
HAL Id: hal-01081743
https://hal.science/hal-01081743v1

Preprint submitted on 10 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster FFTs in medium precision
Joris van der Hoeven, Grégoire Lecerf

To cite this version:

Joris van der Hoeven, Grégoire Lecerf. Faster FFTs in medium precision. 2014. �hal-01081743�

https://hal.science/hal-01081743v1
https://hal.archives-ouvertes.fr


Faster FFTs in medium precision

Joris van der Hoevena, Grégoire Lecerfb

Laboratoire d’informatique, UMR 7161 CNRS
Campus de l’École polytechnique
1, rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau

a. Email: vdhoeven@lix.polytechnique.fr

b. Email: lecerf@lix.polytechnique.fr

November 10, 2014

In this paper, we present new algorithms for the computation of fast Fourier transforms
over complex numbers for “medium” precisions, typically in the range from 100 until 400
bits. On the one hand, such precisions are usually not supported by hardware. On the other
hand, asymptotically fast algorithms for multiple precision arithmetic do not pay off yet.
The main idea behind our algorithms is to develop efficient vectorial multiple precision fixed
point arithmetic, capable of exploiting SIMD instructions in modern processors.
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1. Introduction

Multiple precision arithmetic [4] is crucial in areas such as computer algebra and cryptography,
and increasingly useful in mathematical physics and numerical analysis [2]. Early multiple preci-
sion libraries appeared in the seventies [3], and nowadays GMP [11] and MPFR [8] are typically
very efficient for large precisions of more than, say, 1000 bits. However, for precisions which are
only a few times larger than the machine precision, these libraries suffer from a large overhead.
For instance, the MPFR library for arbitrary precision and IEEE-style standardized floating
point arithmetic is typically about a factor 100 slower than double precision machine arithmetic.

This overhead of multiple precision libraries tends to further increase with the advent of
wider SIMD (Single Instruction, Multiple Data) arithmetic in modern processors, such as the
Intelr AVX technology. Indeed, it is hard to take advantage of wide SIMD instructions when
implementing basic arithmetic for integer sizes of only a few words. In order to fully exploit
SIMD instructions, one should rather operate on vectors of integers of a few words. A second
problem with current SIMD arithmetic is that CPU vendors tend to privilege wide floating point
arithmetic over wide integer arithmetic, which would be most useful for speeding up multiple
precision libraries.

In order to make multiple precision arithmetic more useful in areas such as numerical analysis,
it is a major challenge to reduce the overhead of multiple precision arithmetic for small multiples
of the machine precision, and to build libraries with direct SIMD arithmetic for multiple precision
numbers.

One existing approach is based on the “TwoSum” and “TwoProduct” algorithms [7, 22],
which allow for the exact computation of sums and products of two machine floating point
numbers. The results of these operations are represented as sums x + y where x and y have
no “overlapping bits” (e.g. ⌊log2 |x|⌋> ⌊log2 |y |⌋+ 52 or x= y=0). The TwoProduct algorithm
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can be implemented using only two instructions when hardware features the fused-multiply-add

(FMA) and fused-multiply-subtract (FMS) instructions, as is for instance the case for Intel’s
AVX2 enabled processors. The TwoSum algorithm could be done using only two instructions
as well if we had similar fused-add-add and fused-add-subtract instructions. Unfortunately, this
is not the case for current hardware.

It is classical that double machine precision arithmetic can be implemented reasonably effi-
ciently in terms of the TwoSum and TwoProduct algorithms [7, 22, 23]. The approach has
been further extended in [24] to higher precisions. Specific algorithms are also described in [21]
for triple-double precision, and in [15] for quadruple-double precision. But these approaches tend
to become inefficient for large precisions.

For certain applications, efficient fixed point arithmetic is actually sufficient. One good
example is the fast discrete Fourier transform (FFT) [6], which is only numerically accurate if
all input coefficients are of the same order of magnitude. This means that we may scale all input
coefficients to a fixed exponent and use fixed point arithmetic for the actual transform. Moreover,
FFTs (and especially multi-dimensional FFTs) naturally benefit from SIMD arithmetic.

In this paper, we will show how to efficiently implement FFTs using fixed point arithmetic
for small multiples of the machine precision. In fact, the actual working precision will be of the
form k p, where k ∈ {2, 3, ...}, p= µ− δ for a small integer δ (typically, δ = 4), and µ denotes
the number of fractional bits of the mantissa (also known as the trailing significant field, so that
µ= 52 for IEEE double precision numbers).

Allowing for a small number δ of “nail” bits makes it easier to handle carries efficiently.
On the downside, we sacrifice a few bits and we need an additional routine for normalizing
our numbers. Fortunately, normalizations can often be delayed. For instance, every complex
butterfly operation during an FFT requires only four normalizations (the real and imaginary
parts of the two outputs).

Redundant representations with nail bits, also known as carry-save representations, are very
classical in hardware design, but rarely used in software libraries. The term “nail bits” was coined
by the GMP library [11], with a different focus on high precisions. However, the GMP code
which uses this technology is experimental and disabled by default. Redundant representations
have also found some use in modular arithmetic. For instance, they recently allowed to speed
up modular FFTs [13].

Let Fπ(n) denote the time spent to compute an FFT of length n at a precision of π bits. For
an optimal implementation at precision k µ, we would expect that Fkµ(n)≈ k Fµ(n). However,
the naive implementation of a product at precision k µ requires at least

(

k+1
2

)

µ machine

multiplications, so Fkµ(n)≈
(

k+1
2

)

Fµ(n) is a more realistic goal for small k. The first contribution

of this paper is a series of optimized routines for basic fixed point arithmetic for small k. These
routines are vectorial by nature and therefore well suited to current Intel AVX technology.
The second contribution is an implementation inside the C++ librairies of Mathemagix [17]
(which is currently limited to a single thread). For small k, our timings seem to indicate that
Fkp(n)≈2

(

k+1
2

)

Fµ(n). For k=2, we compared our implementation with FFTW3 [9] (in which

case we only obtained F2µ(n)≈200 Fµ(n) when using the built-in type __float128 of GCC) and
a home-made double-double implementation along the same lines as [23] (in which case we got
F2µ(n)≈ 10Fµ(n)).

Although the main ingredients of this paper (fixed point arithmetic and nail bits) are not
new, we think that we introduced a novel way to combine them and demonstrate their efficiency
in conjunction with modern wide SIMD technology. There has been recent interest in efficient
multiple precision FFTs for the accurate integration of partial differential equations from hydro-
dynamics [5]. Our new algorithms should be useful in this context, with special emphasis on
the case when k=2. We also expect that the ideas in this paper can be adapted for some other
applications, such as efficient computations with truncated numeric Taylor series for medium
working precisions.
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Our paper is structured as follows. Section 2 contains a detailed presentation of fixed point
arithmetic for the important precision 2 p. In Section 3, we show how to apply this arithmetic
to the computation of FFTs, and we provide timings. In Section 4, we show how our algorithms
generalize to higher precisions k p with k > 2, and present further timings for the cases when
k=3 and k=4. In our last section, we discuss possible speed-ups if certain SIMD instructions
were hardware-supported, as well as some ideas on how to use asymptotically faster algorithms
in this context.

Notations

Throughout this paper, we assume IEEE arithmetic with correct rounding and we denote by
F the set of machine floating point numbers. We let µ> 2 be the machine precision minus one
(which corresponds to the number of fractional bits of the mantissa) and let Emin and Emax

be the minimal and maximal exponents of machine floating point numbers. For IEEE double
precision numbers, this means that µ= 52, Emin=−1022 and Emax= 1023.

The algorithms in this paper are designed to work with all possible rounding modes. Given
x, y ∈F and ∗ ∈ {+,−, ·}, we denote by ◦(x ∗ y) the rounding of x ∗ y according to the chosen
rounding mode. If e is the exponent of x∗ y and Emax>e>Emin+ µ (i.e. in absence of overflow
and underflow), then we notice that |◦(x ∗ y)− x ∗ y |< 2e−µ.

Modern processors usually support fused-multiply-add (FMA) and fused-multiply-subtract
(FMS) instructions, both for scalar and SIMD vector operands. Throughout this paper, we
assume that these instructions are indeed present, and we denote by ◦(x y + z) and ◦(x y − z)
the roundings of x y+ z and x y− z according to the chosen rounding mode.

2. Fixed point arithmetic for quasi doubled precision

Let p ∈ {6, ..., µ − 2}. In this section, we are interested in developing efficient fixed point
arithmetic for a bit precision 2 p. Allowing p to be smaller than µ makes it possible to efficiently
handle carries during intermediate computations. We denote by δ = µ − p > 2 the number of
extra “nail” bits.

2.1. Representation of fixed point numbers

We denote by Fp,2 the set of fixed point numbers which can be represented as

x = x0+x1,

where x0, x1∈F are such that

x0 ∈ Z 2−p (1)

|x0| < 2δ (2)

|x1| < 2δ−p. (3)

It will be convenient to write x= [x0, x1] for numbers of the above form. Since Fp,2 contains all
numbers x= k 2−2p with k ∈ Z and |x|< 1, this means that Fp,2 can be thought of as a fixed
point type of precision 2 p.

Remark 1. Usually, we will even have |x0|< 1 and |x1|<2−p, but the extra flexibility provided
by (2) and (3) will be useful during intermediate computations. In addition, for efficiency reasons,
we do not require that x1∈Z 2−2p.
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Figure 1. Schematic representation of the decomposition x= [x0, x1] = x0+ x1.

2.2. Splitting numbers at a given exponent

An important subalgorithm for efficient fixed point arithmetic computes the truncation of a
floating point number at a given exponent:

Algorithm Splite(x)

a := ◦(x+ /3 2 · 2
e+µ)

return ◦(a− /3 2 · 2
e+µ)

Proposition 2. Given x∈F and e∈{Emin, ...,Emax− µ} such that |x|<2e+µ−2, the algorithm

Splite computes a number x̃∈F with x̃∈Z 2e and |x̃− x|< 2e.

Proof. Let A=x+ /3 2 · 2
e+µ. Since |x|< 2e+µ−2, we have

/5 4 · 2
e+µ< A < /7 4 · 2

e+µ.

Since a is obtained by rounding A, it follows that

/5 4 · 2
e+µ6 a 6 /7 4 · 2

e+µ,

whence the exponent of a is e+µ and |A−a|<2e, for any rounding mode. Since /3 2 ·2
e+µ also has

exponent e+µ, it follows that x̃=a− /3 2 ·2
e+µ satisfies x̃=◦(x̃). Furthermore, a and /3 2 ·2

e+µ are
both integer multiples of 2e, whence so is x̃. Finally, |x̃−x|= |(a− /3 2 ·2

e+µ)− (A− /3 2 · 2
e+µ)|<

2e. �

Remark 3. Assuming that the rounding mode is set towards zero, the condition |x|< 2e+µ−1

suffices in Proposition 2. Indeed, this weaker condition implies 2e+µ < A < 2 · 2e+µ, and
therefore 2e+µ 6 a < 2 · 2e+µ, with the rest of the proof unchanged. The same remark holds
for Proposition 7 below and allows several of the subsequent bounds to be slightly improved.
As a consequence, this sometimes allows us to decrease δ by one. However, in this paper, we
prefer to avoid hypotheses on the rounding mode, for the sake of portability, efficiency, and
simplicity. Nevertheless, our observation may be useful on some recent processors (such as
Intel’s AVX-512 enabled ones), which make it possible to force rounding modes at the level of
individual instructions.

2.3. Normalization

Let B ∈ [1, 2δ]. We will write Fp,2;B for the subset of Fp,2 of all numbers x= [x0, x1] with

|x1| < B 2−p 6 2δ−p.

Numbers in Fp,2;1 are said to be in normal form.

Remark 4. Both x = [2−p, −2−p/2] and y = [0, 2−p/2] are in normal form, and both x and
y represent the number 2−p/2. Consequently, our fixed point representation is still redundant
under this normalization (this is reminiscent from Avižienis’ representations [1]).
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Algorithm Normalize(x)

c :=Split−p(x1)
return [◦(x0+ c), ◦(x1− c)]

Proposition 5. Given x ∈ Fp,2 with |x0| < 2δ − 2−p+δ, the algorithm Normalize returns

x̃∈Fp,2;1 with |x̃−x|< 2−2p−δ.

Proof. Since p>2, using Proposition 2 with e=−p, we have |x1− c|<2−p and c∈Z 2−p. Using
the fact that |x1|<2δ−p, this entails |c|< (2δ+1) 2−p and therefore |c|62δ−p. Hence |x0+c|<2δ,
so that ◦(x0+ c) = x0+ c. Finally, |x1− c|< 2−p implies |◦(x1− c)− (x1− c)|< 2−p−µ, so that
|x̃− x|6 |x̃0− (x0+ c)|+ |x̃1− (x1− c)|< 2−p−µ. �

2.4. Addition and subtraction

Non normalized addition and subtraction of fixed point numbers are straightforward:

Algorithm Add(x, y)

return [◦(x0+ y0), ◦(x1+ y1)]

Algorithm Subtract(x, y)

return [◦(x0− y0), ◦(x1− y1)]

Proposition 6. Let x ∈ Fp,2;B and y ∈ Fp,2;C with S := B + C + 2−p 6 2δ. If |x0 + y0|< 2δ,

then we have a=Add(x, y) ∈ Fp,2;S with |a− (x+ y)|< 2−2p. If |x0− y0|< 2δ, then we have

b=Subtract(x, y)∈Fp,2;S with |b− (x− y)|< 2−2p.

Proof. Since both x0 and y0 are multiple of 2−p, the addition a0=x0+ y0 is exact. Furthermore,
the exponents of x1 and y1 are both strictly bounded by δ − p. Consequently, |a1 − (x1 +

y1)| < 2δ−p−µ = 2−2p and |a1| < |x1 + y1| + 2−2p 6 |x1| + |y1| + 2−2p < S 2−p. Finally
|a− (x+ y)|6 |a0− (x0+ y0)|+ |a1− (x1+ y1)|= |a1− (x1+ y1)|< 2−2p. The statement for the
subtraction follows by replacing y by −y. �

2.5. Multiplication

Our multiplication algorithm of fixed point numbers is based on a subalgorithm LongMule
which computes the exact product of two numbers x, y∈F in the form of a sum x y=h+ l, with
the additional constraint that h ∈ Z 2e. Without this additional constraint (and in absence of
overflow and underflow), h and l can be computed using the classical “Two Product” algorithm:
h := ◦(x y), l := ◦(x y− h). Our LongMule algorithm exploits the FMA and FMS instructions
in a similar way.

Algorithm LongMule(x, y)

a := ◦(x y+ /3 2 · 2
e+µ)

h := ◦(a− /3 2 · 2
e+µ)

l := ◦(x y− h)
return (h, l)

Algorithm Multiply(x, y)

(h, l) :=LongMul−p(x0, y0)
l := ◦(x0 y1+ l)
l := ◦(x1 y0+ l)
return [h, l]

Proposition 7. Let x, y∈F and e∈{Emin+µ, ...,Emax−µ} be such that |x y |<2µ+e−2. Then

the algorithm LongMule(x, y) computes a pair (h, l) ∈F2 with h ∈Z 2e, |h+ l − x y |< 2e−µ,

and |l |6 2e. In addition, if x y ∈Z 2e−µ, then h+ l= x y and |l |< 2e.

Proof. In a similar way as in the proof of Proposition 2, one shows that h∈Z 2e and |h−x y |<
2e. It follows that |l |6 2e and |l− (x y−h)|<2e−µ. If x y ∈Z 2e−µ, then the subtraction x y−h

is exact, whence |l |= |h−x y |< 2e. �
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Proposition 8. Let x∈Fp,2;B and y ∈Fp,2;C with |x0|<B, |y0|6C and BC6 2δ−2. Then we

have r=Multiply(x, y)∈Fp,2;2BC+2 and |r−x y |< (BC +2) 2−2p.

Proof. Let us write lI, lII and lIII for the successive values of l taken during the execution of
the algorithm. Since |x0 y0|<BC 6 2δ−2, Proposition 7 implies that h ∈Z 2−p, |lI|< 2−p, and
h+ lI=x0 y0. Using that |x1|<B 2−p and |y1|<C 2−p, we next obtain |lII|6 (BC+1+2−p) 2−p

and |lIII| 6 (2 B C + 1 + 2 · 2−p) 2−p. We also get that |lII − (lI + x0 y1)| 6 2−2p and
|lIII− (lII+ x1 y0)|6 2−2p. Finally we obtain:

|r− x y | 6 |r− x0 y0−x0 y1−x1 y0− x1 y1|

6 |h+ lI−x0 y0|+ |lII− lI− x0 y1|+ |lIII− lII−x1 y0|+ |x1 y1|

< 2 · 2−2p+BC 2−2p. �

2.6. C++ implementation inside Mathemagix

For our C++ implementation inside Mathemagix, we introduced the template type

template<typename C, typename V> fixed_quadruple;

The parameter C corresponds to a built-in numeric type such as double. The parameter
V is a ‘‘traits’’ type (called the ‘‘variant’’ in Mathemagix) and specifies the precision p

(see [18] for details). When instantiating for C=double and the default variant V,
the type fixed_quadruple<double> corresponds to Fp,2 with p = 48 (see the file
numerix/fixed_quadruple.hpp).

Since all algorithms from this section only use basic arithmetic instructions (add, sub-
tract, multiply, FMA, FMS) and no branching, they admit straightforward SIMD analogues.
Mathemagix features a very systematic support for SIMD types and operations [18]. This
provides us with SIMD versions for multiple precision fixed point arithmetic simply by instan-
tiating the above template types for a suitable numeric SIMD class, such as avx_double from
numerix/avx.hpp.

3. Fast Fourier transforms

In this section we describe how to use the fixed point arithmetic functions to compute FFTs.
The number of nail bits δ is adjusted to perform a single normalization stage per butterfly. In
the next paragraphs we follow the classical Cooley and Tukey in place algorithm [6].

3.1. Complex arithmetic

We implement complex analogues ComplexNormalize, ComplexAdd, ComplexSubtract
and ComplexMultiply of Normalize, Add, Subtract and Multiply in a naive way. We
have fully specified ComplexMultiply below, as an example. The three other routines proceed
componentwise, by applying the real counterparts on the real and imaginary parts. Here ℜu
and ℑu represent the real and imaginary parts of u respectively. The norm ‖u‖∞ ∈ R of the
complex number u is defined as max (|ℜu|, |ℑu|).

Algorithm ComplexMultiply(u, v)

a :=Multiply(ℜu,ℜv)
b :=Multiply(ℑu,ℑv)
c :=Multiply(ℜu,ℑv)
d :=Multiply(ℑu,ℜv)
return Subtract(a, b)+Add(c, d) i

6 Faster FFTs in medium precision



3.2. Butterflies

The basic building block for fast discrete Fourier transforms is the complex butterfly operation.
Given a pair (u, v) ∈ C2 and a precomputed root of unity ω ∈ C, the butterfly operation
computes a new pair (u + v ω, u − v ω). For inverse transforms, one rather computes the pair
(u+ v, (u − v) ω) instead. For simplicity, and without loss of generality, we may assume that
the approximation of ω in Fp,2;1[i] satisfies ‖ω0‖∞6 1.

Algorithm DirectButterfly(u, v, ω)

z :=ComplexMultiply(ω, v)
u′ :=ComplexAdd(u, z)
v ′ :=ComplexSubtract(u, z)
ũ :=ComplexNormalize(u′)
ṽ :=ComplexNormalize(v ′)
return (ũ, ṽ)

Algorithm InverseButterfly(u, v, ω)

u′ :=ComplexAdd(u, v)
z :=ComplexSubtract(u, v)
v ′ :=ComplexMultiply(ω, z)
ũ :=ComplexNormalize(u′)
ṽ :=ComplexNormalize(v ′)
return (ũ, ṽ)

Proposition 9. Let u, v, ω ∈ Fp,2;1[i] with ‖u0‖∞ < 1, ‖v0‖∞ < 1, ‖ω0‖∞ 6 1 and assume

that δ > 4. Then (ũ, ṽ) = DirectButterfly(u, v, ω) ∈ Fp,2;1[i]
2 and ‖ũ − (u + v ω)‖∞,

‖ṽ − (u− vω)‖∞< 7 · 2−2p.

Proof. Let a, b, c, d be as in ComplexMultiply with u = ω and v as arguments. From
Proposition 8, it follows that a∈Fp,2;4 and |a−ℜωℜv |< 3 · 2−2p, and we have similar bounds
for b, c and d. From Proposition 6, we next get z ∈ Fp,2;8+2−p[i] and ‖z − ω v‖∞ < 5 · 2−2p.
Applying Proposition 6 again, we obtain u′, v ′∈Fp,2;9+2·2−p[i], ‖u′− (u+ vω)‖∞< 6 · 2−2p and
‖v ′− (u− v ω)‖∞< 6 · 2−2p. The conclusion now follows from Proposition 5. �

Proposition 10. Let u, v, ω ∈ Fp,2;1[i] with ‖u0‖∞ < 1, ‖v0‖∞ < 1, ‖ω0‖∞ 6 1 and assume

that δ > 4. Then (ũ, ṽ) = InverseButterfly(u, v, ω) ∈ Fp,2;1[i]
2 and ‖ũ − (u + v)‖∞,

‖ṽ − (u− v)ω‖∞< 9 · 2−2p.

Proof. Proposition 6 yields u′, z∈Fp,2;2+2−p[i] and ‖u′− (u+v)‖∞<2−2p, and ‖z− (u−v)‖∞<

2−2p. Proposition 5 then gives us ũ ∈ Fp,2;1[i], ‖ũ − (u + v)‖∞ < 2 · 2−2p. Let a, b, c, d be
as in ComplexMultiply with ω and z as arguments. From Proposition 8, it follows that
a∈Fp,2;6+2·2−p, |a−ℜω ℜ(u−v)|< (4+2 ·2−p) ·2−2p, and we have similar bounds for b, c and d.
From Proposition 6 again, we get v ′∈Fp,2;12+5·2−p[i] and ‖v ′− (u−v) ω‖∞< (8+5 · 2−p) · 2−2p.
Finally Proposition 5 gives us ṽ ∈Fp,2;1[i], ‖ṽ − (u− v)ω‖∞< 9 · 2−2p. �

For reason of space, we will not go into more details concerning the total precision loss in
the FFT, which is of the order of logn bits at size n. We refer the reader to the analysis in [14],
which can be adapted to the present context thanks to the above propositions.

3.3. Timings

Throughout this article, timings are measured on a platform equipped with an Intel CoreTM

i7-4770 CPU @ 3.40 GHz and 8 GB of 1600 MHz DDR3 . It runs the Jessie GNU Debianr

operating system with a Linuxr kernel version 3.14 in 64 bit mode. We measured average tim-
ings, while taking care to avoid CPU throttling issues. We compile with GCC [10] version 4.9.1.

ν 8 9 10 11 12 13 14 15 16
double 0.43 0.94 2.3 5.4 15 34 85 190 400

long double 6.1 14 31 70 153 332 720 1600 3400
__float128 89 205 463 1000 2300 5100 11000 24000 51000

Table 1. FFTW 3.3.4 in size n=2ν, in micro-seconds.
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For the sake of comparison, Table 1 displays timings to compute FFTs over complex numbers
with the FFTW library version 3.3.4 [9]. Timings are obtained via the command test/bench

bundled with the library. The row double corresponds to the standard double precision in C and
the configuration options --enable-avx and --enable-fma. The row long double is obtained
in the same way with the configuration options --enable-long-double; on current platform
this corresponds to using the x87 instructions on 80 bits wide floating point numbers. The last
row means using the IEEE compliant quadruple precision type __float128 provided by the
compiler, and configured with --enable-fma and --enable-quad-precision.

ν 8 9 10 11 12 13 14 15 16
double 0.54 1.1 2.5 6.8 16 37 85 220 450

long double 9.5 21 48 110 230 500 1100 2300 5000
__float128 94 220 490 1100 2400 5300 11000 25000 53000
quadruple 5.0 11 25 55 120 260 570 1200 2600

fixed_quadruple 2.8 6.4 15 33 71 160 380 820 1700
MPFR (113 bits) 270 610 1400 3100 6800 15000 33000 81000 230000

Table 2. Mathemagix in size n=2ν, in micro-seconds.

Our Mathemagix implementations of the algorithm in this paper are available from revi-
sion 9621. Timings are reported in Table 2. We have implemented the split-radix algorithm [19].
The configuration process of Mathemagix automatically detects and activates AVX2 and
FMA instruction sets. Roots of unity and necessary twiddle factors are precomputed once with
full precision by using MPFR version 3.1.2 based on GMP version 6.0.0.

The three first rows concern the same built-in numerical types as in the previous table. The
row quadruple makes use of our own non IEEE compliant implementation of the algorithms
of [23], sometimes called double-double arithmetic (see file numerix/quadruple.hpp). The row
fixed_quadruple corresponds to the new algorithms of this section with nail bits. In the rows
double, quadruple, and fixed_quadruple, the computations fully benefit fromAVX and FMA

instructions. Finally the row MPFR contains timings obtained when using MPFR floating point
numbers with bit precision set to 113. At this precision, our implementation involves an overhead
due to the fact that the MPFR type mpfr_t is wrapped into a C++ class with reference counters
(see file numerix/floating.hpp).

Let us mention that our type quadruple requires 5 arithmetic operations (counting FMA
and FMS for 1) for a product, and 11 for an addition or subtraction. A direct butterfly thus
amounts to 86 elementary operations. On the other hand, our type fixed_quadruple needs
only 48 such operations. It is therefore satisfying to observe that these estimates are reflected
in practice for small sizes, where the cost of memory caching is negligible.

4. Generalizations to higher precisions

The representation with nail bits and the algorithms designed so far for doubled precision can
be extended to higher precisions, as explained in the next paragraphs.

4.1. Representation and normalization

Given 16B6 2δ and an integer k> 2, we denote by Fp,k;B the set of numbers of the form

x = x0+ ···+xk−1,

where x0, ..., xk−1∈F are such that

xi ∈ Z 2−(i+1)p for 06 i < k− 1

|xi| < B 2−ip for 16 i < k.
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We write x=[x0, ..., xk−1] for numbers of the above form and abbreviate Fp,k=Fp,k;2δ. Numbers
in Fp,k;1 are said to be in normal form. Of course, we require that (k − 1) p is smaller than
−Emin− µ. For this, we assume that k6 19. The normalization procedure generalizes as follows
(of course, the loop being unrolled in practice):

Algorithm Normalize(x)

rk−1 :=xk−1

for i from k− 1 down to 1 do
ci :=Split−ip(ri)
x̃i := ◦(ri− ci)
ri−1 := ◦(xi−1+ ci)

x̃0 := r0
return [x̃0, ..., x̃k−1]

Proposition 11. Given a fixed point number x ∈ Fp,k;B with |x0|< 2δ − 2δ−p, B 6 2δ − 2δ−p,

the algorithm Normalize returns x̃∈Fp,k;1 with |x̃−x|< 2−kp−δ.

Proof. During the first step of the loop, when i=k−1, by Proposition 2 we have |rk−1− ck−1|<

2−(k−1)p and ck−1∈Z 2−(k−1)p. Using the fact that |rk−1|<2δ−(k−1)p, this entails |ck−1|< (2δ+

1) 2−(k−1)p and therefore |ck−1|62δ−(k−1)p. Hence |xk−2+ck−1|6 |xk−2|+ |ck−1|<2δ−(k−2)p, so
that rk−2= ◦(xk−2+ ck−1)=xk−2+ ck−1. Using similar arguments for i=k− 2, ..., 1, we obtain
x̃∈Fp,k;1 and |x̃− x|6 |x̃k−1− (rk−1− ck−1)|. Finally, since |rk−1− ck−1|< 2−(k−1)p we have

|x̃k−1− (rk−1− ck−1)|< 2−(k−1)p−µ, which concludes the proof. �

4.2. Ring operations

The generalizations of Add and Subtract are straightforward: Add(x, y) = [◦(x0 + y0), ...,
◦(xk−1+ yk−1)], and Subtract(x, y)= [◦(x0− y0), ..., ◦(xk−1− yk−1)].

Proposition 12. Let x ∈ Fp,k;B and y ∈Fp,k;C with S :=B +C + 2−p6 2δ. If |x0+ y0|< 2δ,

then a = Add(x, y) ∈ Fp,k;S with |a − (x + y)| < 2−kp. If |x0 − y0| < 2δ − 2δ−p, then

b=Subtract(x, y)∈Fp,k;S with |a− (x− y)|< 2−kp.

Proof. Since both xi and yi are integer multiples of 2−ip for 0 6 i 6 k − 2, the additions
ai= xi+ yi are exact. Furthermore, the exponents of xk−1 and yk−1 are both strictly bounded
by δ − (k − 1) p. Consequently, |a − (x + y)| 6 |ak−1 − (xk−1 + yk−1)| < 2δ−(k−1)p−µ = 2−kp

and |ak−1|< |xk−1+ yk−1|+2−kp6 |xk−1|+ |yk−1|+2−kp<S 2−(k−1)p. The statement for the
subtraction follows by replacing y by −y. �

Multiplication can be generalized as follows (all loops again being unrolled in practice):

Algorithm Multiply(x, y)

(r0, r1) :=LongMul−p(x0, y0)
for i from 1 to k− 2 do

(h, ri+1) :=LongMul−(i+1)p(x0, yi)
ri := ◦(ri+h)
for j from 1 to i do

(h, l) :=LongMul−(i+1)p(xj , yi−j)
ri := ◦(ri+h)
ri+1 := ◦(ri+1+ l)

for i from 0 to k− 1 do
rk−1 := ◦(xi yk−1−i+ rk−1)

return [r0, ..., rk−1]
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Proposition 13. Let x ∈ Fp,k;B and y ∈ Fp,k;C with |x0| < B, |y0| 6 C, B C 6 2δ−2, and

S := k (BC +1+2−p)− 16 2δ. Then r=Multiply(x, y)∈Fp,k;S with |r−x y |<S 2−kp.

Proof. Let us write (hi,j , li,j) for the pair returned by LongMul−(i+j+1)p(xi, yj), for 0 6

i+ j6k−2. Since BC62δ−2, Proposition 7 implies that hi,j∈Z 2−(i+j+1)p, |li,j |<2−(i+j+1)p,
and hi,j + li,j = xi yj. At the end of the algorithm we have r0 = h0,0 and rt =

∑

i+j=t
hi,j +

∑

i+j=t−1 li,j for all 16 t6 k − 2, and therefore |rt|< (t+ 1)BC 2−tp+ t 2−tp6 S 2−tp for all

06 t6k−2. In particular no overflow occurs and these sums are all exact. Let s0=
∑

i+j=k−2 li,j

represent the value of rk−1 before entering the second loop. Then let si+1=◦(xi yk−1−i+ si) for

06 i6k−1, so that rk−1= sk holds at the end of the algorithm. We have |s0|< (k−1) 2−(k−1)p,
and |si| < (i B C + k − 1 + i 2−p) 2−(k−1)p for all 0 6 i 6 k. For the precision loss, from
|si+1− (xi yk−1−i+ si)|6 2−kp, we deduce that

|r−x y | 6
∑

i=0

k−1

|si+1− (xi yk−1−i+ si)|+
∑

i+j>k

|xi yj |

< k 2−kp+BC
∑

i+j>k

2−(i+j)p.

The proof follows from
∑

i+j>k
2−(i+j)p=2−kp

∑

i=0
k−2 (k− 1− i) 2−ip=

k− 1− k 2−p+2−kp

(1− 2−p)2
2−kp6

(k− 1)(1+ 2−p) 2−kp, while using that 26 k6 19 and p> 5. �

4.3. Fast Fourier Transforms

We can use the same butterfly implementations as in Section 3.2. The following generalization
of Proposition 9 shows that we may take δ = 4 as long as k 6 4, and δ = 5 as long as k 6 8 for
the direct butterfly operation.

Proposition 14. Let u, v, ω ∈ Fp,k;1[i] with ‖u‖∞< 1, ‖v‖∞< 1, ‖ω0‖∞ 6 1 and assume that

δ> 4 and 4 k− 1+(2 k+2) 2−p< 2δ− 2δ−p. Then (ũ, ṽ)=DirectButterfly(u, v, ω)∈Fp,k;1[i]
2

and ‖ũ− (u+ vω)‖∞, ‖ṽ− (u− v ω)‖∞< (2 k+3) 2−kp.

Proof. Let a, b, c, d be as in ComplexMultiply with u = ω and v as arguments. From
Proposition 13, it follows that a∈Fp,k;2k−1+k2−p and |a−ℜω ℜv |<2 k 2−kp, and we have similar
bounds for b, c and d. From Proposition 12, we next get z ∈ Fp,k;4k−2+(2k+1)2−p[i] and ‖z −

ω v‖∞< (2 k+1) 2−kp. Applying Proposition 12 again, we obtain u′, v ′∈Fp,k;4k−1+(2k+2)2−p[i],

‖u′− (u+ v ω)‖∞< (2 k + 2) 2−kp and ‖v ′− (u− v ω)‖∞< (2 k + 2) 2−kp. The conclusion now
follows from Proposition 11. �

The following generalization of Proposition 9 shows that we may take δ=4 as long as k6 2,
δ=5 as long as k6 5, and δ=6 as long as k6 10 for the inverse butterfly operation.

Proposition 15. Let u, v, ω ∈Fp,k;1[i] with ‖u0‖∞< 1, ‖v0‖∞< 1, ‖ω0‖∞6 1 and assume that

δ>4 and 6 k−2+(4 k+1) 2−p<2δ−2δ−p. Then (ũ, ṽ)= InverseButterfly(u,v,ω)∈Fp,k;1[i]
2

and ‖ũ− (u+ v)‖∞, ‖ṽ − (u− v)ω‖∞< 3 k 2−kp.

Proof. Proposition 12 yields u′, z ∈ Fp,k;2+2−p[i] and ‖u′ − (u + v)‖∞ < 2−kp, and ‖z −

(u − v)‖∞ < 2−kp. Proposition 11 then gives us ũ ∈ Fp,k;1[i], ‖ũ − (u + v)‖∞ < 2 · 2−kp. Let
a, b, c, d be as in ComplexMultiply with ω and z as arguments. From Proposition 13, it
follows that a∈Fp,k;3k−1+2k2−p, |a−ℜωℜ(u− v)|< (3 k− 1+ (2 k+1) 2−p) 2−kp, and we have
similar bounds for b, c and d. From Proposition 12 again, we get v ′∈Fp,k;6k−2+(4k+1)2−p[i] and
‖v ′− (u− v) ω‖∞< (3 k − 1 + (2 k+ 2) 2−p) 2−kp. Finally Proposition 11 gives us ṽ ∈Fp,k;1[i],
‖ṽ − (u− v)ω‖∞< (3 k− 1+ (2 k+3) 2−p) 2−2p. �
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Remark 16. Within Mathemagix, inverse butterflies are systematically used in all inverse
FFT implementations, so as to benefit from in-place algorithms without bit reverse copies .
Nevertheless, if the precision becomes of critical importance, then we recommend to use the
direct FFT transform with ω replaced by ω−1. In our code for k=3 and k=4, we have decided
to keep δ=4 by performing one additional normalization of z in InverseButterfly.

Remark 17. The following strategy sometimes makes it possible to decrease δ by one: instead
of normalizing the entries of an FFT to be of norm ‖·‖∞< 1, we rather normalize them to be of
norm ‖·‖∞< 1−C k 2−p for some small constant C. This should allow us to turn the conditions
4 k− 1+(2 k+2) 2−p< 2δ − 2δ−p and 6 k − 2+ (4 k+1) 2−p< 2δ − 2δ−p in the Propositions 14
and 10 into 4 k − 1 6 2δ and 6 k − 2 6 2δ. One could also investigate what happens if we
additionally assume ‖·‖∞< /1 2−Ck 2−p.

It is interesting to compute the number of operations in F which are needed for our various
fixed point operations, the allowed operations in F being addition, subtraction, multiplication,
FMA and FMS. For larger precisions, it may also be worth it to use Karatsuba’s method [20]
for the complex multiplication, meaning that we compute ℜu ℑv + ℑv ℜu using the formula
(ℜu + ℑu) (ℜv + ℑv) − ℜu ℜv − ℑu ℑv. This saves one multiplication at the expense of
three additions/subtractions and an additional increase of δ. The various operation counts are
summarized in Table 3.

k 1 2 3 4 5 6 k> 7
Normalize 0 4 8 12 16 20 4 k− 4

Add/subtract 1 2 3 4 5 6 k

Multiply 1 5 15 30 50 75 5
(

k

2

)

Butterfly 8 48 110 192 294 416 10 k2+ 12 k− 16
Butterfly-Karatsuba 10 49 104 174 259 359 /15

2 k
2+ /35

2 k− 16

Table 3. Operation counts in terms of basic arithmetic operations in F.

4.4. Timings

For our C++ implementation insideMathemagix we introduced two additional template types

template<typename C, typename V> fixed_hexuple;

template<typename C, typename V> fixed_octuple;

with similar semantics as fixed_quadruple. When instantiating for C=double and the default
variant V, these types correspond to Fp,3 and Fp,4 with p = 48. In the future, we intend to
implement a more general template type which also takes k as a parameter.

Table 4 shows our timings for FFTs over the above types. Although the butterflies of the
split-radix algorithm are a bit different from the classical ones, it is pleasant to observe that our
timings roughly reflect operation counts of Table 3. For comparison, let us mention that the time
necessary to perform (essentially) the same computations with MPFR are roughly the same as
in Table 2, even in octuple precision. In addition (c.f. Table 2), we observe that the performance
of our fixed_hexuple FFT is of the same order as FFTW’s long double implementation.

ν 8 9 10 11 12 13 14 15 16
double 0.54 1.1 2.5 6.8 16 37 85 220 450

fixed_quadruple 2.8 6.4 15 33 71 160 380 820 1700
fixed_hexuple 7.6 17 38 84 180 400 870 1800 3900
fixed_octuple 18 42 93 200 450 980 2100 4500 9600

Table 4. Mathemagix in size n=2ν, in micro-seconds.
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Thanks to the genericity of our C++ implementation, it is possible to directly compute
FFTs on a SIMD type such as fixed_hexuple<avx_double>, which corresponds to packing
four elements of type fixed_hexuple<double> into an AVX data type. Combined to clas-
sical cache-friendly approaches, this allows to compute multi-dimensional FFTs in an efficient
way, which closer reflects operation counts of Table 3. When computing an FFT, say over
fixed_hexuple<double>, the input data is in fact packed in a way that most of the computation
reduces to one FFT over fixed_hexuple<avx_double> of size divided by four. Nevertheless,
some of the C++ code needs to be fine-tuned in order to fully benefit from SIMD instructions,
which turns out to constitute an important part of the implementation work.

5. Variants and perspectives

Polynomial representations. In this paper, we have chosen to represent multi-precision
fixed point numbers as sums x=x0+ ···+xk−1. Alternatively, we may regard such numbers as
polynomials

x = x0+ x1 2
−p+ ···+xk−1 2

−(k−1)p

in the “indeterminate” 2−p, with x0, ..., xk−2∈Z 2−p and |x0|, ..., |xk−1|< 2δ. It can be checked
that the algorithms of this paper can be adapted to this setting with no penalty (except for
multiplication which may require one additional instruction). Roughly speaking, every time that
we need to add a “high” part h and a “low” part l of two long products, it suffices to use a fused-
multiply-add instruction l 2p+ h instead of a simple addition l+h.

For naive multiplication, the polynomial representation may become slightly more efficient
for k>3, when the hardware supports an SIMD instruction for rounding floating point numbers
to the nearest integer. In addition, when k becomes somewhat larger, say k > 8, then the
polynomial representation makes it possible to use pair-odd Karatsuba multiplication [12, 16]
without any need for special carry handling (except that δ has to be chosen a bit larger). Finally,
the restriction (k− 1) p6−Emin− µ is no longer necessary, so the approach can in principle be
extended to much larger values of k.

Integer arithmetic. The current focus of vendors of wide SIMD arithmetic is on fast floating
point arithmetic, whereas integer arithmetic is left somewhat behind. For instance, Intel’s
AVX-512 technology features efficient arithmetic (including FMA) on vectors of eight double
precision numbers. On the other hand, SIMD integer multiplications are limited to 16 bit and
32 bit integers.

In order to develop an efficient GMP-style library for SIMD multiple precision integers, it
would be useful to have an instruction for multiplying two vectors of 64 bit integers and obtain
the lower and higher parts of the result in two other vectors of 64 bit integers. For multiple
precision additions and subtractions, it is also important to have vector variants of the “add with
carry” and “subtract with borrow” instructions.

Assuming the above instructions, a 64 k bit unsigned truncated integer multiplication can
be done in SIMD fashion using approximately 4

(

k

2

)

instructions. Furthermore, in this setting,

there is no need for normalizations. However, signed multiplications are somewhat harder to
achieve. The best method for performing a signed integer multiplication x y with |x|, |y |<264k−1

is probably to perform the unsigned multiplication (x+C) (y+C) with C=264k−1 and use the
fact that x y=(x+C) (y+C)− (x+ y)C+C2. We expect that the biggest gain of using integer
arithmetic comes from the fact that we achieve a 64 k instead of a p k bit precision (for small k,
we typically have p= 48).

One potential problem with GMP-style SIMD arithmetic is that asymptotically faster algo-
rithms, such as Karatsuba multiplication (and especially the even-odd variant), are harder to
implement. Indeed, we are not allowed to ressort to branching for carry handling. One remedy
would be to use expansions x=x0+x1 264s+ ···+xk/s−1 2

64k−64s with coefficients 06xi<264s−δ

for a suitable number δ of nail bits and a suitable “multiplexer” s> 1.
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Faster splitting. An interesting question is whether hardware support for certain specific
operations might speed up the fixed point arithmetic in this paper. One operation which is rela-
tively expensive is normalization. It would be nice to have an instruction which takes x∈F and
e∈{Emin, ..., Emax} on input and which computes numbers h, l∈F with x=h+ l, h∈Z 2e and
|l |<Z 2e. In that case, normalization would only require two instructions instead of four. Besides
speeding up the naive algorithms, it would also become less expensive to do more frequent
normalizations, which makes the use of asymptotically more efficient multiplication algorithms
more tractable at lower precisions and with fewer nail bits. More efficient normalization is also
important for efficient shifting of mantissas, which is the main additional ingredient for the
implementation of multiple precision arithmetic.

Asymptotically efficient algorithms. A theoretically important question concerns the
asymptotic complexity of FFTs at large precisions. Let I(b) denote the bit complexity of b

bit integer multiplication. It has recently been proved [14] that I(b) = O(b log b 8log
∗ b), where

log∗ b=mink
{

log ...k× log b6 1
}

. Under mild assumptions on b and n it can also be shown [14]
that an FFT of size n and bit precision b can be performed in time Fb(n) = O(I(b n)). For
b6 n and large n, this means that Fb(n) scales linearly with b. In a future paper, we intend to
investigate the best possible (and practically achievable) constant factor involved in this bound.
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