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This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model.

Introduction

Schur-constant models play a special role in the analysis of lifetime data. Their properties have been studied by several authors including [START_REF] Barlow | Similarity as a probabilistic characteristic of aging[END_REF], [START_REF] Caramellino | Dependence and aging properties of lifetimes with Schurconstant survival function[END_REF], [START_REF] Nelsen | Some properties of Schur-constant survival models and their copulas[END_REF], [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF] and [START_REF] Nair | Characterizations and time-dependent association measures for bivariate Schur-constant distributions[END_REF]. Traditionally, the lifetimes considered are absolutely continuous random variables valued in IR + . The present work aims to discuss Schurconstant models for discrete survival data valued in IN 0 = {0, 1, . . .}.

Let (X 1 , . . . , X n ) be a vector of n (≥ 2) arithmetic non-negative random variables, called lifetimes. It is said to have a Schur-constant joint survival function if for all (x 1 , . . . , x n ) ∈ IN n 0 ,

P (X 1 ≥ x 1 , . . . , X n ≥ x n ) = S(x 1 + . . . + x n ), (1.1)
where S is an admissible function from IN 0 to [0, 1]. Clearly, such a survival function S is both Schur-convex and Schur-concave (see [START_REF] Marshall | Inequalities: Theory of Majorization and Its Applications[END_REF]), hence the appellation of Schur-constant. By (1.1), the n variables X i of this vector are exchangeable. Moreover, any subvector is also Schur-constant. As in the continuous case, a Schur-constant model translates a no-aging property, i.e. the residual lifetimes of any two components, X ix i and X jx j say, have the same conditional distributions, even if they have different ages x i and x j :

P (X i -x i ≥ t|X 1 ≥ x 1 , . . . , X n ≥ x n ) = S(x 1 + . . . + x n + t)/S(x 1 + . . . + x n ) = P (X j -x j ≥ t|X 1 ≥ x 1 , . . . , X n ≥ x n ).
Concerning the function S, putting x 2 = . . . = x n = 0 in (1.1) gives P (X 1 ≥ x 1 ) = S(x 1 ), so that S is at least a univariate survival function. In fact, S is a multivariate survival function, which means that S(0) = 1, S(∞) = 0 and the probability mass associated by S to any rectangle in IN n 0 is nonnegative.

As a first result, we will show that this admissibility condition is equivalent to the property of n-monotonicity of S on IN 0 . A function f (x): IN 0 → IR is said to be n-monotone if it satisfies (-1) j ∆ j f (x) ≥ 0, j = 0, . . . , n,

(1.2)

where ∆ is the forward difference operator (i.e. ∆f (x) = f (x + 1)f (x)) and ∆ j is its j-th iterated.

Multiple monotone functions on IN 0 have received little attention so far in the literature. Recently, [START_REF] Lefèvre | On multiply monotone distributions, discrete or continuous, with applications[END_REF] have studied the property of monotonicity for probability distributions, in the continuous and discrete cases.

It is worth indicating that the multiple monotonicity on IR + is a much more standard concept. [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF] has investigated in detail the properties of such functions when n ≥ 1 is an integer (as here) or even any real; see also [START_REF] Lévy | Extensions d'un théorème de D. Dugué et M. Girault[END_REF] and [START_REF] Gneiting | Radial positive definite functions generated by Euclid's hat[END_REF]. In probability, n-monotonicity of continuous distributions corresponds to the so-called beta(1, n)-unimodality, defined for n real ≥ 0 [START_REF] Bertin | Unimodality of Probability Measures[END_REF], page 72). In statistics, the estimation problem of n-monotone densities when n is an integer ≥ 0 has been studied by [START_REF] Balabdaoui | Estimation of a k-monotone density: Limit distribution theory and the spline connection[END_REF], for instance. As shown by [START_REF] Mcneil | Multivariate Archimedean copulas, d-monotone functions and l 1 -norm symmetric distributions[END_REF], an Archimedean generator yields a n-dimensional copula if and only if this generator is n-monotone on IR + ; see also e.g. [START_REF] Genest | Statistical inference procedures for bivariate Archimedean copulas[END_REF], [START_REF] Albrecher | Explicit ruin formulas for models with dependence among risks[END_REF] and [START_REF] Constantinescu | Archimedean copulas in finite and infinite dimensions -with application to ruin problems[END_REF]. In [START_REF] Lefèvre | Convolution property and exponential bounds for symmetric monotone densities[END_REF], it is proved that symmetric n-monotone densities are preserved by convolution provided n ∈ [0, 1].

The paper is organized as follows. In Section 2, we show that a Schur-constant model requires the n-monotonicity of S, and we derive different joint life time distributions. In Section 3, we provide two representations of a Schur-constant model, by conditioning on the sum X 1 + . . . + X n or through a doubly mixed multinomial distribution. In Section 4, we prove that an infinite sequence is Schurconstant when the X i 's are a mixture of geometrics. In Section 5, we present some parametric functions S that are monotone with various degrees. In Section 6, we obtain simple expressions for the usual correlation coefficients. In Section 7, we discuss three processes in insurance for which the claim interarrival periods form a Schur-constant model. The paper ends with a short Appendix.

Joint lifetime distributions

We start by deriving a necessary and sufficient condition for the function S in (1.1) to be a multivariate survival function. Firstly, the lemma below characterizes the survival function F (x 1 , . . . , x n ) of an arbitrary IN n 0 -valued random vector (X 1 , . . . , X n ). The result is well-known, but a short proof is given for reasons of completeness. Let F (x i 1 , . . . , x i j ) be the survival function of any subvector (X i 1 , . . . , X i j ), 1 ≤ j ≤ n. Forward difference operators are defined as follows: g being a real function on IN 0 , then for any integers

h i ≥ 1, 1 ≤ i ≤ n, ∆ i,h i g(x 1 , . . . , x n ) = g(x 1 , . . . , x i + h i , . . . , x n ) -g(x 1 , . . . , x i , . . . , x n ); by convenience, we write ∆ i,1 g = ∆ i g. Lemma 2.1 A function F (x 1 , . . . , x n ): IN n 0 → [0, 1] is the survival function of a IN n 0 -valued random vector (X 1 , . . . , X n ) if and only if F (0, . . . , 0) = 1, F (x 1 , . . . , x n ) = 0 if x i = ∞ for at least one i, and (-1) j ∆ i 1 . . . ∆ i j F (x i 1 , . . . , x i j ) ≥ 0, j = 1, . . . , n.
(2.1)

Proof. Applying ∆ i,h i , with h i ≥ 1, to F (x i ) gives -∆ i,h i F (x i ) = P (X i ≥ x i ) -P (X i ≥ x i + h i ) = P (x i ≤ X i < x i + h i ).
More generally, for 1 ≤ j ≤ n and h i 1 , . . . , h i j ≥ 1,

(-1) j ∆ i 1 ,h i 1 . . . ∆ i j ,h i j F (x i 1 , . . . , x i j ) = P (x i k ≤ X i k < x i k + h i k , k = 1, . . . , j), (2.2)
which is obviously nonnegative, hence (2.1) by taking h i 1 = . . . = h i j = 1. Conversely, it is immediate that a function F well normalized and fulfilling the condition (2.1) may be considered as the survival function of a random vector (X 1 , . . . , X n ). ⋄

Now, let us go back to the Schur-constant model for which F (x 1 , . . . , x n ) = S(x 1 + . . . + x n ). As for (1.2), put ∆S(x) = S(x + 1) -S(x) with ∆ j its j-th iterated. Evidently,

∆ i F (x i 1 , . . . , x i j ) = ∆S(x i 1 + . . . + x i j ),
so that the condition (2.1) becomes (-1) j ∆ j S(x) ≥ 0, j = 1, . . . , n.

(2.3)

This yields the following characterization result.

Proposition 2.2 A function S(x): IN 0 → [0, 1] is the Schur-constant survival function of a IN n 0 -valued random vector (X 1 , . . . , X n ) if and only if S(0) = 1, S(∞) = 0 and S is n-monotone on IN 0 .
In other words, S is simply a univariate survival function that is n-monotone on IN 0 .

Let {p(x), x ∈ IN 0 } denote the probability mass function (p.m.f.) associated to S. Since ∆ j S(x) = -∆ j-1 p(x), j ≥ 1, the condition (2.3) is equivalent to (-1) j ∆ j p(x) ≥ 0, j = 0, . . . , n -1.

Proposition 2.3 A function p(x): IN 0 → [0, 1] is the Schur-constant p.m.f. of a IN n 0 -valued random vector (X 1 , . . . , X n ) if and only if the p(x)'s are of sum 1 and p is (n -1)-monotone on IN 0 .
From (1.1) and (2.2), we directly obtain simple formulas for various probablities on subvectors (X 1 , . . . , X j ), 1 ≤ j ≤ n. Some cases of interest are listed below.

Proposition 2.4 For 1 ≤ j ≤ n and (x 1 , . . . , x j ) ∈ IN j 0 , P (x 1 ≤ X 1 < x 1 + h 1 , . . . , x j ≤ X j < x j + h j ) = (-1) j ∆ 1,h 1 . . . ∆ j,h j S(x 1 + . . . + x j ), (2.4) P (X 1 = x 1 , . . . , X j = x j ) = (-1) j ∆ j S(x 1 + . . . + x j ), (2.5) P (X 1 = x 1 , . . . , X j-1 = x j-1 , X j ≥ x j ) = (-1) j-1 ∆ j-1 S(x 1 + . . . + x j ). (2.6)
For the sequel, it is useful to consider the associated partial sums

T j = X 1 + . . . + X j , 1 ≤ j ≤ n.
Proposition 2.5 For 1 ≤ k ≤ j ≤ n and 0 ≤ t j-k+1 ≤ . . . ≤ t j , P (T j-k+1 = t j-k+1 , . . . , T j = t j ) = (-1) j ∆ j S(t j ) t j-k+1 + jk jk .

(2.7)

In particular,

P (T j = t j ) = (-1) j ∆ j S(t j ) t j + j -1 j -1 , (2.8) 
P (T 1 = t 1 , . . . , T j = t j ) = (-1) j ∆ j S(t j ), (2.9)

which also yields

P (T 1 = t 1 , . . . , T j-1 = t j-1 |T j = t j ) = 1/ t j + j -1 j -1 .
(2.10)

Proof. In terms of (T 1 , . . . , T j ), we have

P (T j-k+1 = t j-k+1 , . . . , T j = t j ) = t 1 ≤...≤t j-k : t j-k ≤t j-k+1 P (T 1 = t 1 , . . . , T j-k = t j-k , . . . , T j = t j ).
The sum in the r.h.s. can then be expressed in terms of (X 1 , . . . , X j ) as

x 1 ,...,x j-k : x 1 +...+x j-k+1 =t j-k+1 P (X 1 = x 1 , . . . , X j-k = x j-k , . . . , X j = t jt j-1 ).

By (2.5), the probabilities P (X 1 = x 1 , . . . , X j = t jt j-1 ) are all equal to (-1) j ∆ j S(t j ). Remember that the number of ways to put b indistinguishable balls in n urns is equal to b+n-1 n-1 . Thus, the number of terms in the sum above is obtained by taking b = t j-k+1 and n = jk + 1, which gives

t j-k+1 +j-k j-k
. Formula (2.7) now follows. It gives (2.8) for k = 1 and (2.9) for k = j, with (2.10) as a consequence. ⋄ Formula (2.10) means that given T j = t j , the j -1 previous arrival times are obtained by throwing j -1 balls in t j + 1 urns (which correspond to the instants 0, . . . , t j ). In the continuous case, [T 1 , . . . , T j-1 |T j = t j ] is distributed as the order statistics of a sample of j -1 independent (0, t j )uniform random variables (e.g. Theorem 2.1 of [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF]).

Representations of Schur-constancy

Our purpose in this Section is to provide general representations that are valid for any discrete Schurconstant model. Put a b = 0 when a < b. Proposition 3.1 For 1 ≤ j ≤ n and x 1 , . . . , x j , z ≥ 0 with x 1 + . . .

+ x j ≤ z, P (X 1 ≥ x 1 , . . . , X j ≥ x j |T n = z) = z -(x 1 + . . . + x j ) + n -1 n -1 / z + n -1 n -1 , (3.1) so that for 1 ≤ j ≤ n -1, P (X 1 = x 1 , . . . , X j = x j |T n = z) = z -(x 1 + . . . + x j ) + n -j -1 n -j -1 / z + n -1 n -1 . (3.2)
Thus, the function S can be represented as

S(x 1 + . . . + x n ) = E Z -(x 1 + . . . + x n ) + n -1 n -1 / Z + n -1 n -1 , (3.3)
where the variable Z is distributed as T n , i.e. with a p.m.f. given by (2.8) where j = n.

Proof. By definition and from (2.8),

P (X 1 ≥ x 1 , . . . , X j ≥ x j |T n = z) = P (X 1 ≥ x 1 , . . . , X j ≥ x j , T n = z) (-1) n ∆ n S(z) z+n-1 n-1
.

The numerator can be expressed as y 1 ,...,yn: y 1 ≥x 1 ,...,y j ≥x j and y 1 +...+yn=z

P (X 1 = y 1 , . . . , X j = y j , . . . , X n = y n ),
in which, by (2.5), the probabilities are all equal to (-1) n ∆ n S(x). One easily sees that the number of ways to put b indistinguishable balls in n urns with at least x 1 balls in urn 1, . . ., x j balls in urn j, is equal to b-(x 1 +...+x j )+n-1 n-1

. This leads to formula (3.1). To get (3.2), it suffices to apply (2.5) and the fact that

∆ z -x + n -1 n -1 = - z -x + n -2 n -2 ,
where ∆ operates on x. Finally, (3.1) where j = n gives (3.3). ⋄

This result is the discrete analogue of a representation obtained for the continuous model (see Proposition 2.3 in [START_REF] Caramellino | Dependence and aging properties of lifetimes with Schurconstant survival function[END_REF] and Theorem 2.1 in [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF].

A different but equivalent characterization of Schur-constancy is derived below.

Proposition 3.2 The model (X 1 , . . . , X n ) is Schur-constant if its joint distribution is of doubly mixed multinomial form, namely (X 1 , . . . , X n ) = d MM (Z; U 1 , . . . , U n ).

(3.4)

Here, Z represents the random number of experiments and is distributed as T n , while (U 1 , . . . , U n ) represents the vector of randomized cell probabilities, independent of T n and with a joint survival function that is (continuous) Schur-constant and defined by

P (U 1 ≥ u 1 , . . . , U n ≥ u n ) = [1 -(u 1 + . . . + u n )] n-1 + , u 1 , . . . , u n ∈ (0, 1). (3.5)
Proof. We are going to show that under (3.4) and (3.5), the p.m.f. of (X 1 , . . . , X j ) conditionally on Z is given by (3.2), for 1 ≤ j ≤ n -1. Indeed, we have, for all x 1 , . . . , x j ≥ 0 with x 1 + . . .

+ x j ≤ z, P (X 1 = x 1 , . . . , X j = x j |Z = z) = z! x 1 ! . . . x j !(z -x 1 . . . -x j )! (n -1) . . . (n -j) u 1 ,...,u j ≥0 and u 1 +...+u j ≤1 u x 1 1 . . . u x j j (1 -u 1 -. . . -u j ) z-x 1 -...-x j +n-j-1 du 1 . . . du j . (3.6)
Now, consider an integral of the form

0≤u 1 ,...,u k-1 ≤1 and u k =1-u 1 -...-u k-1 u α 1 -1 1 . . . u α k -1 k du 1 . . . du k-1 ,
for reals α 1 , . . . , α k > 0. That integral is the multinomial Beta function and is equal to

Γ(α 1 ) . . . Γ(α k )/Γ(α 1 + . . . + α k ).
This is a known identity, which is also easily proved by induction. Going back to the integral in (3.6), we see that it corresponds to the particular case where k = j + 1, α 1 = x 1 + 1, . . . , α j = x j + 1 and α j+1 = zx 1 -. . .x j + nj. Thus, we can write that u 1 ,...,u j ≥0 and u 1 +...+u j ≤1 u x 1 1 . . . u

x j j (1 -u 1 -. . . -u j ) z-x 1 -...-x j +n-j-1 du 1 . . . du j = x 1 ! . . . x j !(z -x 1 -. . . -x j + n -j -1)! (z + n -1)! . (3.7)
Substituting (3.7) in (3.6) then yields

P (X 1 = x 1 , . . . , X j = x j |Z = z) = z! (n -1) . . . (n -j) (z -x 1 -. . . -x j + n -j -1)! (z -x 1 -. . . -x j )! (z + n -1)! ,
and after multiplication by (nj -1)!/(nj -1)! (= 1),

P (X 1 = x 1 , . . . , X j = x j |Z = z) = z -(x 1 + . . . + x j ) + n -j -1 n -j -1 / z + n -1 n -1 ,
i.e. the desired formula (3.2). ⋄

In the continuous case, the vector (X 1 /Z, . . . , X n /Z) is independent of Z and is Schur-constant with survival function (1x) n-1 + . Note that in the discrete case, (X 1 /Z, . . . , X n /Z) is not independent of Z since the X i 's are valued in {0, . . . , Z}.

The geometric special model

Firstly, we show below that the no-aging property of Schur-constant models is a generalization of the lack of memory property for geometric random variables.

Proposition 4.1 Let (X 1 , . . . , X n ) be a Schur-constant random vector. Then, the components X i , 1 ≤ i ≤ n, are independent if and only if they are geometrically distributed.

Proof. If the X i 's are independent, (1.1) implies that

S(x 1 + . . . + x n ) = S(x 1 ) . . . S(x n ), for all (x 1 , . . . , x n ) ∈ IN n 0 .
Since S is non-increasing with S(0) = 1, we then obtain by induction that S(x) = q x , x ∈ IN 0 , for some 0 < q ≤ 1. The converse is obvious. ⋄ Now, let us consider an infinite discrete Schur-constant model, i.e. (1.1) holds for all n ≥ 2. Since the sequence {X i , i ≥ 1} is exchangeable, de Finetti theorem asserts that the X i 's are conditionally i.i.d. given the σ-algebra G of permutable events (e.g. [START_REF] Chow | Probability Theory[END_REF], section 7.3). The Schur-constant property allows us to make quite explicit the mixture structure involved.

Proposition 4.2 An infinite sequence of random variables {X i , i ≥ 1} with finite mean is Schurconstant if and only if the X i 's are a mixture of geometrics, namely

P (X 1 ≥ x 1 , . . . , X j ≥ x j ) = E Θ Θ + 1 x 1 +...+x j , j ≥ 1, (4.1) where Θ = lim n→∞ T n /n a.s. (4.2)
Proof. The sufficiency is immediate and omitted. Now, from (3.1), we can write that

P (X 1 ≥ x 1 , . . . , X j ≥ x j ) = E T n -(x 1 + . . . + x j ) + n -1 n -1 / T n + n -1 n -1 = E (T n -(x 1 + . . . + x j ) + n -1) . . . (T n -(x 1 + . . . + x j ) + 1) (T n + n -1) . . . (T n + 1) = E n-1 k=1 1 - x 1 + . . . + x j T n + k , 1 ≤ j ≤ n. (4.3)
The SLLN for an exchangeable sequence {X i , i ≥ 1} with finite mean asserts that T n /n converges a.s. to a random variable Θ which is distributed as E(X 1 |G) [START_REF] Chow | Probability Theory[END_REF], section 9.2). So, this implies (4.2) above. Moreover, for n sufficiently large, (4.3) yields

P (X 1 ≥ x 1 , . . . , X j ≥ x j ) ≈ E n-1 k=1 1 - x 1 + . . . + x j nΘ + k = E exp n-1 k=1 ln 1 - x 1 + . . . + x j nΘ + k = E exp - n-1 k=1 x 1 + . . . + x j nΘ + k + o(1) . (4.4) Since b l=a 1 l = ln(b/a) + o(1) as a, b → ∞,
the approximation (4.4) becomes

P (X 1 ≥ x 1 , . . . , X j ≥ x j ) ≈ E exp -(x 1 + . . . + x j ) ln nΘ + n -1 nΘ + o(1) .
The announced formula (4.1) follows by letting n → ∞. ⋄

We notice that for the continuous case, results similar to Propositions 4.1 and 4.2 hold with respect to the exponential distribution (see Theorem 1 in [START_REF] Nelsen | Some properties of Schur-constant survival models and their copulas[END_REF] and Corollary 2.3 in [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF]).

Monotone survival functions

In this Section, we present some parametric survival functions S that are monotone of various degrees. Before this, we come back shortly on two general characterizations for such functions.

Representations

By Proposition 2.1, the function S in a Schur-constant model is a n-monotone survival function. Recently, [START_REF] Lefèvre | On multiply monotone distributions, discrete or continuous, with applications[END_REF] proved that such a function admits a general representation (see Proposition 2.5 with t = n -1 and formula (2.10) for i = 0 in that paper). Specifically, there exists a random variable Z valued in IN 0 for which S can be expressed as

S(x) = E Z -x + n -1 n -1 / Z + n -1 n -1 , x ∈ IN 0 , (5.1)
and the p.m.f. of Z is univoquely determined from S by

P (Z = z) = (-1) n ∆ n S(z) z + n -1 n -1 . (5.2)
This result provides us with another method to derive the representation (3.3) for a Schur-constant model. Indeed, comparing (2.8) and (5.2), we see that Z has the same distribution as T n . Furthermore, inserting (5.1) in (1.1) then yields the formula (3.3).

A different representation for such a function S is also given by Lefèvre and Loisel (2013) (see their formulas (2.13) and (2.16)). More precisely, S corresponds to the survival function of a random variable X whose distribution is of doubly mixed binomial form, namely

X = d MB(Z, 1 -U 1/(n-1) ), (5.3)
where Z is the random number of experiments and 1 -U 1/(n-1) is the random parameter, U being a (0, 1)-uniform random variable independent of Z.

We note that, as expected, the formula (5.3) is in fact a consequence of the representation (3.4), (3.5) for Schur-constant models.

Bernoulli model

Let X be a Bernoulli random variable with parameter p. Its survival function is

S(0) = 1, S(1) = p and S(x) = 0, x ≥ 2. Proposition 5.1 S(x) is n-monotone iff p ≤ 1/n.
Proof. It suffices to observe that for all j ≥ 0, ∆ j S(0) = (-1) j (-jp + 1), ∆ j S(1) = (-1) j p, with ∆ j S(x) = 0 for x ≥ 2, hence the assertion for n-monotonicity. ⋄

Note that if 1/(n + 1) < p ≤ 1/n, S is n-monotone but not (n + 1)-monotone. From (5.2), we see that the corresponding variable Z has a Bernoulli distribution with parameter np.

For illustration, consider n successive time intervals of unitary length. Denote by X i the indicator of the claim occurence in interval i, 1 ≤ i ≤ n. The model (1.1) with X binomial describes a situation where the n claim indicators are exchangeable and of probability p, and at most one claim can arise during the whole period (0, n). This could arise, for example, in reliability with one-shot device testing and in life insurance with monthly death risk estimation on the basis of yearly reports.

Stop-loss model

Let X be a random variable with a survival function of stop-loss type defined by

S(x) = (k -x) t + /k t , x ∈ IN 0 , (5.4)
where k and t are positive integers.

To begin with, we point out that the function S can be expanded as a mean of combinatorial terms. The proof is given in the Appendix.

Lemma 5.2 (k -x) t + t! = t-1 i=0 α i (t) k -x + i t , (5.5)
where {α i (t), 0 ≤ i ≤ t -1} is a symmetric p.m.f. which is computed recursively by

α i (t) = α i-1 (t -1) t -i t + α i (t -1) i + 1 t , t = 2, 3, . . . , (5.6) 
with α 0 (1) = 1 and α -1 (t -1) = 0.

We are now ready to establish the monotonicity property satisfied by S.

Proposition 5.3 S(x) is (t + 1)-monotone,
and the p.m.f. of the corresponding variable Z is

P (Z = z) = α z+t-k (t) z + t t t! k t , max(0, k -t) ≤ z ≤ k -1. (5.7) Proof. Note that ∆ a-x t = -a-x-1 t-1 for t ≥ 1, while ∆ a-x 0 = -I(x = a)
where I is the indicator function. From (5.5), we thus get

∆ j (k -x) t + = t! (-1) j t-1 i=0 α i (t) k -x + i -j t -j , 0 ≤ j ≤ t,
and for j = t + 1,

∆ t+1 (k -x) t + = t! (-1) t+1 t-1 i=0 α i (t) I(x = k + i -t) = t! (-1) t+1 α x+t-k (t) I[max(0, k -t) ≤ x ≤ k -1].
(5.8)

From (5.4), we then deduce that (-1) j ∆ j S(x) ≥ 0 for 0 ≤ j ≤ t + 1, i.e. S(x) is (t+1)-monotone. Now, from (5.2) with n = t + 1, we have

P (Z = z) = (-1) t+1 [∆ t+1 (k -z) t + ] 1 k t z + t t .
Using the formula (5.8) we then deduce the announced result (5.7). ⋄

Note that the function S is not (t + 2)-monotone since by (5.8),

(-1) t+2 ∆ t+2 S(x) = -t! t-1 i=0 α i (t) ∆δ x,k+i-t ,
which is not always nonnegative. For instance, it reduces to -t!α 0 (t) < 0 when x = k -1t.

Tables 1 and2 below give the p.m.f. of Z for the first values of t when k = 3 or 10. 

Simple models

Many parametric models are possible for a discrete survival function. In general, however, it is not easy to check the degree of monotonicity verified by S. Some examples are briefly reported below.

Power-type model. Let X be a random variable with survival function

S(x) = [1 -(x/k) t ] + , x ∈ IN 0 ,
where k is a positive integer and t a positive real.

Proposition 5.4 S(x) is 2-monotone iff t ≤ 1.
Proof. We see that

∆ 2 S(x) = [-(x + 2) t + 2(x + 1) t -x t ]/k t , 0 ≤ x ≤ k -2, ∆ 2 S(k -1) = 1 -(k -1) t /k t , with ∆ 2 S(x) = 0 for x ≥ k. So, when x ≥ k -1, ∆ 2 S(x) ≥ 0 for all t. When 0 ≤ x ≤ k -2, this condition means (x + 1) t ≥ [(x + 2) t + x t ]/2, which is true iff t ≤ 1. The result follows. ⋄
In that case, S is not 3-monotone since if t = 1 for instance, ∆ 3 S(k -2) = 1/k > 0.

Gompertz model. Let X be a random variable with survival function

S(x) = exp[θ(1 -e x )], x ∈ IN 0 ,
where θ is a positive real. First, we define a sequence of reals {θ j , j = 2, 3, . . .} by

θ j = max θ > 0 : f j (θ) ≡ j k=0 j k (-1) k exp(-θe k ) = 0 .
(5.9)

Using Mathematica 8.0 for instance, it can be seen that f j (θ) > 0 when θ > θ j , and θ j+1 > θ j for all j = 2, 3, . . . Thus, f 1 (θ), . . . , f n (θ) > 0 iff θ > θ n . More details are given in the Appendix.

Proposition 5.5 S(x) is n-monotone iff θ ≥ θ n .
Proof. We have, for j ≥ 0,

(-1) j ∆ j S(x) = j k=0 j k (-1) k S(x + k) = j k=0 j k (-1) k exp[θ(1 -e x+k )].
For j = 1, this is positive. Thus, the n-monotonicity condition requires that

f j,x (θ) ≡ j k=0 j k (-1) k exp(-θe x+h ) ≥ 0, 2 ≤ j ≤ n.
(5.10) When x = 0, f j,0 (θ) = f j (θ) defined in (5.9), so that (5.10) is fulfilled iff θ ≥ θ n . For x > 0, when θ > θ n , then θe x > θ n and thus (5.10) is again satisfied. ⋄ Note that S(x) is not (n+1)-monotone when θ n ≤ θ < θ n+1 .

Other cases. We present a few parametric models that are easily seen to be at least 2-monotone. In fact, it seems that they are ∞-monotone, although we have not been able to prove it so far.

Logarithmic model (of parameter θ ∈ (0, 1)):

S(x) = -θ x+1 /(x + 1)ln(1 -θ), x ∈ IN 0 .
Bendford model (of parameter b integer ≥ 3):

S(x) = ln((x + 2)/(x + 1))/ln(b), 0 ≤ x ≤ b -2, and S(x) = 0, x > b -2. Pareto model (of parameter ρ > 0): putting ζ(s) = ∞ k=1 k -s , S(x) = 1/(1 + x) 1+ρ ζ(1 + ρ), x ∈ IN 0 .

Correlation measures

Various dependence properties and association measures, as well as their links with aging properties, are widely discussed for the continuous Schur-constant model, especially in the bivariate case. The reader is referred e.g. to [START_REF] Nair | Characterizations and time-dependent association measures for bivariate Schur-constant distributions[END_REF] and the references therein. Much of these studies can be adapted to the present discrete model. For brevity reasons, here we focus mainly on the study of the Pearson linear correlation coefficient.

By exchangeability, all the X i 's have the same mean and variance, µ and σ 2 say (assumed to exist), and the same Pearson correlation coefficient ρ. As Schur-constancy is expressed in terms of the survival function S of X 1 , one expects that ρ is related to some parameters of X 1 alone. We will see that ρ is indeed function of µ and σ 2 . Let us begin by showing how to calculate these two parameters. We can use either the p.m.f. of X 1 (i.e. (2.5) with j = 1), or the characterization (3.4), (3.5) where the mean and variance of Z are denoted by µ Z and σ 2 Z .

Proposition 6.1 In terms of S, µ = ∞ x=0 S(x + 1), (6.1)

σ 2 = 2 ∞ x=0 xS(x + 1) -µ 2 + µ, (6.2)
and in terms of µ Z and σ 2 Z , µ = µ Z /n, (6.3)

σ 2 = 2σ 2 Z /n(n + 1) + µ 2 Z (n -1)/n 2 (n + 1) + µ Z (n -1)/n(n + 1). (6.4)
Proof. The k-th descending factorial moment of X 1 , k ≥ 1, is given by

E(X 1,[k] ) = ∞ x=0 x [k] [S(x) -S(x + 1)] = ∞ x=0 (x + 1) [k] S(x + 1) - ∞ x=0 x [k] S(x + 1) = k ∞ x=0
x [k-1] S(x + 1). (6.5)

Taking k = 1 and 2 in (6.5) then yields the first two formulas (6.1) and (6.2). Let us derive the following two formulas. By (3.4), (3.5) (or (5.3)), we know that

X 1 = d MB(Z, U 1 ) where U 1 is independent of Z and P (U 1 ≥ u 1 ) = (1 -u 1 ) n-1 + . Since E(U 1 ) = 1/n, µ = E(Z)E(U 1 ) = µ Z /n,
as stated in (6.3). Now, applying a standard conditional argument, we get (in obvious notation)

σ 2 = var{E[B(Z, U 1 )|Z, U 1 ]} + E{var[B(Z, U 1 )|Z, U 1 ]} = var(ZU 1 ) + E[ZU 1 (1 -U 1 )] = var[E(ZU 1 |Z)] + E[var(ZU 1 |Z)] + E[ZU 1 (1 -U 1 )] = var[ZE(U 1 )] + E[Z 2 var(U 1 )] + E[ZU 1 (1 -U 1 )] = [E(U 1 )] 2 σ 2 Z + var(U 1 )E(Z 2 ) + E(Z)E[U 1 (1 -U 1 )]. (6.6)
It is directly checked that E(U 2 1 ) = 2/n(n + 1), so that var(U 1 ) = (n -1)/n 2 (n + 1),

E[U 1 (1 -U 1 )] = (n -1)/n(n + 1).
Substituting this in (6.6) leads to

σ 2 = σ 2 Z /n 2 + E(Z 2 )(n -1)/n 2 (n + 1) + E(Z)(n -1)/n(n + 1).
Finally, writing 1/n 2 = 2/n(n + 1) -(n -1)/n 2 (n + 1), we obtain the formula (6.4). ⋄

We are in a position to provide the expression of ρ.

Proposition 6.2 In terms of µ and σ 2 ,

ρ = (σ 2 -µ 2 -µ)/2σ 2 , (6.7)
and in terms of µ Z and σ 2 Z ,

ρ = nσ 2 Z -µ 2 Z -nµ Z 2nσ 2 Z + (n -1)µ 2 Z + n(n -1)µ Z . (6.8)
Proof. By (2.5), we have

E(X 1 X 2 ) = ∞ x 1 =0 ∞ x 2 =0 x 1 x 2 P (X 1 = x 1 , X 2 = x 2 ) = ∞ x 1 =0 x 1 [ ∞ x 2 =0 x 2 ∆ 2 S(x 1 + x 2 )].
The sum [. . .] above is easily checked to reduce to S(x 1 + 1). Therefore,

E(X 1 X 2 ) = ∞ x 1 =0 x 1 S(x 1 + 1) = E(X 1,[2] )/2,
by virtue of (6.5). We then deduce that ρ is given by formula (6.7). Let us now establish (6.8). Of course, we could evaluate cov(X 1 , X 2 ) by arguing as above for σ 2 . A simpler method, however, consists in using (6.7) where (6.3) is substituted for µ and (6.4) for σ 2 . After an elementary calculation, we then obtain the desired formula. ⋄ From (6.7) or (6.8), we see that ρ can be positive or not. This is not surprising in view of the representation (6.3): the common factor of Z tends to generate positive correlation while the negative dependence between U 1 and U 2 tends to generate negative correlation. In fact, ρ > 0 if σ 2 > µ 2 + µ or nσ 2 Z > µ 2 Z + nµ Z ; roughly, when σ 2 (σ 2 Z ) is large enough with respect to µ (µ Z ). We also notice that, as expected, ρ is an increasing function of σ 2 Z (and σ 2 ) when n and µ Z are kept fixed. Moreover, it is clear that -1 ≤ ρ < 1/2.

Let us recall that in the continuous case, ρ can be expressed by the following two formulas:

ρ = (κ 2 -1)/2κ 2 ,
where κ = σ/µ is the variation coefficient of X (Nelsen ( 2005)) and, when n = 2,

ρ = (2κ 2 Z -1)/(4κ 2 Z + 1),
where κ Z = σ Z /µ Z is the variation coefficient of Z [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF]). Here too, -1 ≤ ρ < 1/2. We observe, however, that in the discrete case, ρ is a function of the mean and variance of X or Z, and not only of their variation coefficient.

An alternative measure of association between two random variables is provided by the Kendall τ coefficient. The variant named τ b is an adjustment of τ to deal with discrete random variables (e.g. [START_REF] Agresti | Categorical Data Analysis[END_REF]; see also [START_REF] Neslehová | On rank correlation measures for non-continuous random variables[END_REF]). Its population version is defined as follows: let (X 1 , X 2 ) and (Y 1 , Y 2 ) be two i.i.d. random vectors with the same marginals, then

τ b = P [(X 1 -Y 1 )(X 2 -Y 2 ) > 0] -P [(X 1 -Y 1 )(X 2 -Y 2 ) < 0] P (X 1 = Y 1 )P (X 2 = Y 2 ) . (6.9)
For a Schur-constant model, τ b can be expressed by the formula (6.10) below.

Proposition 6.3 In terms of S, τ b = 4 ∞ k=0 (k + 1)S(k + 2)∆ 2 S(k) + 2 ∞ k=0 [∆S(k)] 2 -∞ k=0 (k + 1)[∆ 2 S(k)] 2 -1 1 -∞ k=0 [∆S(k)] 2
. (6.10)

Proof. First, we note that

P [(X 1 -Y 1 )(X 2 -Y 2 ) < 0] = 1 -P [(X 1 -Y 1 )(X 2 -Y 2 ) > 0] -P (X 1 = Y 1 or X 2 = Y 2 ),
so that (6.9) can be rewritten as

τ b = 2P [(X 1 -Y 1 )(X 2 -Y 2 ) > 0] + P (X 1 = Y 1 or X 2 = Y 2 ) -1 P (X 1 = Y 1 )P (X 2 = Y 2 ) . (6.11) As (Y 1 , Y 2 ) is an independent copy of (X 1 , X 2 ), P [(X 1 -Y 1 )(X 2 -Y 2 ) > 0] = 2 ∞ y 1 =0 ∞ y 2 =0 P (X 1 ≥ y 1 + 1, X 2 ≥ y 2 + 1)P (Y 1 = y 1 , Y 2 = y 2 ).
For a Schur-constant model, we then get from (1.1) and (2.5) (6.12) after putting k = x 1 + x 2 . In a similar way, we obtain (6.13) and

P [(X 1 -Y 1 )(X 2 -Y 2 ) > 0] = 2 ∞ y 1 =0 ∞ y 2 =0 S(y 1 + y 2 + 2)∆ 2 S(y 1 + y 2 ) = 2 ∞ k=0 (k + 1)S(k + 2)∆ 2 S(k),
P (X 1 = Y 1 ) = 1 -P (X 1 = X 2 ) = 1 - ∞ k=0 [∆S(k)] 2 ,
P (X 1 = Y 1 or X 2 = Y 2 ) = 2P (X 1 = Y 1 ) -P (X 1 = Y 1 , X 2 = Y 2 ) = 2 ∞ k=0 [∆S(k)] 2 - ∞ y 1 =0 ∞ y 2 =0 [∆ 2 S(y 1 + y 2 )] 2 = 2 ∞ k=0 [∆S(k)] 2 - ∞ k=0 (k + 1)[∆ 2 S(k)] 2 . (6.14)
Inserting (6.12), (6.13), (6.14) in (6.11) then yields (6.10). ⋄

Let us examine the Schur-constant models, of dimension n, generated by the functions S of Section 5. First, for the Bernoulli case, (6.7) yields ρ = -p/(1p), regardless of n. From (6.9) and using (2.5), we also see that τ b = ρ. Now, for the stop-loss case, we have computed ρ from (6.7) and τ b from (6.10) for several values of t and k. By Propositin 5.3, the Schur-constant model is here of dimension n = t + 1. Table 3 shows that the values of the two parameters are negative and increase with t (or n). We note that when t = 1, S reduces to the survival function of a uniform on (0, 1); it is then easily checked that X 2 = d k -X 1 , which explains the value -1 obtained for both coefficients.

Table 3: Coefficients ρ and τ b when S is of stop-loss form. We have also considered the other functions S for generating bivariate Schur-contant models (i.e. with n = 2). As seen before, S is 2-monotone in the power-type case when t ≤ 1, in the Gompertz case when θ ≥ θ 2 = 0.340983 and in the logarithmic, Bendford and Pareto cases for any parameter value. Figure 1 gives ρ and τ b in these different situations. We observe that the dependence can be positive or negative, and that the two parameters are often very close. 7 Schur-constant interarrival models

t \ k 2 3 4 5 6 7 1 ρ -1 -1 -1 -1 -1 -1 τ b -1 -1 -1 -1 -1 -1 2 ρ -0.
In this Section, we are going to discuss three processes in insurance theory for which the claim interarrival periods form a Schur-constant model: a claim counting process, a random payment process and an insurance risk process, respectively.

Claim counting process

Let us introduce an associated counting process defined by

N (t) = n i=1 I(T i ≤ t), t ∈ IN 0 ,
where, as before, T i = X 1 + . . . + X i and {X 1 , . . . , X n } is a Schur-constant model.

In an insurance context, suppose that a maximum number of n claims can arise in a portfolio. Let T i denote the claim arrival time of the i-th claim. Then, N (t) represents the total number of claims that occur until time t.

Proposition 7.1 For t ≥ 0,

P [N (t) = k] = (-1) k ∆ k S(t + 1) t + k k , 0 ≤ k ≤ n -1, (7.1) and P [N (t) = n] = P (T n ≤ t) is obtained from (2.8). For 0 ≤ t 1 ≤ . . . ≤ t k ≤ t, P [T 1 = t 1 , . . . , T k = t k |N (t) = k] = 1/ t + k k , 1 ≤ k ≤ n -1. (7.2) Proof. Clearly, P [N (t) = 0] = P (X 1 > t) = S(t + 1). For 1 ≤ k ≤ n -1, P [N (t) = k|T 1 = t 1 , . . T k = t k ] = P (T k+1 ≥ t + 1|T 1 = t 1 , . . . , T k = t k ) = P (X k+1 ≥ t + 1 -t k |X 1 = t 1 , . . . , X k = t k -t k-1 ) = ∆ k S(t + 1)/∆ k S(t k ), (7.3) 
by virtue of (2.5) and (2.6). Using (2.9), we then get

P [N (t) = k] = t 1 ≤...≤t k ≤t P [N (t) = k|T 1 = t 1 , . . . , T k = t k ] P (T 1 = t 1 , . . . , T k = t k ) = t 1 ≤...≤t k ≤t [∆ k S(t + 1)/∆ k S(t k )] (-1) k ∆ k S(t k ) = (-1) k ∆ k S(t + 1) A k ,
where A k counts the cases satisfying t 1 ≤ . . . ≤ t k ≤ t. Since A k is equal to t+k k , (7.1) follows. Applying Bayes' rule yields

P [T 1 = t 1 , . . . , T k = t k |N (t) = k] = P [N (t) = k|T 1 = t 1 , . . . , T k = t k ] P (T 1 = t 1 , . . . , T k = t k ) P [N (t) = k] = [∆ k S(t + 1)/∆ k S(t k )] (-1) k ∆ k S(t k ) (-1) k ∆ k S(t + 1) t+k k ,
thanks to (2.9), (7.1) and ( 7.3), so that formula (7.2) follows. ⋄ Formula (7.2) means that given N (t) = k with k (≤ n -1), the arrival times of these k events are obtained by throwing k indistinguishable balls in t + 1 urns (the instants 0, . . . , t). Note that when k = n, the probability in (7.3) is equal to 1 by definition; this case differs from the others, of course.

For the continuous model, formulas of this type are derived by [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF] in Lemma 7.1 and Theorem 2.4. In particular, [T 1 , . . . , T k |N (t) = k], 1 ≤ k ≤ n -1, is then distributed as the order statistics of a sample of k independent (0, t)-uniform random variables.

Proposition 7.2 In an infinite discrete Schur-constant model, N (t) has a mixed negative binomial distribution, namely

N (t) = d MN B[t + 1, 1/(Θ + 1)], (7.4)
where Θ is defined in (4.2).

Proof. By (4.1), S(x) = E[(Θ/(Θ + 1)) x ] for an infinite Schur-constant model. Substituting this in (7.1) and since ∆q x = -(1q)q x , we then get

P [N (t) = k] = t + k k E 1 Θ + 1 k Θ Θ + 1 t+1 , k ≥ 0.
In other words, N (t) has the mixed distribution stated in (7.4). ⋄

Random payment process

Much research is devoted to the evaluation present value of random payments at random times (e.g. [START_REF] Léveillé | Moments of compound renewal sums with discounted claims[END_REF], [START_REF] Chi | Decomposition of a Schur-constant model and its applications[END_REF], [START_REF] Garrido | Moment generating function of compound renewal sums with discounted claims[END_REF], [START_REF] Woo | A note on discounted compound renewal sums under dependency[END_REF]).

We here consider a compound Schur-constant sum of discounted claims expressed as

R(t) = N (t) i=1 C i T i j=1 v j = n i=1 I(T i ≤ t) C i T i j=1 v j , t ∈ IN 0 ,
where T i represents the i-th payment time, C i is the claim amount at that time and v j (∈ (0, 1]) is a deterministic discount factor for the period (j -1, j); of course, 0 j=1 ≡ 1. Here too, T i = X 1 +. . .+X i where {X 1 , . . . , X n } is a discrete Schur-constant model. The C i 's are assumed to be i.i.d. positive random variables, independent of the T j 's.

Our purpose is to determine the Laplace transform of R(t), i.e. L R(t) (λ) = E{exp[-λR(t)]} with λ > 0. Let L C (λ) be the Laplace transform of C i .

Proposition 7.3 L R(t) (λ) = S(t + 1) + n-1 k=1 (-1) k ∆ k S(t + 1) 0≤t 1 ≤...≤t k ≤t k i=1 L c (λ t i j=1 v j ) + (-1) n ∆ n S(0) [L C (λ)] n + t tn=1 (-1) n ∆ n S(t n ) L c (λ tn j=1 v j ) 0≤t 1 ≤...≤t n-1 ≤tn n-1 i=1 L c (λ t i j=1 v j ). (7.5) Proof. Evidently, L R(t) (λ) = n k=0 E[e -λR(t) I(N (t) = k)] = P [N (t) = 0] + n-1 k=1 P [N (t) = k] E[e -λR(t) |N (t) = k] + E[e -λR(t) I(N (t) = n)]. (7.6)
For the terms with 1 ≤ k ≤ n -1 in the second sum of (7.6), we obtain, using (7.2),

E[e -λR(t) |N (t) = k] = E[e -λ k i=1 C i T i j=1 v j |N (t) = k] = 1 t+k k 0≤t 1 ≤...≤t k ≤t E(e -λ k i=1 C i t i j=1 v j ) = 1 t+k k 0≤t 1 ≤...≤t k ≤t k i=1 L c (λ t i j=1 v j ), (7.7)
since the C i 's are i.i.d. random variables.

For the last term in (7.6) where k = n, we have, since [

N (t) = n] means (T n ≤ t), E[e -λR(t) I(N (t) = n)] = P (T n = 0) E(e -λ n i=1 C i ) + t tn=1 P (T n = t n ) E(e -λ n i=1 C i T i j=1 v j |T n = t n ). (7.8)
Using (2.10) with j = n, we express the conditional expectation E(. . .) in (7.8) as

E(. . .) = E(e -λCn tn j=1 v j ) E(e -λ n-1 i=1 C i T i j=1 v j |T n = t n ) = E(e -λCn tn j=1 v j ) 1 tn+n-1 n-1 0≤t 1 ≤...≤t n-1 ≤tn E(e -λ n-1 i=1 C i t i j=1 v j ) = 1 tn+n-1 n-1 L c (λ tn j=1 v j ) 0≤t 1 ≤...≤t n-1 ≤tn n-1 i=1 L c (λ t i j=1 v j ).
(7.9)

It remains to insert (7.7), (7.8) and (7.9) in (7.6) and then to use (7.1) for the p.m.f. of N (t) and (2.8) with j = n for the p.m.f. of T n . ⋄ Example. Suppose that the claim amounts C i are exponentially distributed with parameter 1. Since L C (λ) = 1/(1 + λ), formula (7.5) gives

L R(t) (λ) = S(t + 1) + n-1 k=1 (-1) k ∆ k S(t + 1) V (k, t) + (-1) n ∆ n S(0) 1 1 + λ n + t tn=1 (-1) n ∆ n S(t n ) V (t n ) V (n -1, t n ), where V (t i ) = 1/(1 + λ t i j=1 v j ), 1 ≤ i ≤ n, V (k, τ ) = 0≤t 1 ≤...≤t k ≤τ k i=1 V (t i ), 1 ≤ k ≤ n -1, τ ∈ IN 0 .
The claim interarrival periods (X 1 , . . . , X n ) form a Schur-constant model. For illustration, we first consider the Bernoulli case of Section 5. Then, t i = 0 or 1 for all i, which greatly simplifies the calculations. So, we easily obtain the following formula: for t = 0,

L R(0) (λ) = p + p λ 1 - 1 (1 + λ) n-1 + 1 -np (1 + λ) n , and for t = 1 (or t ≥ 1), L R(t) (λ) = 1 -np (1 + λ) n + p (1 + λ) n-1 λ (1 -v 1 ) ( 1 + λ 1 + λv 1 ) n -1 .
Table 4 gives P [R(t) = 0] and several quantiles R α (t) for different values of n when p = 0.08 and v 1 = 0.95. Note that, as expected, the quantiles increase with n and t. 2 shows the distribution function of R(t) when v j = 0.95 for all j. 

Insurance risk process

A large number of works are devoted to the evaluation of the ruin probability for an insurance over a finite or infinite horizon (see e.g. the books by [START_REF] Seal | Survival Probabilities, the Goal of Risk Theory[END_REF], [START_REF] Dickson | Insurance Risk and Ruin[END_REF], Asmussen and Albrecher Combining (7.11), (7.12), (7.13), (7.14) and using (5.1), (2.8), we then deduce formula (7.10). ⋄

To apply (7.10), it remains to evaluate probabilities of the form P [A 1 ≤ h(t 1 ), . . . , A k ≤ h(t k )]. Clearly, this can be cumbersome in practice, as for the traditional models.

Example. Suppose that the claim amounts C i are exponentially distributed with parameter 1. Then, each A k has an Erlang(k, 1) distribution, i.e.

P (A k ≤ x) = 1 - k-1 j=0 1 j! e -x x j , x > 0. (7.15)
For the claim interarrival periods, consider again a Schur-constant model (X 1 , . . . , X n ) with S of Bernoulli type. From (7.10), we then obtain the following formula: for t = 0,

φ(0) = p + p n-1 k=1 P [A k ≤ h(0)] + (1 -np)P [A n ≤ h(0)],
and for t = 1 (or t ≥ 1),

φ(t) = (1 -np)P [A n ≤ h(0)] + pP [A n ≤ h(1)] + p n-1 k=1 P [A n-k ≤ h(0), A n ≤ h(1)],
in which we get, after some calculations and using (7.15),

P [A n-k ≤ h(0), A n ≤ h(1)] = P [A n-k ≤ h(0)] - e -h(1) (n -k -1)! k-1 j=0 j i=0 (-1) j-i h(1) i h(0) n-k+j-i (n -k + j -i)i!(j -i)! .
This result is illustrated in Table 5 for different values of n when p = 0.08, h(0) = 4 and h(1) = 8. We also reconsider a bivariate model with S of stop-loss type where k = 4 and t = 1 or 2. Figure 3 shows the probability φ(t) in function of t when h(0) = 1, h(1) = 2, h(2) = 3 and h(3) = 4. 

Appendix

The coefficients α i (t) (in Section 5.3)

We first derive the expansion stated in Lemma 5.3. The argument is inspired from the proof of Lemma 3.3 in [START_REF] Denuit | Measuring the impact of dependence between claims occurrences[END_REF].

Proof of Lemma 5.3. Observe that (5.5) is true for t = 1 with α 0 (1) = 1. Proceeding by induction, let us consider the case t + 1, t ≥ 1. Clearly, (kx) t+1

+ (t + 1)! = (k -x) + t + 1 (k -x) t + t! = t-1 i=0 α i (t) k -x t + 1 k -x + i t , (8.1) 
by assumption and since kx may be substituted to (kx) + in the first equality. Now, we notice that kx can be rewritten as

k -x = t -i t + 1 (k -x + i + 1) + i + 1 t + 1 (k -x + i -t), so that k -x t + 1 k -x + i t = t -i t + 1 k -x + i + 1 t + 1 + i + 1 t + 1 k -x + i t + 1 . (8.2)
Inserting (8.2) in (8.1) (and changing the index i to i + 1 in the first sum) yields

(k -x) t+1 + (t + 1)! = t i=1 α i-1 (t) t + 1 -i t + 1 k -x + i t + 1 + t-1 i=0 α i (t) i + 1 t + 1 k -x + i t + 1 = t i=0 α i-1 (t) t + 1 -i t + 1 + α i (t) i + 1 t + 1 k -x + i t + 1 , (8.3)
after putting α -1 (t) = 0 = α t (t). By (8.3), we thus see that the expansion (5.5) holds too for t + 1 where the α i (t + 1)'s correspond to the terms [. . .] above. In other words, the coefficients α i (t) satisfy the recurrence (5.6). Again by induction, we get that the α i (t)'s are positive, of sum 1 and symmetric (i.e. α i (t) = α t-1-i (t)). ⋄ Table 6 gives the coefficients {α i (t), 0 ≤ i ≤ t -1} in (5.5) for the first values of t. Observe that, as indicated before, they form a symmetric p.m.f. 

α i (t) = 1 t! t-i-1 s i =0 (i + 1) s i (t -i -s i ) t-i-1-s i s i-1 =0 i s i-1 (t -i -s i -s i-1 ) t-i-1-s i -s i-1 s i-2 =0
(i -1) s i-2 (tis is i-1s i-2 ) . . .

t-i-1-s i -s i-1 -...-s 2 s 1 =0
2 s 1 (tis is i-1 -. . .s 1 ) , 1 ≤ i ≤ t -1.

The roots θ j (in Section 5.4)

The functions f j (θ), j ≥ 2, introduced in (5.9) can be analyzed using Mathematica 8.0. In Figure 4 below, they are plotted for different values of j. Observe that f j (θ) has j real roots; they are given in Table 7. The largest root corresponds to θ j defined in (5.9). Table 7: Roots of f j (θ) when j = 2, 3, 4, 7. We also notice that f j (θ) > 0 for θ > θ j and θ j+1 > θ j . In fact, these properties are found to be true for all j ≥ 2.

Future extension of the model

The Schur-constant property implies the exchangeability of the X i 's, and in particular the identity between the marginal distributions. This assumption may be restrictive or unrealistic in certain fields of applications. This is the case, for instance, in survival analysis for the study of risks in competition. In a forthcoming paper, we will develop a Schur-constant model that is rescaled to take into account the heterogeneity between the different risks.
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Figure 1 :

 1 Figure 1: Coefficients ρ (circles, blue line) and τ b (squares, red line) for different S when n = 2.

Figure 2 :

 2 Figure2: Distribution function of R(t) with S of stop-loss form when n = 2 and all v j = 0.95, for t = 0 (thick black line), t = 1 (dashed blue line), t ≥ 3 (dotted red line).

Figure 3 :

 3 Figure 3: Probability φ(t) with S of stop-loss form when n = 2 and h(0) = 1, h(1) = 2, h(2) = 3, h(3) = 4.

Figure 4 :

 4 Figure 4: Functions f j (θ) when j = 2, 3, 4, 7.

Table 1 :

 1 P.m.f. {P (Z = z)} when t = 1, . . . , 7 and k = 3.

	t \ z 0	1	2
	1			1
	2		1/3	2/3
	3	1/3 3	16/3 3	10/3 3
	4	11/3 4	55/3 4	15/3 4
	5	66/3 5	156/3 5 21/3 5
	6	302/3 6	399/3 6 28/3 6
	7	1191/3 7 960/3 7 36/3 7

Table 2 :
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	t \ z	3	4	5	6	7	8	9
	1							1
	2						0.45	0.55
	3					0.12	0.66	0.22
	4				0.021	0.363	0.5445	0.0715
	5			0.00252	0.12012	0.52272	0.33462	0.02002
	6		0.00021 0.026334	0.279048	0.518232 0.171171 0.005005
	7	0.000012 0.00396 0.0943272 0.4145856 0.4087512 0.07722 0.001144

P.m.f. {P (Z = z)} when t = 1, . . . , 7 and k = 10.

Table 4 :

 4 P [R(t) = 0] and R α (t) with S of Bernoulli form when p = 0.08, v 1 = 0.95.

		n	2	3	4	5	6	7
		P [R(0) = 0]	0.08	0.08	0.08	0.08	0.08	0.08
		R 0.50 (0) 1.45497 2.24537 2.96722 3.60988 4.15995 4.60201
		R 0.95 (0) 4.55266 5.96314 7.24594 8.43023 9.53011 10.5449
		R 0.99 (0) 6.45200 8.08879 9.56817 10.9353 12.2084 13.3923
		P [R(t) = 0]	0	0	0	0	0	0
	t ≥ 1	R 0.50 (t) 1.66802 2.65219 3.63464 4.61386 5.58950 6.56139
		R 0.95 (t) 4.71638 6.24742 7.67994 9.04840 10.3722 11.6609
		R 0.99 (t) 6.60129 8.34365 9.95497 11.4758 12.9384 14.3540
	Next, we consider a bivariate Schur-constant model (n = 2) generated by a stop-loss function S
	where k = 4 and t = 1 or 2. Figure				

Table 5 :
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	n	2	3	4	5	6	7
	t = 0 0.921609 0.810250 0.677401 0.560180 0.478908 0.433062
	t ≥ 1 0.921260 0.808184 0.669609 0.538648 0.431727 0.346796

Probability φ(t) with S of Bernoulli form when p = 0.08, h(0) = 4, h(1) = 8.

Table 6 :

 6 Coefficients {α i (t)} when t = 1, . . . , 7.It can be shown that α i (t) is provided by the following explicit formula:

	t \ i 0	1	2	3	4	5	6
	1	1					
	2	1/2 1/2				
	3	1/3! 4/3!	1/3!			
	4	1/4! 11/4!	11/4!	1/4!		
	5	1/5! 26/5!	66/5!	26/5!	1/5!	
	6	1/6! 57/6!	302/6!	302/6!	57/6!	1/6!
	7	1/7! 120/7! 1191/7! 2416/7! 1191/7! 120/7! 1/7!
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(2010)). Let us consider a discrete-time risk model in which claims occur according to a Schur-constant counting process N (t). The successive claim amounts, C i say, are independent of the claim arrival process (but may be interdependent); their partial sums are denoted by

The premium flow is deterministic (but may be nonstationary); the cumulated premiums until time t are given by the nondecreasing function h(t) (h(0) ≥ 0 being the initial reserves). Thus, the reserves process is written as

Ruin occurs when the reserves U (t) become negative, i.e. as soon as A N (t) > h(t). Let φ(t) be the probability of non-ruin until time t. We derive below a formula for computing φ(t).

Proposition 7.4

(7.10) Proof. By definition, φ(t) can be expressed as

For 1 ≤ k ≤ n -1, we get from (5.2) that

For k = n, we write