties of such functions when n ≥ 1 is an integer
(as here) or even any real; see also Lévy (1962) and Gneiting (1999). In probability, n-monotonicity
of continuous distributions corresponds to the so-called beta(1, n)-unimodality, defined for n real ≥ 0
(Bertin et al. (1997), page 72). In statistics, the estimation problem of n-monotone densities when
n is an integer ≥ 0 has been studied by Balabdaoui and Wellner (2007), for instance. As shown by
McNeil and Nes̆lehová (2009), an Archimedean generator yields a n-dimensional copula if and only if
this generator is n-monotone on IR+; see also e.g. Genest and Rivest (1993), Albrecher et al. (2011)
and Constantinescu et al. (2011). In Lefèvre and Utev (2013), it is proved that symmetric n-monotone
densities are preserved by convolution provided n ∈ [0, 1].

The paper is organized as follows. In Section 2, we show that a Schur-constant model requires
the n-monotonicity of S, and we derive different joint life time distributions. In Section 3, we provide
two representations of a Schur-constant model, by conditioning on the sum X1 + . . .+Xn or through
a doubly mixed multinomial distribution. In Section 4, we prove that an infinite sequence is Schur-
constant when theXi’s are a mixture of geometrics. In Section 5, we present some parametric functions
S that are monotone with various degrees. In Section 6, we obtain simple expressions for the usual
correlation coefficients. In Section 7, we discuss three processes in insurance for which the claim
interarrival periods form a Schur-constant model. The paper ends with a short Appendix.

2 Joint lifetime distributions

We start by deriving a necessary and sufficient condition for the function S in (1.1) to be a multivariate
survival function. Firstly, the lemma below characterizes the survival function F̄ (x1, . . . , xn) of an
arbitrary INn

0-valued random vector (X1, . . . , Xn). The result is well-known, but a short proof is given
for reasons of completeness. Let F̄ (xi1 , . . . , xij ) be the survival function of any subvector (Xi1 , . . . , Xij ),
1 ≤ j ≤ n. Forward difference operators are defined as follows: g being a real function on IN0, then
for any integers hi ≥ 1, 1 ≤ i ≤ n,

∆i,hi
g(x1, . . . , xn) = g(x1, . . . , xi + hi, . . . , xn)− g(x1, . . . , xi, . . . , xn);

by convenience, we write ∆i,1g = ∆ig.
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Lemma 2.1 A function F̄ (x1, . . . , xn): INn
0 → [0, 1] is the survival function of a INn

0-valued random
vector (X1, . . . , Xn) if and only if F̄ (0, . . . , 0) = 1, F̄ (x1, . . . , xn) = 0 if xi = ∞ for at least one i, and

(−1)j ∆i1 . . .∆ij F̄ (xi1 , . . . , xij ) ≥ 0, j = 1, . . . , n. (2.1)

Proof. Applying ∆i,hi
, with hi ≥ 1, to F̄ (xi) gives

−∆i,hi
F̄ (xi) = P (Xi ≥ xi)− P (Xi ≥ xi + hi) = P (xi ≤ Xi < xi + hi).

More generally, for 1 ≤ j ≤ n and hi1 , . . . , hij ≥ 1,

(−1)j ∆i1,hi1
. . .∆ij ,hij

F̄ (xi1 , . . . , xij ) = P (xik ≤ Xik < xik + hik , k = 1, . . . , j), (2.2)

which is obviously nonnegative, hence (2.1) by taking hi1 = . . . = hij = 1. Conversely, it is immediate
that a function F̄ well normalized and fulfilling the condition (2.1) may be considered as the survival
function of a random vector (X1, . . . , Xn). ⋄

Now, let us go back to the Schur-constant model for which F̄ (x1, . . . , xn) = S(x1 + . . . + xn). As
for (1.2), put ∆S(x) = S(x+ 1)− S(x) with ∆j its j-th iterated. Evidently,

∆iF̄ (xi1 , . . . , xij ) = ∆S(xi1 + . . .+ xij ),

so that the condition (2.1) becomes

(−1)j ∆jS(x) ≥ 0, j = 1, . . . , n. (2.3)

This yields the following characterization result.

Proposition 2.2 A function S(x): IN0 → [0, 1] is the Schur-constant survival function of a INn
0-valued

random vector (X1, . . . , Xn) if and only if S(0) = 1, S(∞) = 0 and S is n-monotone on IN0.

In other words, S is simply a univariate survival function that is n-monotone on IN0.

Let {p(x), x ∈ IN0} denote the probability mass function (p.m.f.) associated to S. Since ∆jS(x) =
−∆j−1p(x), j ≥ 1, the condition (2.3) is equivalent to

(−1)j ∆jp(x) ≥ 0, j = 0, . . . , n− 1.

Proposition 2.3 A function p(x): IN0 → [0, 1] is the Schur-constant p.m.f. of a INn
0-valued random

vector (X1, . . . , Xn) if and only if the p(x)’s are of sum 1 and p is (n− 1)-monotone on IN0.

From (1.1) and (2.2), we directly obtain simple formulas for various probablities on subvectors
(X1, . . . , Xj), 1 ≤ j ≤ n. Some cases of interest are listed below.

Proposition 2.4 For 1 ≤ j ≤ n and (x1, . . . , xj) ∈ INj
0,

P (x1 ≤ X1 < x1 + h1, . . . , xj ≤ Xj < xj + hj) = (−1)j ∆1,h1
. . .∆j,hj

S(x1 + . . .+ xj), (2.4)

P (X1 = x1, . . . , Xj = xj) = (−1)j ∆jS(x1 + . . .+ xj), (2.5)

P (X1 = x1, . . . , Xj−1 = xj−1, Xj ≥ xj) = (−1)j−1∆j−1S(x1 + . . .+ xj). (2.6)
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For the sequel, it is useful to consider the associated partial sums Tj = X1 + . . .+Xj , 1 ≤ j ≤ n.

Proposition 2.5 For 1 ≤ k ≤ j ≤ n and 0 ≤ tj−k+1 ≤ . . . ≤ tj,

P (Tj−k+1 = tj−k+1, . . . , Tj = tj) = (−1)j ∆jS(tj)

(

tj−k+1 + j − k

j − k

)

. (2.7)

In particular,

P (Tj = tj) = (−1)j ∆jS(tj)

(

tj + j − 1

j − 1

)

, (2.8)

P (T1 = t1, . . . , Tj = tj) = (−1)j ∆jS(tj), (2.9)

which also yields

P (T1 = t1, . . . , Tj−1 = tj−1|Tj = tj) = 1/

(

tj + j − 1

j − 1

)

. (2.10)

Proof. In terms of (T1, . . . , Tj), we have

P (Tj−k+1 = tj−k+1, . . . , Tj = tj) =
∑

t1≤...≤tj−k: tj−k≤tj−k+1

P (T1 = t1, . . . , Tj−k = tj−k, . . . , Tj = tj).

The sum in the r.h.s. can then be expressed in terms of (X1, . . . , Xj) as

∑

x1,...,xj−k:x1+...+xj−k+1=tj−k+1

P (X1 = x1, . . . , Xj−k = xj−k, . . . , Xj = tj − tj−1).

By (2.5), the probabilities P (X1 = x1, . . . , Xj = tj − tj−1) are all equal to (−1)j∆jS(tj). Remember

that the number of ways to put b indistinguishable balls in n urns is equal to
(

b+n−1
n−1

)

. Thus, the
number of terms in the sum above is obtained by taking b = tj−k+1 and n = j − k + 1, which gives
(tj−k+1+j−k

j−k

)

. Formula (2.7) now follows. It gives (2.8) for k = 1 and (2.9) for k = j, with (2.10) as a
consequence. ⋄

Formula (2.10) means that given Tj = tj , the j − 1 previous arrival times are obtained by throw-
ing j − 1 balls in tj + 1 urns (which correspond to the instants 0, . . . , tj). In the continuous case,
[T1, . . . , Tj−1|Tj = tj ] is distributed as the order statistics of a sample of j − 1 independent (0, tj)-
uniform random variables (e.g. Theorem 2.1 of Chi et al. (2009)).

3 Representations of Schur-constancy

Our purpose in this Section is to provide general representations that are valid for any discrete Schur-
constant model. Put

(

a
b

)

= 0 when a < b.

Proposition 3.1 For 1 ≤ j ≤ n and x1, . . . , xj , z ≥ 0 with x1 + . . .+ xj ≤ z,

P (X1 ≥ x1, . . . , Xj ≥ xj |Tn = z) =

(

z − (x1 + . . .+ xj) + n− 1

n− 1

)

/

(

z + n− 1

n− 1

)

, (3.1)

so that for 1 ≤ j ≤ n− 1,

P (X1 = x1, . . . , Xj = xj |Tn = z) =

(

z − (x1 + . . .+ xj) + n− j − 1

n− j − 1

)

/

(

z + n− 1

n− 1

)

. (3.2)
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Thus, the function S can be represented as

S(x1 + . . .+ xn) = E

[(

Z − (x1 + . . .+ xn) + n− 1

n− 1

)

/

(

Z + n− 1

n− 1

)]

, (3.3)

where the variable Z is distributed as Tn, i.e. with a p.m.f. given by (2.8) where j = n.

Proof. By definition and from (2.8),

P (X1 ≥ x1, . . . , Xj ≥ xj |Tn = z) =
P (X1 ≥ x1, . . . , Xj ≥ xj , Tn = z)

(−1)n∆nS(z)
(

z+n−1
n−1

) .

The numerator can be expressed as

∑

y1,...,yn: y1≥x1,...,yj≥xj and y1+...+yn=z

P (X1 = y1, . . . , Xj = yj , . . . , Xn = yn),

in which, by (2.5), the probabilities are all equal to (−1)n∆nS(x). One easily sees that the number
of ways to put b indistinguishable balls in n urns with at least x1 balls in urn 1, . . ., xj balls in urn j,

is equal to
(b−(x1+...+xj)+n−1

n−1

)

. This leads to formula (3.1).
To get (3.2), it suffices to apply (2.5) and the fact that

∆

(

z − x+ n− 1

n− 1

)

= −

(

z − x+ n− 2

n− 2

)

,

where ∆ operates on x. Finally, (3.1) where j = n gives (3.3). ⋄

This result is the discrete analogue of a representation obtained for the continuous model (see
Proposition 2.3 in Caramellino and Spizzichino (1994) and Theorem 2.1 in Chi et al. (2009)).

A different but equivalent characterization of Schur-constancy is derived below.

Proposition 3.2 The model (X1, . . . , Xn) is Schur-constant if its joint distribution is of doubly mixed
multinomial form, namely

(X1, . . . , Xn) =d MM(Z;U1, . . . , Un). (3.4)

Here, Z represents the random number of experiments and is distributed as Tn, while (U1, . . . , Un)
represents the vector of randomized cell probabilities, independent of Tn and with a joint survival
function that is (continuous) Schur-constant and defined by

P (U1 ≥ u1, . . . , Un ≥ un) = [1− (u1 + . . .+ un)]
n−1
+ , u1, . . . , un ∈ (0, 1). (3.5)

Proof. We are going to show that under (3.4) and (3.5), the p.m.f. of (X1, . . . , Xj) conditionally on
Z is given by (3.2), for 1 ≤ j ≤ n− 1. Indeed, we have, for all x1, . . . , xj ≥ 0 with x1 + . . .+ xj ≤ z,

P (X1 = x1, . . . , Xj = xj |Z = z) =
z!

x1! . . . xj !(z − x1 . . .− xj)!
(n− 1) . . . (n− j)

∫

u1,...,uj≥0 and u1+...+uj≤1
ux1

1 . . . u
xj

j (1− u1 − . . .− uj)
z−x1−...−xj+n−j−1 du1 . . . duj . (3.6)
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Now, consider an integral of the form
∫

0≤u1,...,uk−1≤1 and uk=1−u1−...−uk−1

uα1−1
1 . . . uαk−1

k du1 . . . duk−1,

for reals α1, . . . , αk > 0. That integral is the multinomial Beta function and is equal to

Γ(α1) . . .Γ(αk)/Γ(α1 + . . .+ αk).

This is a known identity, which is also easily proved by induction. Going back to the integral in (3.6),
we see that it corresponds to the particular case where k = j + 1, α1 = x1 + 1, . . . , αj = xj + 1 and
αj+1 = z − x1 − . . .− xj + n− j. Thus, we can write that

∫

u1,...,uj≥0 and u1+...+uj≤1
ux1

1 . . . u
xj

j (1− u1 − . . .− uj)
z−x1−...−xj+n−j−1 du1 . . . duj

=
x1! . . . xj !(z − x1 − . . .− xj + n− j − 1)!

(z + n− 1)!
. (3.7)

Substituting (3.7) in (3.6) then yields

P (X1 = x1, . . . , Xj = xj |Z = z) =
z! (n− 1) . . . (n− j) (z − x1 − . . .− xj + n− j − 1)!

(z − x1 − . . .− xj)! (z + n− 1)!
,

and after multiplication by (n− j − 1)!/(n− j − 1)! (= 1),

P (X1 = x1, . . . , Xj = xj |Z = z) =

(

z − (x1 + . . .+ xj) + n− j − 1

n− j − 1

)

/

(

z + n− 1

n− 1

)

,

i.e. the desired formula (3.2). ⋄

In the continuous case, the vector (X1/Z, . . . , Xn/Z) is independent of Z and is Schur-constant
with survival function (1−x)n−1

+ . Note that in the discrete case, (X1/Z, . . . , Xn/Z) is not independent
of Z since the Xi’s are valued in {0, . . . , Z}.

4 The geometric special model

Firstly, we show below that the no-aging property of Schur-constant models is a generalization of the
lack of memory property for geometric random variables.

Proposition 4.1 Let (X1, . . . , Xn) be a Schur-constant random vector. Then, the components Xi,
1 ≤ i ≤ n, are independent if and only if they are geometrically distributed.

Proof. If the Xi’s are independent, (1.1) implies that

S(x1 + . . .+ xn) = S(x1) . . . S(xn),

for all (x1, . . . , xn) ∈ INn
0 . Since S is non-increasing with S(0) = 1, we then obtain by induction that

S(x) = qx, x ∈ IN0, for some 0 < q ≤ 1. The converse is obvious. ⋄

Now, let us consider an infinite discrete Schur-constant model, i.e. (1.1) holds for all n ≥ 2. Since
the sequence {Xi, i ≥ 1} is exchangeable, de Finetti theorem asserts that the Xi’s are conditionally
i.i.d. given the σ-algebra G of permutable events (e.g. Chow and Teicher (1988), section 7.3). The
Schur-constant property allows us to make quite explicit the mixture structure involved.
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Proposition 4.2 An infinite sequence of random variables {Xi, i ≥ 1} with finite mean is Schur-
constant if and only if the Xi’s are a mixture of geometrics, namely

P (X1 ≥ x1, . . . , Xj ≥ xj) = E

[

(

Θ

Θ+ 1

)x1+...+xj

]

, j ≥ 1, (4.1)

where
Θ = lim

n→∞
Tn/n a.s. (4.2)

Proof. The sufficiency is immediate and omitted. Now, from (3.1), we can write that

P (X1 ≥ x1, . . . , Xj ≥ xj) = E

[(

Tn − (x1 + . . .+ xj) + n− 1

n− 1

)

/

(

Tn + n− 1

n− 1

)]

= E

[

(Tn − (x1 + . . .+ xj) + n− 1) . . . (Tn − (x1 + . . .+ xj) + 1)

(Tn + n− 1) . . . (Tn + 1)

]

= E

[

n−1
∏

k=1

(

1−
x1 + . . .+ xj

Tn + k

)

]

, 1 ≤ j ≤ n. (4.3)

The SLLN for an exchangeable sequence {Xi, i ≥ 1} with finite mean asserts that Tn/n converges a.s.
to a random variable Θ which is distributed as E(X1|G) (Chow and Teicher (1988), section 9.2). So,
this implies (4.2) above. Moreover, for n sufficiently large, (4.3) yields

P (X1 ≥ x1, . . . , Xj ≥ xj) ≈ E

[

n−1
∏

k=1

(

1−
x1 + . . .+ xj

nΘ+ k

)

]

= E

[

exp

[

n−1
∑

k=1

ln

(

1−
x1 + . . .+ xj

nΘ+ k

)

]]

= E

[

exp

(

−
n−1
∑

k=1

x1 + . . .+ xj
nΘ+ k

+ o(1)

)]

. (4.4)

Since
b
∑

l=a

1

l
= ln(b/a) + o(1) as a, b → ∞,

the approximation (4.4) becomes

P (X1 ≥ x1, . . . , Xj ≥ xj) ≈ E

{

exp

[

−(x1 + . . .+ xj) ln

(

nΘ+ n− 1

nΘ

)

+ o(1)

]}

.

The announced formula (4.1) follows by letting n → ∞. ⋄

We notice that for the continuous case, results similar to Propositions 4.1 and 4.2 hold with respect
to the exponential distribution (see Theorem 1 in Nelsen (2005) and Corollary 2.3 in Chi et al. (2009)).

5 Monotone survival functions

In this Section, we present some parametric survival functions S that are monotone of various degrees.
Before this, we come back shortly on two general characterizations for such functions.
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5.1 Representations

By Proposition 2.1, the function S in a Schur-constant model is a n-monotone survival function.
Recently, Lefèvre and Loisel (2013) proved that such a function admits a general representation (see
Proposition 2.5 with t = n− 1 and formula (2.10) for i = 0 in that paper). Specifically, there exists a
random variable Z valued in IN0 for which S can be expressed as

S(x) = E

{(

Z − x+ n− 1

n− 1

)

/

(

Z + n− 1

n− 1

)}

, x ∈ IN0, (5.1)

and the p.m.f. of Z is univoquely determined from S by

P (Z = z) = (−1)n∆nS(z)

(

z + n− 1

n− 1

)

. (5.2)

This result provides us with another method to derive the representation (3.3) for a Schur-constant
model. Indeed, comparing (2.8) and (5.2), we see that Z has the same distribution as Tn. Furthermore,
inserting (5.1) in (1.1) then yields the formula (3.3).

A different representation for such a function S is also given by Lefèvre and Loisel (2013) (see
their formulas (2.13) and (2.16)). More precisely, S corresponds to the survival function of a random
variable X whose distribution is of doubly mixed binomial form, namely

X =d MB(Z, 1− U1/(n−1)), (5.3)

where Z is the random number of experiments and 1− U1/(n−1) is the random parameter, U being a
(0, 1)-uniform random variable independent of Z.

We note that, as expected, the formula (5.3) is in fact a consequence of the representation (3.4),
(3.5) for Schur-constant models.

5.2 Bernoulli model

Let X be a Bernoulli random variable with parameter p. Its survival function is

S(0) = 1, S(1) = p and S(x) = 0, x ≥ 2.

Proposition 5.1

S(x) is n-monotone iff p ≤ 1/n.

Proof. It suffices to observe that for all j ≥ 0,

∆jS(0) = (−1)j(−jp+ 1),

∆jS(1) = (−1)jp,

with ∆jS(x) = 0 for x ≥ 2, hence the assertion for n-monotonicity. ⋄

Note that if 1/(n+ 1) < p ≤ 1/n, S is n-monotone but not (n+ 1)-monotone. From (5.2), we see
that the corresponding variable Z has a Bernoulli distribution with parameter np.

For illustration, consider n successive time intervals of unitary length. Denote by Xi the indicator
of the claim occurence in interval i, 1 ≤ i ≤ n. The model (1.1) with X binomial describes a situation
where the n claim indicators are exchangeable and of probability p, and at most one claim can arise
during the whole period (0, n). This could arise, for example, in reliability with one-shot device testing
and in life insurance with monthly death risk estimation on the basis of yearly reports.
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5.3 Stop-loss model

Let X be a random variable with a survival function of stop-loss type defined by

S(x) = (k − x)t+/k
t, x ∈ IN0, (5.4)

where k and t are positive integers.
To begin with, we point out that the function S can be expanded as a mean of combinatorial

terms. The proof is given in the Appendix.

Lemma 5.2

(k − x)t+
t!

=
t−1
∑

i=0

αi(t)

(

k − x+ i

t

)

, (5.5)

where {αi(t), 0 ≤ i ≤ t− 1} is a symmetric p.m.f. which is computed recursively by

αi(t) = αi−1(t− 1)
t− i

t
+ αi(t− 1)

i+ 1

t
, t = 2, 3, . . . , (5.6)

with α0(1) = 1 and α−1(t− 1) = 0.

We are now ready to establish the monotonicity property satisfied by S.

Proposition 5.3

S(x) is (t+ 1)-monotone,

and the p.m.f. of the corresponding variable Z is

P (Z = z) = αz+t−k(t)

(

z + t

t

)

t!

kt
, max(0, k − t) ≤ z ≤ k − 1. (5.7)

Proof. Note that ∆
(

a−x
t

)

= −
(

a−x−1
t−1

)

for t ≥ 1, while ∆
(

a−x
0

)

= −I(x = a) where I is the indicator
function. From (5.5), we thus get

∆j(k − x)t+ = t! (−1)j
t−1
∑

i=0

αi(t)

(

k − x+ i− j

t− j

)

, 0 ≤ j ≤ t,

and for j = t+ 1,

∆t+1(k − x)t+ = t! (−1)t+1
t−1
∑

i=0

αi(t) I(x = k + i− t)

= t! (−1)t+1 αx+t−k(t) I[max(0, k − t) ≤ x ≤ k − 1]. (5.8)

From (5.4), we then deduce that (−1)j∆jS(x) ≥ 0 for 0 ≤ j ≤ t + 1, i.e. S(x) is (t+1)-monotone.
Now, from (5.2) with n = t+ 1, we have

P (Z = z) = (−1)t+1 [∆t+1(k − z)t+]
1

kt

(

z + t

t

)

.

Using the formula (5.8) we then deduce the announced result (5.7). ⋄
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Note that the function S is not (t+ 2)-monotone since by (5.8),

(−1)t+2∆t+2S(x) = −t!
t−1
∑

i=0

αi(t)∆δx,k+i−t,

which is not always nonnegative. For instance, it reduces to −t!α0(t) < 0 when x = k − 1− t.
Tables 1 and 2 below give the p.m.f. of Z for the first values of t when k = 3 or 10.

Table 1: P.m.f. {P (Z = z)} when t = 1, . . . , 7 and k = 3.

t \ z 0 1 2

1 1
2 1/3 2/3
3 1/33 16/33 10/33

4 11/34 55/34 15/34

5 66/35 156/35 21/35

6 302/36 399/36 28/36

7 1191/37 960/37 36/37

Table 2: P.m.f. {P (Z = z)} when t = 1, . . . , 7 and k = 10.

t \ z 3 4 5 6 7 8 9

1 1
2 0.45 0.55
3 0.12 0.66 0.22
4 0.021 0.363 0.5445 0.0715
5 0.00252 0.12012 0.52272 0.33462 0.02002
6 0.00021 0.026334 0.279048 0.518232 0.171171 0.005005
7 0.000012 0.00396 0.0943272 0.4145856 0.4087512 0.07722 0.001144

5.4 Simple models

Many parametric models are possible for a discrete survival function. In general, however, it is not
easy to check the degree of monotonicity verified by S. Some examples are briefly reported below.

Power-type model. Let X be a random variable with survival function

S(x) = [1− (x/k)t]+, x ∈ IN0,

where k is a positive integer and t a positive real.

Proposition 5.4

S(x) is 2-monotone iff t ≤ 1.

10



Proof. We see that

∆2S(x) = [−(x+ 2)t + 2(x+ 1)t − xt]/kt, 0 ≤ x ≤ k − 2,

∆2S(k − 1) = 1− (k − 1)t/kt,

with ∆2S(x) = 0 for x ≥ k. So, when x ≥ k − 1, ∆2S(x) ≥ 0 for all t. When 0 ≤ x ≤ k − 2, this
condition means (x+ 1)t ≥ [(x+ 2)t + xt]/2, which is true iff t ≤ 1. The result follows. ⋄

In that case, S is not 3-monotone since if t = 1 for instance, ∆3S(k − 2) = 1/k > 0.

Gompertz model. Let X be a random variable with survival function

S(x) = exp[θ(1− ex)], x ∈ IN0,

where θ is a positive real.
First, we define a sequence of reals {θj , j = 2, 3, . . .} by

θj = max

{

θ > 0 : fj(θ) ≡

j
∑

k=0

(

j

k

)

(−1)k exp(−θek) = 0

}

. (5.9)

Using Mathematica 8.0 for instance, it can be seen that fj(θ) > 0 when θ > θj , and θj+1 > θj for all
j = 2, 3, . . . Thus, f1(θ), . . . , fn(θ) > 0 iff θ > θn. More details are given in the Appendix.

Proposition 5.5

S(x) is n-monotone iff θ ≥ θn.

Proof. We have, for j ≥ 0,

(−1)j∆jS(x) =

j
∑

k=0

(

j

k

)

(−1)kS(x+ k) =

j
∑

k=0

(

j

k

)

(−1)k exp[θ(1− ex+k)].

For j = 1, this is positive. Thus, the n-monotonicity condition requires that

fj,x(θ) ≡

j
∑

k=0

(

j

k

)

(−1)k exp(−θex+h) ≥ 0, 2 ≤ j ≤ n. (5.10)

When x = 0, fj,0(θ) = fj(θ) defined in (5.9), so that (5.10) is fulfilled iff θ ≥ θn. For x > 0, when
θ > θn, then θex > θn and thus (5.10) is again satisfied. ⋄

Note that S(x) is not (n+1)-monotone when θn ≤ θ < θn+1.

Other cases. We present a few parametric models that are easily seen to be at least 2-monotone.
In fact, it seems that they are ∞-monotone, although we have not been able to prove it so far.

Logarithmic model (of parameter θ ∈ (0, 1)):

S(x) = −θx+1/(x+ 1)ln(1− θ), x ∈ IN0.

Bendford model (of parameter b integer ≥ 3):

S(x) = ln((x+ 2)/(x+ 1))/ln(b), 0 ≤ x ≤ b− 2, and S(x) = 0, x > b− 2.

Pareto model (of parameter ρ > 0): putting ζ(s) =
∑∞

k=1 k
−s,

S(x) = 1/(1 + x)1+ρζ(1 + ρ), x ∈ IN0.
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6 Correlation measures

Various dependence properties and association measures, as well as their links with aging properties,
are widely discussed for the continuous Schur-constant model, especially in the bivariate case. The
reader is referred e.g. to Nair and Sankaran (2014) and the references therein. Much of these studies
can be adapted to the present discrete model. For brevity reasons, here we focus mainly on the study
of the Pearson linear correlation coefficient.

By exchangeability, all the Xi’s have the same mean and variance, µ and σ2 say (assumed to
exist), and the same Pearson correlation coefficient ρ. As Schur-constancy is expressed in terms of the
survival function S of X1, one expects that ρ is related to some parameters of X1 alone. We will see
that ρ is indeed function of µ and σ2. Let us begin by showing how to calculate these two parameters.
We can use either the p.m.f. of X1 (i.e. (2.5) with j = 1), or the characterization (3.4), (3.5) where
the mean and variance of Z are denoted by µZ and σ2

Z .

Proposition 6.1 In terms of S,

µ =
∞
∑

x=0

S(x+ 1), (6.1)

σ2 = 2
∞
∑

x=0

xS(x+ 1)− µ2 + µ, (6.2)

and in terms of µZ and σ2
Z ,

µ = µZ/n, (6.3)

σ2 = 2σ2
Z/n(n+ 1) + µ2

Z(n− 1)/n2(n+ 1) + µZ(n− 1)/n(n+ 1). (6.4)

Proof. The k-th descending factorial moment of X1, k ≥ 1, is given by

E(X1,[k]) =
∞
∑

x=0

x[k][S(x)− S(x+ 1)]

=
∞
∑

x=0

(x+ 1)[k]S(x+ 1)−
∞
∑

x=0

x[k]S(x+ 1)

= k
∞
∑

x=0

x[k−1]S(x+ 1). (6.5)

Taking k = 1 and 2 in (6.5) then yields the first two formulas (6.1) and (6.2).
Let us derive the following two formulas. By (3.4), (3.5) (or (5.3)), we know thatX1 =d MB(Z,U1)

where U1 is independent of Z and P (U1 ≥ u1) = (1− u1)
n−1
+ . Since E(U1) = 1/n,

µ = E(Z)E(U1) = µZ/n,
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as stated in (6.3). Now, applying a standard conditional argument, we get (in obvious notation)

σ2 = var{E[B(Z,U1)|Z,U1]}+ E{var[B(Z,U1)|Z,U1]}

= var(ZU1) + E[ZU1(1− U1)]

= var[E(ZU1|Z)] + E[var(ZU1|Z)] + E[ZU1(1− U1)]

= var[ZE(U1)] + E[Z2var(U1)] + E[ZU1(1− U1)]

= [E(U1)]
2σ2

Z + var(U1)E(Z2) + E(Z)E[U1(1− U1)]. (6.6)

It is directly checked that E(U2
1 ) = 2/n(n+ 1), so that

var(U1) = (n− 1)/n2(n+ 1),

E[U1(1− U1)] = (n− 1)/n(n+ 1).

Substituting this in (6.6) leads to

σ2 = σ2
Z/n

2 + E(Z2)(n− 1)/n2(n+ 1) + E(Z)(n− 1)/n(n+ 1).

Finally, writing 1/n2 = 2/n(n+ 1)− (n− 1)/n2(n+ 1), we obtain the formula (6.4). ⋄

We are in a position to provide the expression of ρ.

Proposition 6.2 In terms of µ and σ2,

ρ = (σ2 − µ2 − µ)/2σ2, (6.7)

and in terms of µZ and σ2
Z ,

ρ =
nσ2

Z − µ2
Z − nµZ

2nσ2
Z + (n− 1)µ2

Z + n(n− 1)µZ
. (6.8)

Proof. By (2.5), we have

E(X1X2) =
∞
∑

x1=0

∞
∑

x2=0

x1x2P (X1 = x1, X2 = x2) =
∞
∑

x1=0

x1 [
∞
∑

x2=0

x2∆
2S(x1 + x2)].

The sum [. . .] above is easily checked to reduce to S(x1 + 1). Therefore,

E(X1X2) =
∞
∑

x1=0

x1S(x1 + 1) = E(X1,[2])/2,

by virtue of (6.5). We then deduce that ρ is given by formula (6.7). Let us now establish (6.8). Of
course, we could evaluate cov(X1, X2) by arguing as above for σ2. A simpler method, however, consists
in using (6.7) where (6.3) is substituted for µ and (6.4) for σ2. After an elementary calculation, we
then obtain the desired formula. ⋄

From (6.7) or (6.8), we see that ρ can be positive or not. This is not surprising in view of the
representation (6.3): the common factor of Z tends to generate positive correlation while the negative
dependence between U1 and U2 tends to generate negative correlation. In fact, ρ > 0 if σ2 > µ2+µ or
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nσ2
Z > µ2

Z + nµZ ; roughly, when σ2 (σ2
Z) is large enough with respect to µ (µZ). We also notice that,

as expected, ρ is an increasing function of σ2
Z (and σ2) when n and µZ are kept fixed. Moreover, it is

clear that −1 ≤ ρ < 1/2.
Let us recall that in the continuous case, ρ can be expressed by the following two formulas:

ρ = (κ2 − 1)/2κ2,

where κ = σ/µ is the variation coefficient of X (Nelsen (2005)) and, when n = 2,

ρ = (2κ2Z − 1)/(4κ2Z + 1),

where κZ = σZ/µZ is the variation coefficient of Z (Chi et al. (2009)). Here too, −1 ≤ ρ < 1/2. We
observe, however, that in the discrete case, ρ is a function of the mean and variance of X or Z, and
not only of their variation coefficient.

An alternative measure of association between two random variables is provided by the Kendall τ
coefficient. The variant named τb is an adjustment of τ to deal with discrete random variables (e.g.
Agresti (2013); see also Nes̆lehová (2007)). Its population version is defined as follows: let (X1, X2)
and (Y1, Y2) be two i.i.d. random vectors with the same marginals, then

τb =
P [(X1 − Y1)(X2 − Y2) > 0]− P [(X1 − Y1)(X2 − Y2) < 0]

√

P (X1 6= Y1)P (X2 6= Y2)
. (6.9)

For a Schur-constant model, τb can be expressed by the formula (6.10) below.

Proposition 6.3 In terms of S,

τb =
4
∑∞

k=0(k + 1)S(k + 2)∆2S(k) + 2
∑∞

k=0[∆S(k)]2 −
∑∞

k=0(k + 1)[∆2S(k)]2 − 1

1−
∑∞

k=0[∆S(k)]2
. (6.10)

Proof. First, we note that

P [(X1 − Y1)(X2 − Y2) < 0] = 1− P [(X1 − Y1)(X2 − Y2) > 0]− P (X1 = Y1 or X2 = Y2),

so that (6.9) can be rewritten as

τb =
2P [(X1 − Y1)(X2 − Y2) > 0] + P (X1 = Y1 or X2 = Y2)− 1

√

P (X1 6= Y1)P (X2 6= Y2)
. (6.11)

As (Y1, Y2) is an independent copy of (X1, X2),

P [(X1 − Y1)(X2 − Y2) > 0] = 2
∞
∑

y1=0

∞
∑

y2=0

P (X1 ≥ y1 + 1, X2 ≥ y2 + 1)P (Y1 = y1, Y2 = y2).

For a Schur-constant model, we then get from (1.1) and (2.5)

P [(X1 − Y1)(X2 − Y2) > 0] = 2
∞
∑

y1=0

∞
∑

y2=0

S(y1 + y2 + 2)∆2S(y1 + y2)

= 2
∞
∑

k=0

(k + 1)S(k + 2)∆2S(k), (6.12)
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after putting k = x1 + x2. In a similar way, we obtain

P (X1 6= Y1) = 1− P (X1 = X2) = 1−
∞
∑

k=0

[∆S(k)]2, (6.13)

and

P (X1 = Y1 or X2 = Y2) = 2P (X1 = Y1)− P (X1 = Y1, X2 = Y2)

= 2
∞
∑

k=0

[∆S(k)]2 −
∞
∑

y1=0

∞
∑

y2=0

[∆2S(y1 + y2)]
2

= 2
∞
∑

k=0

[∆S(k)]2 −
∞
∑

k=0

(k + 1)[∆2S(k)]2. (6.14)

Inserting (6.12), (6.13), (6.14) in (6.11) then yields (6.10). ⋄

Let us examine the Schur-constant models, of dimension n, generated by the functions S of Section
5. First, for the Bernoulli case, (6.7) yields ρ = −p/(1 − p), regardless of n. From (6.9) and using
(2.5), we also see that τb = ρ. Now, for the stop-loss case, we have computed ρ from (6.7) and τb from
(6.10) for several values of t and k. By Propositin 5.3, the Schur-constant model is here of dimension
n = t + 1. Table 3 shows that the values of the two parameters are negative and increase with t (or
n). We note that when t = 1, S reduces to the survival function of a uniform on (0, 1); it is then easily
checked that X2 =d k −X1, which explains the value −1 obtained for both coefficients.

Table 3: Coefficients ρ and τb when S is of stop-loss form.

t \ k 2 3 4 5 6 7

1 ρ −1 −1 −1 −1 −1 −1
τb −1 −1 −1 −1 −1 −1

2 ρ −0.333333 −0.421053 −0.454545 −0.470588 −0.479452 −0.484848
τb −0.333333 −0.391304 −0.395349 −0.391304 −0.386139 −0.381295

3 ρ −0.142857 −0.250000 −0.286713 −0.303571 −0.312693 −0.318182
τb −0.142857 −0.245283 −0.253886 −0.250889 −0.246213 −0.241742

4 ρ −0.066667 −0.166400 −0.202267 −0.219214 −0.228526 −0.234180
τb −0.066667 −0.167773 −0.185030 −0.185698 −0.182908 −0.179570

5 ρ −0.032258 −0.114078 −0.149812 −0.167343 −0.177121 −0.183102
τb −0.032258 −0.115436 −0.141662 −0.146555 −0.145914 −0.143810

6 ρ −0.015873 −0.078354 −0.113867 −0.131973 −0.142235 −0.148566
τb −0.015873 −0.079042 −0.110539 −0.119374 −0.120903 −0.120059

7 ρ −0.007874 −0.053562 −0.087780 −0.106196 −0.116865 −0.123524
τb −0.007874 −0.053850 −0.086681 −0.098756 −0.102342 −0.102746

We have also considered the other functions S for generating bivariate Schur-contant models (i.e.
with n = 2). As seen before, S is 2-monotone in the power-type case when t ≤ 1, in the Gompertz
case when θ ≥ θ2 = 0.340983 and in the logarithmic, Bendford and Pareto cases for any parameter
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value. Figure 1 gives ρ and τb in these different situations. We observe that the dependence can be
positive or negative, and that the two parameters are often very close.
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Figure 1: Coefficients ρ (circles, blue line) and τb (squares, red line) for different S when n = 2.

7 Schur-constant interarrival models

In this Section, we are going to discuss three processes in insurance theory for which the claim interar-
rival periods form a Schur-constant model: a claim counting process, a random payment process and
an insurance risk process, respectively.
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7.1 Claim counting process

Let us introduce an associated counting process defined by

N(t) =
n
∑

i=1

I(Ti ≤ t), t ∈ IN0,

where, as before, Ti = X1 + . . .+Xi and {X1, . . . , Xn} is a Schur-constant model.
In an insurance context, suppose that a maximum number of n claims can arise in a portfolio. Let

Ti denote the claim arrival time of the i-th claim. Then, N(t) represents the total number of claims
that occur until time t.

Proposition 7.1 For t ≥ 0,

P [N(t) = k] = (−1)k ∆kS(t+ 1)

(

t+ k

k

)

, 0 ≤ k ≤ n− 1, (7.1)

and P [N(t) = n] = P (Tn ≤ t) is obtained from (2.8). For 0 ≤ t1 ≤ . . . ≤ tk ≤ t,

P [T1 = t1, . . . , Tk = tk|N(t) = k] = 1/

(

t+ k

k

)

, 1 ≤ k ≤ n− 1. (7.2)

Proof. Clearly, P [N(t) = 0] = P (X1 > t) = S(t+ 1). For 1 ≤ k ≤ n− 1,

P [N(t) = k|T1 = t1, . . . , Tk = tk] = P (Tk+1 ≥ t+ 1|T1 = t1, . . . , Tk = tk)

= P (Xk+1 ≥ t+ 1− tk|X1 = t1, . . . , Xk = tk − tk−1)

= ∆kS(t+ 1)/∆kS(tk), (7.3)

by virtue of (2.5) and (2.6). Using (2.9), we then get

P [N(t) = k] =
∑

t1≤...≤tk≤t

P [N(t) = k|T1 = t1, . . . , Tk = tk]P (T1 = t1, . . . , Tk = tk)

=
∑

t1≤...≤tk≤t

[∆kS(t+ 1)/∆kS(tk)] (−1)k ∆kS(tk)

= (−1)k ∆kS(t+ 1)Ak,

where Ak counts the cases satisfying t1 ≤ . . . ≤ tk ≤ t. Since Ak is equal to
(

t+k
k

)

, (7.1) follows.
Applying Bayes’ rule yields

P [T1 = t1, . . . , Tk = tk|N(t) = k] =
P [N(t) = k|T1 = t1, . . . , Tk = tk]P (T1 = t1, . . . , Tk = tk)

P [N(t) = k]

=
[∆kS(t+ 1)/∆kS(tk)] (−1)k ∆kS(tk)

(−1)k ∆kS(t+ 1)
(

t+k
k

) ,

thanks to (2.9), (7.1) and (7.3), so that formula (7.2) follows. ⋄

Formula (7.2) means that given N(t) = k with k (≤ n− 1), the arrival times of these k events are
obtained by throwing k indistinguishable balls in t + 1 urns (the instants 0, . . . , t). Note that when
k = n, the probability in (7.3) is equal to 1 by definition; this case differs from the others, of course.

For the continuous model, formulas of this type are derived by Chi et al. (2009) in Lemma 7.1
and Theorem 2.4. In particular, [T1, . . . , Tk|N(t) = k], 1 ≤ k ≤ n− 1, is then distributed as the order
statistics of a sample of k independent (0, t)-uniform random variables.
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Proposition 7.2 In an infinite discrete Schur-constant model, N(t) has a mixed negative binomial
distribution, namely

N(t) =d MNB[t+ 1, 1/(Θ + 1)], (7.4)

where Θ is defined in (4.2).

Proof. By (4.1), S(x) = E[(Θ/(Θ + 1))x] for an infinite Schur-constant model. Substituting this in
(7.1) and since ∆qx = −(1− q)qx, we then get

P [N(t) = k] =

(

t+ k

k

)

E

[

(

1

Θ + 1

)k ( Θ

Θ+ 1

)t+1
]

, k ≥ 0.

In other words, N(t) has the mixed distribution stated in (7.4). ⋄

7.2 Random payment process

Much research is devoted to the evaluation of the present value of random payments at random times
(e.g. Léveillé and Garrido (2001), Chi et al. (2009), Garrido et al. (2010), Woo and Cheung (2013)).

We here consider a compound Schur-constant sum of discounted claims expressed as

R(t) =

N(t)
∑

i=1

Ci

Ti
∏

j=1

vj =
n
∑

i=1

I(Ti ≤ t)Ci

Ti
∏

j=1

vj , t ∈ IN0,

where Ti represents the i-th payment time, Ci is the claim amount at that time and vj (∈ (0, 1]) is a
deterministic discount factor for the period (j−1, j); of course,

∏0
j=1 ≡ 1. Here too, Ti = X1+ . . .+Xi

where {X1, . . . , Xn} is a discrete Schur-constant model. The Ci’s are assumed to be i.i.d. positive
random variables, independent of the Tj ’s.

Our purpose is to determine the Laplace transform of R(t), i.e. LR(t)(λ) = E{exp[−λR(t)]} with
λ > 0. Let LC(λ) be the Laplace transform of Ci.

Proposition 7.3

LR(t)(λ) = S(t+ 1) +
n−1
∑

k=1

(−1)k ∆kS(t+ 1)
∑

0≤t1≤...≤tk≤t

k
∏

i=1

Lc(λ

ti
∏

j=1

vj) + (−1)n∆nS(0) [LC(λ)]
n

+
t
∑

tn=1

(−1)n∆nS(tn)Lc(λ

tn
∏

j=1

vj)
∑

0≤t1≤...≤tn−1≤tn

n−1
∏

i=1

Lc(λ

ti
∏

j=1

vj). (7.5)

Proof. Evidently,

LR(t)(λ) =
n
∑

k=0

E[e−λR(t)I(N(t) = k)] = P [N(t) = 0]

+
n−1
∑

k=1

P [N(t) = k]E[e−λR(t)|N(t) = k] + E[e−λR(t)I(N(t) = n)]. (7.6)
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For the terms with 1 ≤ k ≤ n− 1 in the second sum of (7.6), we obtain, using (7.2),

E[e−λR(t)|N(t) = k] = E[e−λ
∑k

i=1
Ci

∏Ti
j=1

vj |N(t) = k]

=
1

(

t+k
k

)

∑

0≤t1≤...≤tk≤t

E(e−λ
∑k

i=1
Ci

∏ti
j=1

vj )

=
1

(

t+k
k

)

∑

0≤t1≤...≤tk≤t

k
∏

i=1

Lc(λ

ti
∏

j=1

vj), (7.7)

since the Ci’s are i.i.d. random variables.
For the last term in (7.6) where k = n, we have, since [N(t) = n] means (Tn ≤ t),

E[e−λR(t)I(N(t) = n)] = P (Tn = 0)E(e−λ
∑n

i=1
Ci)

+
t
∑

tn=1

P (Tn = tn)E(e−λ
∑n

i=1
Ci

∏Ti
j=1

vj |Tn = tn). (7.8)

Using (2.10) with j = n, we express the conditional expectation E(. . .) in (7.8) as

E(. . .) = E(e−λCn

∏tn
j=1

vj )E(e−λ
∑n−1

i=1
Ci

∏Ti
j=1

vj |Tn = tn)

= E(e−λCn

∏tn
j=1

vj )
1

(

tn+n−1
n−1

)

∑

0≤t1≤...≤tn−1≤tn

E(e−λ
∑n−1

i=1
Ci

∏ti
j=1

vj )

=
1

(

tn+n−1
n−1

) Lc(λ

tn
∏

j=1

vj)
∑

0≤t1≤...≤tn−1≤tn

n−1
∏

i=1

Lc(λ

ti
∏

j=1

vj). (7.9)

It remains to insert (7.7), (7.8) and (7.9) in (7.6) and then to use (7.1) for the p.m.f. of N(t) and
(2.8) with j = n for the p.m.f. of Tn. ⋄

Example. Suppose that the claim amounts Ci are exponentially distributed with parameter 1. Since
LC(λ) = 1/(1 + λ), formula (7.5) gives

LR(t)(λ) = S(t+ 1) +
n−1
∑

k=1

(−1)k ∆kS(t+ 1)V (k, t) + (−1)n∆nS(0)

(

1

1 + λ

)n

+
t
∑

tn=1

(−1)n∆nS(tn)V (tn)V (n− 1, tn),

where

V (ti) = 1/(1 + λ

ti
∏

j=1

vj), 1 ≤ i ≤ n,

V (k, τ) =
∑

0≤t1≤...≤tk≤τ

k
∏

i=1

V (ti), 1 ≤ k ≤ n− 1, τ ∈ IN0.
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The claim interarrival periods (X1, . . . , Xn) form a Schur-constant model. For illustration, we first
consider the Bernoulli case of Section 5. Then, ti = 0 or 1 for all i, which greatly simplifies the
calculations. So, we easily obtain the following formula: for t = 0,

LR(0)(λ) = p+
p

λ

(

1−
1

(1 + λ)n−1

)

+
1− np

(1 + λ)n
,

and for t = 1 (or t ≥ 1),

LR(t)(λ) =
1− np

(1 + λ)n
+

p

(1 + λ)n−1 λ (1− v1)

(

(
1 + λ

1 + λv1
)n − 1

)

.

Table 4 gives P [R(t) = 0] and several quantiles Rα(t) for different values of n when p = 0.08 and
v1 = 0.95. Note that, as expected, the quantiles increase with n and t.

Table 4: P [R(t) = 0] and Rα(t) with S of Bernoulli form when p = 0.08, v1 = 0.95.

n 2 3 4 5 6 7

P [R(0) = 0] 0.08 0.08 0.08 0.08 0.08 0.08
R0.50(0) 1.45497 2.24537 2.96722 3.60988 4.15995 4.60201
R0.95(0) 4.55266 5.96314 7.24594 8.43023 9.53011 10.5449
R0.99(0) 6.45200 8.08879 9.56817 10.9353 12.2084 13.3923

P [R(t) = 0] 0 0 0 0 0 0
t ≥ 1 R0.50(t) 1.66802 2.65219 3.63464 4.61386 5.58950 6.56139

R0.95(t) 4.71638 6.24742 7.67994 9.04840 10.3722 11.6609
R0.99(t) 6.60129 8.34365 9.95497 11.4758 12.9384 14.3540

Next, we consider a bivariate Schur-constant model (n = 2) generated by a stop-loss function S
where k = 4 and t = 1 or 2. Figure 2 shows the distribution function of R(t) when vj = 0.95 for all j.

0 2 4 6 8
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0.2

0.4

0.6

0.8

1.0

SHxL=H4-xL+�4

2 4 6 8
x

0.2
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1.0

SHxL=H4-xL+
2 �42

Figure 2: Distribution function of R(t) with S of stop-loss form when n = 2 and all vj = 0.95, for
t = 0 (thick black line), t = 1 (dashed blue line), t ≥ 3 (dotted red line).

7.3 Insurance risk process

A large number of works are devoted to the evaluation of the ruin probability for an insurance over a
finite or infinite horizon (see e.g. the books by Seal (1978), Dickson (2005), Asmussen and Albrecher
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(2010)). Let us consider a discrete-time risk model in which claims occur according to a Schur-constant
counting process N(t). The successive claim amounts, Ci say, are independent of the claim arrival
process (but may be interdependent); their partial sums are denoted by Ai = C1 + . . . + Ci, i ≥ 1.
The premium flow is deterministic (but may be nonstationary); the cumulated premiums until time t
are given by the nondecreasing function h(t) (h(0) ≥ 0 being the initial reserves). Thus, the reserves
process is written as

U(t) = h(t)−AN(t), where AN(t) =

N(t)
∑

i=1

Ci, t ∈ IN0.

Ruin occurs when the reserves U(t) become negative, i.e. as soon as AN(t) > h(t). Let φ(t) be the
probability of non-ruin until time t. We derive below a formula for computing φ(t).

Proposition 7.4

φ(t) = S(t+ 1) +
n−1
∑

k=1

(−1)k ∆kS(t+ 1)
∑

0≤t1≤...≤tk≤t

P [A1 ≤ h(t1), . . . , Ak ≤ h(tk)]

+
t
∑

tn=0

(−1)n∆nS(tn)
∑

0≤t1≤...≤tn−1≤tn

P [A1 ≤ h(t1), . . . , An ≤ h(tn)]. (7.10)

Proof. By definition, φ(t) can be expressed as

φ(t) = P [N(t) = 0] +
n
∑

k=1

P [non-ruin until time t,N(t) = k]

= S(t+ 1) +
n−1
∑

k=1

P [N(t) = k]P [A1 ≤ h(T1), . . . , Ak ≤ h(Tk)|N(t) = k]

+P [A1 ≤ h(T1), . . . , An ≤ h(Tn), N(t) = n]. (7.11)

For 1 ≤ k ≤ n− 1, we get from (5.2) that

P [A1 ≤ h(T1), . . . , Ak ≤ h(Tk)|N(t) = k] =
1

(

t+k
k

)

∑

0≤t1≤...≤tk≤t

P [A1 ≤ h(t1), . . . , Ak ≤ h(tk)]. (7.12)

For k = n, we write

P [A1 ≤ h(T1), . . . , An ≤ h(Tn), N(t) = n]

=
t
∑

tn=0

P (Tn = tn)P [A1 ≤ h(T1), . . . , An ≤ h(Tn)|Tn = tn], (7.13)

and by virtue of (2.10),

P [A1 ≤ h(T1), . . . , An ≤ h(Tn)|Tn = tn]

=
1

(

tn+n−1
n−1

)

∑

0≤t1≤...≤tn−1≤tn

P [A1 ≤ h(t1), . . . , An ≤ h(tn)]. (7.14)
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Combining (7.11), (7.12), (7.13), (7.14) and using (5.1), (2.8), we then deduce formula (7.10). ⋄

To apply (7.10), it remains to evaluate probabilities of the form P [A1 ≤ h(t1), . . . , Ak ≤ h(tk)].
Clearly, this can be cumbersome in practice, as for the traditional models.

Example. Suppose that the claim amounts Ci are exponentially distributed with parameter 1. Then,
each Ak has an Erlang(k, 1) distribution, i.e.

P (Ak ≤ x) = 1−
k−1
∑

j=0

1

j!
e−xxj , x > 0. (7.15)

For the claim interarrival periods, consider again a Schur-constant model (X1, . . . , Xn) with S of
Bernoulli type. From (7.10), we then obtain the following formula: for t = 0,

φ(0) = p+ p
n−1
∑

k=1

P [Ak ≤ h(0)] + (1− np)P [An ≤ h(0)],

and for t = 1 (or t ≥ 1),

φ(t) = (1− np)P [An ≤ h(0)] + pP [An ≤ h(1)] + p

n−1
∑

k=1

P [An−k ≤ h(0), An ≤ h(1)],

in which we get, after some calculations and using (7.15),

P [An−k ≤ h(0), An ≤ h(1)] = P [An−k ≤ h(0)]−
e−h(1)

(n− k − 1)!

k−1
∑

j=0

j
∑

i=0

(−1)j−ih(1)ih(0)n−k+j−i

(n− k + j − i)i!(j − i)!
.

This result is illustrated in Table 5 for different values of n when p = 0.08, h(0) = 4 and h(1) = 8.

Table 5: Probability φ(t) with S of Bernoulli form when p = 0.08, h(0) = 4, h(1) = 8.

n 2 3 4 5 6 7

t = 0 0.921609 0.810250 0.677401 0.560180 0.478908 0.433062
t ≥ 1 0.921260 0.808184 0.669609 0.538648 0.431727 0.346796

We also reconsider a bivariate model with S of stop-loss type where k = 4 and t = 1 or 2. Figure
3 shows the probability φ(t) in function of t when h(0) = 1, h(1) = 2, h(2) = 3 and h(3) = 4.
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Figure 3: Probability φ(t) with S of stop-loss form when n = 2 and h(0) = 1, h(1) = 2, h(2) = 3,
h(3) = 4.

8 Appendix

The coefficients αi(t) (in Section 5.3)

We first derive the expansion stated in Lemma 5.3. The argument is inspired from the proof of
Lemma 3.3 in Denuit et al. (2002).

Proof of Lemma 5.3. Observe that (5.5) is true for t = 1 with α0(1) = 1. Proceeding by induction, let
us consider the case t+ 1, t ≥ 1. Clearly,

(k − x)t+1
+

(t+ 1)!
=

(k − x)+
t+ 1

(k − x)t+
t!

=

t−1
∑

i=0

αi(t)
k − x

t+ 1

(

k − x+ i

t

)

, (8.1)

by assumption and since k − x may be substituted to (k − x)+ in the first equality. Now, we notice
that k − x can be rewritten as

k − x =
t− i

t+ 1
(k − x+ i+ 1) +

i+ 1

t+ 1
(k − x+ i− t),

so that
k − x

t+ 1

(

k − x+ i

t

)

=
t− i

t+ 1

(

k − x+ i+ 1

t+ 1

)

+
i+ 1

t+ 1

(

k − x+ i

t+ 1

)

. (8.2)

Inserting (8.2) in (8.1) (and changing the index i to i+ 1 in the first sum) yields

(k − x)t+1
+

(t+ 1)!
=

t
∑

i=1

αi−1(t)
t+ 1− i

t+ 1

(

k − x+ i

t+ 1

)

+
t−1
∑

i=0

αi(t)
i+ 1

t+ 1

(

k − x+ i

t+ 1

)

=
t
∑

i=0

[

αi−1(t)
t+ 1− i

t+ 1
+ αi(t)

i+ 1

t+ 1

](

k − x+ i

t+ 1

)

, (8.3)
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after putting α−1(t) = 0 = αt(t). By (8.3), we thus see that the expansion (5.5) holds too for t + 1
where the αi(t+1)’s correspond to the terms [. . .] above. In other words, the coefficients αi(t) satisfy
the recurrence (5.6). Again by induction, we get that the αi(t)’s are positive, of sum 1 and symmetric
(i.e. αi(t) = αt−1−i(t)). ⋄

Table 6 gives the coefficients {αi(t), 0 ≤ i ≤ t− 1} in (5.5) for the first values of t. Observe that,
as indicated before, they form a symmetric p.m.f.

Table 6: Coefficients {αi(t)} when t = 1, . . . , 7.

t \ i 0 1 2 3 4 5 6

1 1
2 1/2 1/2
3 1/3! 4/3! 1/3!
4 1/4! 11/4! 11/4! 1/4!
5 1/5! 26/5! 66/5! 26/5! 1/5!
6 1/6! 57/6! 302/6! 302/6! 57/6! 1/6!
7 1/7! 120/7! 1191/7! 2416/7! 1191/7! 120/7! 1/7!

It can be shown that αi(t) is provided by the following explicit formula:

αi(t) =
1

t!

t−i−1
∑

si=0

(i+ 1)si (t− i− si)

t−i−1−si
∑

si−1=0

isi−1 (t− i− si − si−1)

t−i−1−si−si−1
∑

si−2=0

(i− 1)si−2 (t− i− si − si−1 − si−2) . . .

t−i−1−si−si−1−...−s2
∑

s1=0

2s1 (t− i− si − si−1 − . . .− s1) , 1 ≤ i ≤ t− 1.

The roots θj (in Section 5.4)

The functions fj(θ), j ≥ 2, introduced in (5.9) can be analyzed using Mathematica 8.0. In Figure
4 below, they are plotted for different values of j.
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Figure 4: Functions fj(θ) when j = 2, 3, 4, 7.

Observe that fj(θ) has j real roots; they are given in Table 7. The largest root corresponds to θj
defined in (5.9).

Table 7: Roots of fj(θ) when j = 2, 3, 4, 7.

j

2 0 θ2 = 0.340983
3 0 0.068210 θ3 = 0.603576
4 0 0.015599 0.146406 θ4 = 0.783918
7 0 0.0002416 0.003448 0.017788 0.072867 0.281368 θ7 = 1.1232

We also notice that fj(θ) > 0 for θ > θj and θj+1 > θj . In fact, these properties are found to be true
for all j ≥ 2.

Future extension of the model

The Schur-constant property implies the exchangeability of the Xi’s, and in particular the identity
between the marginal distributions. This assumption may be restrictive or unrealistic in certain fields
of applications. This is the case, for instance, in survival analysis for the study of risks in competition.
In a forthcoming paper, we will develop a Schur-constant model that is rescaled to take into account
the heterogeneity between the different risks.
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Denuit, M., Lefèvre, C., Utev, S., 2002. Measuring the impact of dependence between claims

occurrences. Insurance: Mathematics and Economics 30, 1-19.
Dickson, D.C.M., 2005. Insurance Risk and Ruin. Cambridge University Press, Cambridge.
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