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The McEliece cryptosystem is one of the oldest public-key cryptosystem ever designated. It is also the first public-key cryptosystem based on linear error-correcting codes. The main advantage of the McEliece cryptosystem is to have a very fast encryption and decryption functions but suffers from a major drawback. It requires a very large public key which makes it very difficult to use in many practical situations. In this paper we propose a new general way to reduce the public key size through quasi-cyclic codes. Our construction introduces a new method of hiding the structure of the secret generator matrix by first choosing a subfield subcode of a quasi-cyclic code that is defined over a large alphabet and then by randomly shortening the chosen subcode. The security of our variant is related to the hardness of decoding a random quasi-cyclic code. We introduce a new decisional problem that is associated to the decoding of an arbitrary quasi-cyclic code. We prove that it is an NP-complete problem. Starting from subfield subcodes of quasi-cyclic generalized Reed-Solomon codes, we propose a system with several size of parameters from 6,000 to 11,000 bits with a security ranging from 2 80 to 2 107 . Implementations of our proposal show that we can encrypt at a speed of 120 Mbits/s (or one octet for 120 cycles). Hence our new proposal represents the most competitive public-key cryptosystem.

Introduction

The McEliece cryptosystem [START_REF] Mceliece | A Public-Key System Based on Algebraic Coding Theory[END_REF] represents one of the oldest public-key cryptosystem ever designated. It is also the first public-key cryptosystem based on linear error-correcting codes. The principle is to select a linear code of length n and dimension t that is able to efficiently correct t errors. The core idea is to transform it to a random-looking linear code. A description of the original code and the transformations can serve as the private key while a description of the modified code serves as the public key. McEliece's original proposal uses a generator matrix of a binary Goppa code. The encryption function encodes a message according to the public code and adds an error vector of weight t. The decryption function basically decodes the ciphertext by recovering the secret code through the trapdoor which consists of the transformations. Niederreiter [START_REF] Niederreiter | Knapsack-type cryptosystems and algebraic coding theory[END_REF] also proposed a public-key cryptosystem based on linear codes in which the public key is a parity-check matrix. It is proved in [START_REF] Li | On the equivalence of McEliece's and Niederreiter's public-key cryptosystems[END_REF] that these two systems are equivalent in terms of security. It relies upon two kinds of attacks that seek from the public data to either totally break the system, or to decrypt an arbitrary ciphertext. Any cryptosystem that is resistant to these attacks is to said to be one-way secure under a chosen plaintext attack (OW-CPA). The first category of attacks which are also called structural attacks in code-based cryptography aims at recovering the secret code or alternatively, constructing an equivalent code that can be efficiently decoded. The other class of attacks try to design decoding algorithms for arbitrary linear codes in order to decrypt a given cipher text. Such an attack is called a decoding attack. The most efficient algorithms used to decode arbitrary linear codes are based on the information set decoding. A first analysis was done by McEliece in [START_REF] Mceliece | A Public-Key System Based on Algebraic Coding Theory[END_REF] then in [START_REF] Lee | An observation on the security of McEliece's public-key cryptosystem[END_REF][START_REF] Leon | A probabilistic algorithm for computing minimum weights of large error-correcting codes[END_REF][START_REF] Stern | A method for finding codewords of small weight[END_REF] and lastly in [START_REF] Canteaut | A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511[END_REF] which is the best refinement up to now. All these algorithms solve the famous search problem of decoding random linear code. It was proved in [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF] that decoding an arbitrary linear code is NP-Hard problem. However the security of the McEliece cryptosystem is not equivalent to the general problem of decoding random linear code due to the following reasons: 1) inverting the McEliece encryption function is a special case of the general problem of decoding where the error weight t is set to a certain value and (2) binary Goppa codes form a subclass of linear codes. Therefore, McEliece cryptosystem is secure as long as there is no efficient algorithm that distinguishes between binary Goppa codes and random binary codes. Nobody has managed to solve this challenging problem for the last thirty years and if ever a solution appears towards that direction, this would toll the knell of the original McEliece cryptosystem. Note that this assumption is not always true for any class of codes that has an efficient decoding algorithm. For instance, Sidel'nikov and Shestakov proved in [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF] that the structure of Generalised Reed-Solomon codes of length n can be recovered in O n 4 . Sendrier proved that the (permutation) transformation can be extracted for concatenated codes. Minder and Shokrollahi presented in [START_REF] Minder | Cryptanalysis of the Sidelnikov cryptosystem[END_REF] a structural attack that creates a private key against a cryptosystem based on Reed-Muller codes [START_REF] Sidelnikov | A public-key cryptosystem based on binary Reed-Muller codes[END_REF]. Despite these attacks on these variants of the McEliece cryptosystem, the original scheme still remains unbroken. The other main advantages of code-based cryptosystems are twofold:

1. high-speed encryption and decryption compared with other public-key cryptosystems which involve for instance modular exponentiations (even faster than the NTRU cryptosystem), 2. resistance to a putative quantum computer.

Unfortunately its major weakness is a huge public key of several hundred thousand bits in general. Currently, the McEliece public key cryptosystem satisfies OW-CPA for n ≥ 2048 with appropriate values for t and k such that W f (2, n, k, t) ≥ 2 100 where W f (q, n, k, t) is the work factor of the best algorithm that decodes t errors with any linear code of length n, dimension k over the finite F q . For example the work factor is around 2 106 if we choose (n, k, t) = (2048, 1278, 70). For such parameters, the public key size is about 2.5 Mbits. It is therefore tempting to enhance the McEliece cryptosystem by finding a way to reduce the representation of a linear code as well as the matrices of the transformations.

A possible solution is to take very sparse matrices. This idea has been applied in [START_REF] Shokrollahi | Using low density parity check codes in the McEliece cryptosystem[END_REF] which examined the implications of using low density parity-check (LDPC) codes. The authors showed that taking sparse matrices for the linear transformations is an unsafe solution. Another recent trend first appeared in [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] tries to use quasi-cyclic codes [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF][START_REF] Baldi | Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes[END_REF][START_REF] Gaborit | Synd: a fast code-based stream cipher with a security reduction[END_REF][START_REF] Gaborit | Lightweight code-based authentication and signature[END_REF][START_REF] Cayrel | On Kabatianskii-Krouk-Smeets Signatures[END_REF]. This particular family of codes offers the advantage of having a very simple and compact description. The first proposal [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] uses subcodes of a primitive BCH cyclic code. The size of the public key for this cryptosystem is only 12Kbits. The other one [START_REF] Baldi | Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes[END_REF] tries to combine these two positive aspects by requiring quasi-cyclic LDPC codes. The authors propose a public key size that is about 48Kbits. A recent work shows [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] that these two cryptosystems [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF][START_REF] Baldi | Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes[END_REF] can be totally broken. The main drawbacks of [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] are: [START_REF] Baldi | Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes[END_REF] the permutation that is supposed to hide the secret generator matrix is very constrained, (2) the use of sub-codes of a completely known BCH code. Combining these two flaws lead to a structural attack that recovers the secret permutation by basically solving an over-constrained linear system. The unique solution reveals the secret key.

This present work generalizes and strengthens the point of view developped in [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] on the use of quasi-cyclic code to reduce the size of the public key in the MacEliece scheme. In particular it develops new ideas which permit to overcome the weaknesses of this latter protocol. Our proposal is based on a general construction that starts from a family of MDS quasi-cyclic codes. We instantiate our general approach through generalised Reed-Solomon codes which represent an important family of cyclic codes equipped with an efficient decoding algorithm. The two main threats that may undermine the security of our variant are the attack of [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF], which exploits the structure of generalised Reed-Solomon codes, and the attack of [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] which makes profit of the quasi-cyclic structure. Our first improvement over [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] consists in taking subfield subcodes of generalised Reed-Solomon codes rather than considering subcodes of a BCH code. Subfield subcodes of generalised Reed-Solomon codes are also called alternant codes. This approach respects in a sense the McEliece's proposal since binary Goppa codes are a special case of alternant codes. The first positive effect for using quasi-cyclic alternant codes is the high number of codes that share the same parameters. The second positive effect is to be immune to the structural attack of [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF] which strictly requires generalised Reed-Solomon codes to successfully operate. Consequently, the use of alternant codes permits to break the Reed-Solomon structure and avoids the classical Sidelnikov-Shestakov attack [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF]. The second improvement consists in resisting to the attack of [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] by randomly shortening a very long quasi-cyclic alternant codes. For instance, one constructs codes of lengths of order 1, 000 from codes of length 2 16 or 2 20 . Note that the idea of randomly shortening a code is a new way of hiding the structure of code which exploits the recent result of [START_REF] Wieschebrink | Two NP-complete problems in coding theory with an application in code based cryptography[END_REF] in which it is proved that deciding whether a code is permutation equivalent to a shortened code is NP-complete. Hence the introduction of the random shortening operation makes harder the recovery of the code structure in two complementary ways. First, it worsens the chances of the Sidelnikov-Shestakov attack because the original generalised Reed-Solomon code is even more "degraded". Second, the use a random shortened code permits to avoid the attack [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] that exploits the quasi-cyclic structure since it requires the public code to be permutation equivalent to a subcode of a known code. The fact of considering a random shorter code makes it inapplicable because the shortened code to which the public code is equivalent is unknown to any attacker. These two improvements underly the assumption that there is no efficient algorithm that is able to distinguish between a randomly shortened quasi-cyclic alternant code and random quasi-cyclic linear code.

The main achievement of this paper is to derive a construction which drastically reduces the size of the public key of the McEliece and Niederreiter cyrptosystem to about thousands bits. The security of our new variant assumes that there is no efficient algorithm that distinguishes between a randomly shortened quasi-cyclic alternant code and random quasi-cyclic linear code. Assuming that is computationally impossible to distinguish between a randomly shortened quasicyclic alternant code and random quasi-cyclic linear code, the one-wayness under chosen plaintext attack is guaranteed by the hardness to decode an arbitrary quasi-cyclic linear code. We prove that the associated decisional problem is NP-complete as it is the case for arbitrary linear codes. This important result makes it reasonable to assume that there is no efficient algorithm that decode any arbitrary quasi-cyclic code. This important fact establishes the security of our variant.

The paper is organized as follows. In Section 2 we recall basic facts for code-based cryptography. In Section 3 we summarize the coding tools we use for our new algorithm: quasi-cyclic codes, generalized Reed-Solomon codes and alternant codes. In Section 4 we deal with a description of the protocol and in Sections 5 we give parameters for our scheme and study its performance. In Section 6 we consider the security of the scheme.

Code-Based Cryptography

Public-Key Cryptography

A public-key cryptosystem uses a trapdoor one-way function E that will serve as the encryption function. The calculation of the inverse E -1 also called the decryption function is only possible thanks to a secret (the trapdoor) K. This concept of trapdoor one-way function forms the basis of the public-key cryptography in which the private key is K and the public key is E. More precisely a public-key cryptosystem should provide three algorithms namely KeyGen, Encrypt and Decrypt algorithms. KeyGen is a probabilistic polynomial-time algorithm which given an input 1 κ , where κ ≥ 0 is a security parameter, outputs a pair (pk, sk) of public/private key. The KeyGen also specifies a finite message space M pk . The Encrypt is a probabilistic polynomial-time algorithm that on inputs 1 κ , pk and a word x in M pk outputs a word c. The decryption is a deterministic polynomial-time algorithm that on inputs 1 κ , sk and a word c outputs a word x. The cryptosystem should satisfy the correctness property which means that the decryption must undo the encryption.

McEliece Cryptosystem

The McEliece cryptosystem [START_REF] Mceliece | A Public-Key System Based on Algebraic Coding Theory[END_REF] utilizes error-correcting codes that have an efficient decoding algorithm in order to build trapdoor one-way functions. We refer the reader to [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF] for a detailed treatment of coding theory. McEliece proposed binary Goppa codes as the underlying family of codes. The parameters of a binary Goppa code are [2 m , 2 m -mt, ≥ 2t + 1] where m and t are non-negative integers. Additionally, a binary Goppa code can be decoded by an efficient t-bounded decoding algorithm [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. The principle of the McEliece cryptosystem is to randomly pick a code C among the family of binary Goppa codes. The private key is the Goppa polynomial of C . The public key will be a generator matrix that is obtained from the private key and by two random linear transformations: the scrambling transformation S, which sends the secret matrix G to another generator matrix, and a permutation transformation which reorders the columns of the secret matrix. Figure 1 and Figure 2 give details of the three algorithms. The role of these transformation is to hide any visible structure that may characterise the code C . Therefore, McEliece encryption scheme resists to a total break as long as it is impossible to distinguish between a permuted Goppa code and a random linear code. Based on this fact, the other security assumption is the One-Wayness of the McEliece encryption function. This is due to two facts: it is proven in [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF] that decoding a random linear code is NP-Hard, and second the best known algorithms, which are based on information set decoding, [START_REF] Canteaut | A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511[END_REF] and [23, Volume I, Chapter 7] operate exponentially with the length n and the rate of the underlying code (see also [START_REF] Engelbert | A summary of McEliece-type cryptosystems and their security[END_REF]). We denote by W f (q, n, k, t) the number of binary operations (also called the work factor ) of the best known algorithm for decoding t errors with a random linear code of length n and dimension k over F q . Currently, the McEliece public key cryptosystem satisfies OW-CPA for n ≥ 2048 with appropriate values for t and k such that W f (2, n, k, t) ≥ 2 100 . An example of values is (n, k, t) = (2048, 1278, 70) because in that case the work factor is around 2 106 . For such parameters, the public key size is about 2.5 Megabits.

Fig. 1. Key generation algorithm of the McEliece cryptosystem

KeyGen(1 κ ) 1. Choose n, k and t such that W f (2, n, k, t)) ≥ 2 κ 2.
Randomly pick a generator matrix G0 of an [n, k, 2t + 1] binary Goppa code C 3. Randomly pick a n × n permutation matrix P 4. Randomly pick a k × k invertible matrix S 5. Calculate G = S × G0 × P 6. Output pk = (G, t) and sk = (S, G0, P , γ) where γ is a t-bounded decoding algorithm of C

Fig. 2. Encryption and decryption algorithms of the McEliece cryptosystem

Encrypt(pk,m ∈ F k 2 ) 1. Randomly pick e in F2 of weight t 2. Calculate c = m × G + e 3. Output c Decrypt(sk,c ∈ F n 2 ) 1. Calculate z = c × P -1 2. Calculate y = γ(z) 3. Output m = y × S -1

Niederreiter Cryptosystem

A dual encryption scheme is the Niederreiter cryptosystem [START_REF] Niederreiter | Knapsack-type cryptosystems and algebraic coding theory[END_REF] which is equivalent in terms of security [START_REF] Li | On the equivalence of McEliece's and Niederreiter's public-key cryptosystems[END_REF] to the McEliece cryptosystem. The main difference between McEliece and Niederreiter cryptosystems lies in the description of the codes. The Niederreiter encryption scheme describes codes through parity-check matrices. But both schemes has to hide any structure through a scrambling transformation and a permutation transformation. The encryption algorithm takes as input words of weight t where t is the number of errors that can be decoded. We denote by W q,n,t the words of F n q of weight t. Figure 3 and Figure 4 give details of the three algorithms. 

KeyGen(1 κ ) 1. Choose n, k and t such that W f (2, n, k, t) ≥ 2 κ 2. Randomly pick a (n -k) × n parity-check matrix H 0 of an [n, k, 2t + 1] binary Goppa code C 3. Randomly pick a n × n permutation matrix P 4. Randomly pick a (n -k) × (n -k) invertible matrix S 5. Calculate H = S × H 0 × P 6.
Output pk = (H , t) and sk = (S, H 0, P , γ) where γ is a t-bounded decoding algorithm of C Fig. 4. Encryption and decryption algorithms of the Niederreiter cryptosystem Encrypt(pk,m ∈ W2,n,t)

1. Calculate c = H × m T 2. Output c Decrypt(sk,c ∈ F n-k 2 ) 1. Calculate z = S -1 × c 2. Calculate y = γ(z) 3. Output m = y × P

Security of the McEliece Cryptosystem

Any public-key cryptosystem primarily requires to be resistant against an attacker that manages either to totally break the cryptosystem which consists in extracting the private data given only public data, or is able to invert the trapdoor encryption function given the ciphertexts of his choice and public data. This second security notion is also named OW-CPA for One-Wayness under Chosen Plaintext Attack.

Total Break. If we consider irreducible binary Goppa codes then there is no efficient algorithm that extracts the secret key from the public key in the McEliece or the Niederreiter cryptosystem provided that weak keys are avoided. Additionally, there is no efficient algorithm which is able to distinguish between matrices defined by the public keys and random matrices. In order words, there is no algorithm which can efficiently solve the Goppa code distinguishing.

Definition 1 (Goppa code distinguishing). Given a binary r × n matrix H, does H defines a binary Goppa codes?

In order to define another important decisional problem, namely the code equivalence problem, we need some notations. We denote by Diag(v) the square matrix whose diagonal is v = (v 1 , . . . , v n ) and all the other entries are zero. The symmetric group S n of order n is the set of permutations of J n = {1, . . . , n}. For any σ ∈ S n , we denote by P σ = [p i,j ] the n × n matrix such that p i,j = 1 if σ(i) = j and p i,j = 0 otherwise. We define another important decisional problem.

Definition 2 (Code equivalence). Given two k × n matrices G and G ′ over F q , does there exist a permutation σ ∈ S n , an n-tuple λ in F n q and an invertible k

× k matrix S such that G ′ = S × G × Diag(λ) × P σ ?
In the special case where Diag(λ) is equal to I n , the code equivalence problem is called the permutation equivalence problem. This latter problem actually reduces in the worst case to the graph isomorphism [START_REF] Petrank | Is code equivalence easy to decide? Information Theory[END_REF] which is conjectured to be in NP\P. The support splitting algorithm [START_REF] Sendrier | Finding the permutation between equivalent linear codes: the support splitting algorithm[END_REF] was designed to solve it for the special case where the monomial transformation is exactly a permutation. Even if its complexity depends exponentially on the dimension of C ∩ C ⊥ , this algorithm efficiently finds the permutation in practise. Based upon these facts, the best algorithm up to now that solves the Goppa code distinguishing consists in enumerating Goppa polynomials of degree ≤ 2t over F q and, by means of the support splitting algorithm, checking whether the corresponding Goppa code is permutation equivalent to the code defined by the public key. This strategy has time complexity

O n 2t (1 + o(1)) .
On the One-Wayness. The one-wayness property is the weakest security notion that any publickey cryptosystem must satisfy. It essentially states that inverting the encryption function is computationally impossible without a secret called the trapdoor. In the case of McEliece (or Niederreiter) cryptosystem, it consists in decoding a given word into a codeword of the public code. Another equivalent way of stating this problem is the syndrome decoding problem which constitutes an important algorithmic problem that we encounter in coding theory. It was proved NP-Complete in [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF].

Definition 3 (Syndrome decoding). Given an r × n matrix H over F q , a positive integer w ≤ n and an r-tuple z in F r q , does there exist e in F n q such that wt(e) ≤ w and H × e T = z?

This important result means that decoding an arbitrary linear code is difficult (in the worst case). The issue of decoding can also be translated into the problem of finding a low-weight codeword in an appropriate code. We assume that we encrypt by means of the McEliece cryptosystem. We have a public generator G and a given ciphertext z. We know that there exist a codeword c in C and a vector e ∈ F n q of weight t such that z = c + e. By hypothesis, the minimum distance of C is 2t + 1. Therefore the linear code C defined by the generator matrix G = G c contains a codeword of weight t namely e. Thus inverting the encryption amounts to find codewords of low weight in a given code. We know that this problem is NP-Hard for an arbitrary linear code. Moreover, all the practical existing algorithms operates exponentially with length and the rate of the considered code. Currently, the most efficient one is the Canteaut-Chabaud's algorithm [START_REF] Canteaut | A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511[END_REF] which is an improvement upon Stern's algorithm [START_REF] Stern | A method for finding codewords of small weight[END_REF]. We denote by W f (q, n, k, t) the work factor of this algorithm. Note that we can approximate W f (q, n, k, t) ≤ log 2 2 (q) × W f (2, n, k, t).

3 Coding Theory Background 

M =      m 0 m 1 • • • m ℓ-1 m ℓ-1 m 0 • • • m ℓ-2 . . . . . . . . . . . . m 1 • • • m ℓ-1 m 0      . ( 1 
)
Definition 5. A linear code C of length n = ℓn 0 is a quasi-cyclic code of order ℓ (and

index n 0 ) if C is generated by a parity-check matrix H = [H i,j ]
where each H i,j is an ℓ × ℓ circulant matrix.

Note that a code C is cyclic if for any c in C the cyclic shift (c n , c 1 , . . . , c n-1 ) also belongs to C . A cyclic code is therefore a quasi-cyclic code of any order ℓ which divides n. The interest of circulant matrices comes from the fact they are completely described by their first row. Hence, through such matrices, quasi-cyclic codes admit a very compact representation which is almost linear with the code length. We now describe from [START_REF] Berger | Cyclic alternant codes induced by an automorphism of a GRS code[END_REF][START_REF] Berger | On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes and extended Goppa codes[END_REF][START_REF] Berger | Goppa and related codes invariant under a prescribed permutation[END_REF] several linear transformations that will serve us to obtain a family of quasi-cyclic codes starting from a unique quasi-cyclic code.

Definition 6 (Shortened code). Let C be a code of length n defined by a parity-check matrix H. Consider a subset J ′ of J n of cardinality n ′ < n and define H(J ′ ) to be the matrix obtained by deleting columns of H that are not in J ′ . The parity-check matrix H(J ′ ) defines the shortened code C (J ′ ) over J ′ .

Remark: Recall that for T a set of coordinates, if one denotes by C T the code C shortened in T and by C T the code punctured on T (deleting columns corresponding to coordinates of T ) then (C ⊥ ) T = (C T ) ⊥ . This equality relates a punctured code with its shortened dual.

The following lemma sums up the transformation we will apply on our codes: Lemma 1. Let C be a quasi-cyclic code of length n = ℓn 0 and of order ℓ defined by a parity-check matrix H = [H i,j ] where each H i,j is an ℓ × ℓ circulant matrix.

1. Let J be a subset of J n 0 and let H ′ be the parity-check matrix obtained after deleting circulant matrices H i,j such that j does not belong to J. The code defined by H ′ is a quasi-cyclic code of order ℓ.

Define the Kronecker product A ⊗ B of two matrices

A and B as the matrix [a i,j B]. Let a be an n 0 -tuple of elements in F q . The parity-check matrix H × (Diag(a) ⊗ I ℓ ) defines a quasi-cyclic code of order ℓ. 3. Assume that there exists α in F q such that α ℓ = 1, then H × I n 0 ⊗ Diag(1, α, . . . , α ℓ-1 ) defines the parity-check matrix of a quasi-cyclic code of order ℓ. 4. Let P π be a permutation in S n 0 , then the code defined by the parity-check matrix H × (P π ⊗ I ℓ ) is quasi-cyclic of order ℓ. 5. Set T ℓ as the cyclic shift defined by T ℓ (v) = (v ℓ , v 1 , . . . , v ℓ-1 ) for any v ∈ F ℓ q . Denote by T ℓ the cyclic group generated by T ℓ . Let P σ 1 , . . . , P σn 0 be n 0 permutations of T ℓ . The code defined by the following parity-check matrix is quasi-cyclic of order ℓ:

H ×    P σ 1 0 . . . 0 P σn 0    .
Definition 7. Any code obtained by successively applying transformations of Lemma 1 to a code C is denoted by C (J, a, α, P π , P σ 1 , . . . , P σn 0 ).

Generalised Reed-Solomon Codes

Definition 8. Let α be a primitive element of F q and assume that n = q -1. The Reed-Solomon code R k,n is the code of length n and dimension k over F q defined by the parity-check matrix

H =      1 α α 2 • • • α n-1 1 α 2 (α 2 ) 2 • • • (α 2 ) n-1 . . . . . . . . . . . . 1 α d-1 (α d-1 ) 2 (α d-1 ) n-1      (2) 
where

d = n -k + 1.
Reed-Solomon codes represent an important class of cyclic codes. It is well-known that d = nk + 1 is actually its minimum distance. Moreover, Reed-Solomon codes admit a t-bounded decoding algorithm as long as 2t ≤ d -1. They can also be seen as a sub-family of Generalised Reed-Solomon codes.

Definition 9. Let λ be an n-tuple of nonzero elements in F q where n < q and let v be an n-tuple of distinct elements in F q . The Generalised Reed-Solomon G k (v, λ) code over F q of length n and dimension k is the code defined by the following parity-check matrix where d = n -k + 1

H v,λ =      λ 0 λ 1 • • • λ n-1 λ 0 v 0 λ 1 v 1 • • • λ n-1 v n-1 . . . . . . . . . λ 0 v d-1 0 λ 1 v d-1 1 • • • λ n-1 v d-1 n-1      .
Generalised Reed-Solomon codes are decoded in the same way as Reed-Solomon codes by means of the classical Berlekamp-Massey algorithm.

Subfield Subcode

The subfield subcode construction is another very important way to obtain a new class of codes. For instance Goppa codes are subfield subcodes of generalised Reed-Solomon codes. In that particular case, they are also called alternant codes.

Definition 10. Let F q be subfield of F q 0 and let C be a code of length n over F q 0 . The subfield subcode C ′ of C over F q is the vector space C ∩ F n q .

Obviously, any subfield subcode of quasi-cyclic code of order ℓ is also a quasi-cyclic code of the same order. Another advantage of restricting ourselves to such subcodes is the possibility to obtain codes with a better minimum distance which hence enables to correct more errors.

Definition 11 (Alternant code). Let F q be a subfield of F q 0 and let G k (v, λ) be a Generalised Reed-Solomon code of dimension k over F q . The alternant code A (v, λ) over

F q of G k (v, λ) is the subfield subcode of G k (λ, v) over F q .

Description of the New Cryptosystem

The new variant of the MacEliece (or Niederreiter) cryptosystem we propose is not based on classical binary Goppa codes but rather on quasi-cyclic codes as in [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF]. These codes, which are a generalization of cyclic codes, offer the advantage of having a very compact representation. However it was recently proved in [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] that replacing quasi-cyclic codes in the McEliece cryptosystem does not resist to a total break. This was made possible mainly because the secret permutation that hides the structure of the secret quasi-cyclic code can be described with much less coefficients. The secret permutation is then recovered by simply solving an over-constrained linear system. In our new approach, we overcome this weakness by considering a more general kind of linear transformations which not only reorder the columns of the secret generator matrix but also delete most of them making their retrieval very hard in practice. We assume first that we have at our disposal a family of MDS quasi-cyclic codes that we know how to decode (in practice we will consider Generalized reed-Solomon codes). (We recall that a

[n, k, d] q code is Maximum Distance separable code if d = n -k + 1.)
The construction starts by randomly picking such a quasi-cyclic codes C 0 of length N = ℓN 0 , and dimension K and order ℓ over a finite field F q 0 . The code C 0 is equipped by t-bounded decoding algorithm γ. We also assume that there exists an element β of order ℓ in F q 0 . Figure 5 gives KeyGen algorithm of our variant. Encrypt and Decrypt algorithms are not given because they are exactly the same as those of the original Niederreiter (or MacEliece) encryption scheme. The goal of KeyGen algorithm is to construct a new quasi-cyclic code of length n = ℓn 0 (with n 0 << N 0 ) and order ℓ over a finite subfield F q ⊂ F q 0 with q 0 = q r . The subfield-subcode has dimension N -r(N -K) where r and N -K are chosen such that r(N -K) ∼ n r ℓ, for n r an integer which represents the number of rows needed to describe the quasi-cyclic matrix, in practice n r = 1, 2 or 3. This is done thanks to four operations.

1. First, deleting (N 0 -n 0 ) random block columns of circulant matrices of H ′ . We get hence a shortened code C 1 of length n = n 0 l. 2. Next, transforming C 1 by means of the transformations given in Lemma 1. We obtain a new code C 2 of length n. 3. Taking a subfield subcode of C 2 over F q in order to get the public quasi-cyclic code C of length n = n 0 ℓ and dimension n -r(N -K) (with r(N -K) ∼ n r ℓ). 4. The quasi-cyclic code obtained is described through its dual matrix of dimension r(N -K) which can be described through the ℓ-order quasi-cyclicity as a matrix H = [H i,j ] with 1 ≤ i ≤ n r and 1 ≤ j ≤ n 0 where H i,j is an ℓ × ℓ circulant matrix.

As we can see, the proposed cryptosystem uses circulant matrices to describe the codes. The public key is formed by an n r ℓ × n matrix over F q , where n = ℓn 0 , formed by n r × n 0 , ℓ × ℓ circulant matrices. It only needs n r ℓ(n 0 -n r ) log 2 q bits to be completely described in systematic form (See Section 5 for the obtained values).

Application to Generalised Reed-Solomon Codes

We have presented in Section 4.1 a general method to build a public-key cryptosystem from a family of quasi-cyclic codes. We give in this section how to effectively obtain quasi-cyclic codes. The idea is to select as in [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF] a family of cyclic codes equipped with an efficient decoding algorithm. A good candidate is the family of Reed-Solomon codes. From this family, we generate by means of the transformations defined in Lemma 1 many new quasi-cyclic codes. Recall that the resulting public Fig. 5. KeyGen algorithm of the new variant of the Niederreiter cryptosystem 1. Choose a security parameter κ 2. Choose N0, ℓ, q, n0, r, nr and t with n0 < N0 such that W f (q r , N, K, t) ≥ 2 κ and W f (q, n, k, t) ≥ 2 κ where N = ℓN0, (N -K)r ∼ nrℓ, n = ℓn0 and k = n -(N -K)r ∼ nnrℓ. Set q0 = q r . 3. Randomly pick a parity-check matrix H0 of a quasi-cyclic code C0 of length N , dimension K and order ℓ over Fq 0 4. Randomly pick a n0-subset J ⊂ JN 0 5. Delete from H ′ the circulant matrices H ′ i,j such that i ∈ J. Set H 0 the resulting matrix. 6. Randomly pick an n0-tuple a of non zero elements of Fq 0 . Set H 1 = H 0 × (Diag(a) ⊗ I ℓ ) 7. Let β be an element of Fq 0 of order ℓ. Randomly pick an integer 1 ≤ m ≤ ℓ -1 and set ] where H * i,j is an ℓ × ℓ circulant matrix 12. Randomly pick an invertible nrℓ × nrℓ matrix S = [S * i,j ] for 1 ≤ i, j ≤ nr and Si,j a circulant ℓ × ℓ matrix. Set H = S × H * . (Alternatively H can be put in standard form to decrease the size of the but the encryption algorthim has to be slighlty modified (see [START_REF] Biswas | Mceliece cryptosystem implementation: theory and practice[END_REF]). 13. Output pk = (H , t) and sk = (S, H 0, J, a, m, Pπ, Pσ 1 , . . . , Pσ n 0 ) key is a randomly shortened alternant code denoted by G (J, a, β m , π, σ 1 , . . . , σ n 0 ) (Definiton 7) when the underlying Reed-Solomon code is G . The matrix H 0 is therefore defined by Equation (2).

H 2 = H 1 × " In 0 ⊗ Diag(1, β m , β 2m . . . , β (ℓ-

Suggested Parameters and Performances

Suggested Parameters

We illustrate our construction with different sets of parameters in Table 1. The table sums up the different parameters, the security entry is computed from the Canteaut-Chabaud algorithm (log 2 (W f (q, n, k, t))), also taking account of the use of the order of quasi-cyclicity which can be used with this attack simply by shifting the vector to decode (notice it only improves the attack linearly by the order of quasi-cyclicity l and that until now this is the only way to use quasi-cyclicity for the decoding attack -we also point the fact that for NTRU no real attack has been found based on the quasi-cyclicity of the lattice). We give parameters with decoding security from 2 80 to 2 116 with for instance public key size from 6, 500 bits for a 2 80 security to 11, 160 bits for a 2 107 security. These parameters show the adaptability of our system with a size of key which increases moderatly relatively to the security of the system.

Remark that as usual for McEliece cryptosystem the parameters are easily scalable. The two cases we consider are generalised Reed-Solomon codes over F 2 20 and F 2 16 . In the following cases the codes are generated by quasi-cyclicity from one, two or three rows.

Example: Consider set of parameters A 16 : 2 16 -1 = 51 × 1285, hence we can take l = 51, N 0 = (2 16 -1)/51 = 1285. We consider the subfield F 2 8 of F 2 16 , hence r = 2. We take a GRS cyclic code C 0 with t = 25, which gives N = 2 16 -1 and K = 2 16 -1-50, hence we get r(N -K) = 100 ∼ 2.ℓ with n r = 2 (the number of row eventually needed). Then we take n 0 = 13 and keep only 13 blocks of size ℓ among the 1285 blocks possible. We then obtain a quasi-cyclic GRS [13.51, 13.51-50, t = 25] 2 16 code of order 51. We then apply linear transformations of Lemma 1 to obtain a code C 1 , and take the subfield subcode of C 1 from F 2 16 to F 2 8 . We hence obtain a code [13.51, 13.51 -100, t = 25] 2 8 = [663, 561, t = 25] 2 8 code, we can check from the Canteaut-Chabaud algorithm that the security (taking account of the quasi-cyclic order) is 2 80 and the size of the public key in systematic form is 8, 980 bits.

Table 1. Suggested parameters of generalised Reed-Solomon codes for different security levels Remark 1. The number of possible codes by our construction is very large: N 0 n 0 2 pn 0 n 0 ! for F 2 p the field of the larger code. For instance for parameters A 16 we obtain 2 526 possible codes. The quasicyclic structure of the codes permits to go easily from a McEliece type public key (a generator matrix of code) to a Niedereiter type public key (a dual matrix of the code).

N = N0ℓ, K = N -2t, d = 2t + 1 Public code C [n, k, ≥ 2t + 1] q0 ℓ N0 t Parameter n k q n0 n -k

Performance

We implemented the encryption with the system A 20 on GF (2 8 ) on 2.4 Ghz computer with 64 bits architecture. The multiplication over GF (2 8 ) was tabulated in cache memory and all operations were done octet by octet as a matrix vector product so that eventually the 64 bits structure was not really enhanced. Overall the encryption speed was 15Mo/s, which corresponds to about 128 cycle per octet.

This speed compares well with the implementation of [START_REF] Biswas | Mceliece cryptosystem implementation: theory and practice[END_REF] which speed was inferior with a factor 2 to what we obtain. Moreover our implementation can still be improved (probably by a factor 2 or 3) by taking account of the cyclic structure. Indeed rather than tabulating the multiplication over the field (GF (2 8 ) in this case) it is possible to put in cache memory the multiplication of the first row of the code by all elements of the base field. Since all the rows of the generator matrix are obtained as cyclic shift from the first row it then possible to deduce all multiplied rows from shifts of the multiplied first rows in cache. So that it is possible to profit by the 64 bits structure by summation (but in 64 bits) of the multiplied shifted first rows and even enhance our performance. For decryption we obtain similar speed of a few hundred cycle per octet as in [START_REF] Biswas | Mceliece cryptosystem implementation: theory and practice[END_REF] although we did not yet optimized our implementation.

Our implementation speed compares of course very well with RSA-1024 and Elliptic Curves. An interesting question is the comparison with NTRU. Although exact performance results are hard to find, in term of encryption speed our system seems better with a factor 10 by comparison to known performance of NTRU [START_REF] Biswas | Mceliece cryptosystem implementation: theory and practice[END_REF]. These good results comes from the fact that besides the matrix-vector product in NTRU, one also needs to encrypt vectors with given weight which becomes in fact the main cost (notice that the same problem arises for Niederreiter version of the scheme, but in our case we only considered the McEliece scheme).

Security Analysis

In this section we analyze the security of the new variant proposed in Section 4.1. We show that this new system based on Reed-Solomon codes is not only resistant to a total break but also satisfies the OW-CPA property.

Total Break

We review now all the existing attacks that aim at recovering the private key from public data. These attacks which are also called structural attacks are listed below.

Brute force attack Recall that the private key is sk = (J, a, m, π, σ 1 , . . . , σ n 0 ) The set J which is a subset of J N 0 of cardinality n 0 . The vector a is n 0 -tuple of nonzero elements in F q , the permutation π belongs to S n 0 and each σ i is in T ℓ . Note that a 0 can be chosen to be equal to 1. Thus the private key space contains n 0 !q n 0 -1 ℓ n 0 +1 N 0 n 0 elements. This implies that the private key is out of reach by exhaustively enumerating all the elements.

Attack exploiting the code equivalence. Another possible attack is to exploit the fact that the public code is equivalent (Definition 2) to a subcode of a Reed-Solomon code. One may think to employ the support splitting algorithm. However, one has first to find out the vector a and the integer m. Moreover, one has also to guess the set J before applying this strategy. But the number of such sets is again too high for being at reach by brute force search. Actually, we can show that this issue forms an intractable problem called the equivalent punctured code problem. It was first proposed in [START_REF] Wieschebrink | Two NP-complete problems in coding theory with an application in code based cryptography[END_REF]. Surprisingly, it shows that if one allows to delete some random columns then the problem becomes an NP-complete problem [START_REF] Wieschebrink | Two NP-complete problems in coding theory with an application in code based cryptography[END_REF].

Definition 12 (Equivalent shortened code problem). Given an r × n matrix H over F q and an r × n ′ matrix H ′ over F q with n ′ < n, does there exist σ in S n ′ and J ⊂ J n of cardinality n ′ such that H ′ = H(J) × P σ ? Unlike the permutation equivalence problem which is efficiently solved in practise by the support splitting algorithm, there is no efficient algorithm that solves the equivalent shortened code problem. The security of our new McEliece variant is related to the existence of such an algorithm.

Attack exploiting the generalised Reed-Solomon structure. Sidelnikov and Shestakov proved in [START_REF] Sidelnikov | On the insecurity of cryptosystems based on generalized Reed-Solomon codes[END_REF] that it is possible to completely recover the structure of Generalised Reed-Solomon codes with time complexity in O(n 3 ) where n is the length of the public code. This attack can be used against any type of generalized Reed-Solomon code but uses the fact that the underlying matrix of the Reed-Solomon code is completely known. In our case we do not directly use a GRS code but a randomly shortened subfield subcode, which hence makes this attack unfeasible. It is worthwhile remarking that if such an efficient (or a generalized attack) was to exist for alternant codes, then it could be potentially used to break the McEliece cryptosystem since Goppa codes are a special case of binary alternant codes.

Attack exploiting the quasi-cyclic structure. Recently a new structural attack appeared in [START_REF] Otmani | Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes[END_REF] that extracts the private key of the variant presented in [START_REF] Gaborit | Shorter keys for code based cryptography[END_REF]. This cryptosystem takes a binary quasi-cyclic subcode of a BCH code of length n as the secret code. The structure is hidden by a strongly constrained permutation in order to produce a quasi-cyclic public code. This implies that the permutation transformation is completely described with n 2 0 binary entries where n 0 is the quasi-cyclic index rather than n 2 entries. The attack consists in taking advantage of the fact that the secret is a subcode of completely known BCH code. One generates linear equations by exploiting the public generator matrix and a known parity-check matrix of the BCH code so that one gets an over-constrained linear system satisfied by the unknown permutation matrix.

We show how to adapt this attack to our variant. We start from a parity-check matrix H 0 of the Reed-Solomon code R K,N . We add (N 0 -n 0 )ℓ zero columns to the public parity-check matrix H in order to form another parity-check matrix H. By definition, we know that there exist an integer 1 ≤ m ≤ ℓ -1 and an N 0 -tuple a of elements in F q 0 (not necessarily nonzero) such that the code C defined by H is permutation equivalent to a subcode of the generalised Reed-Solomon code defined by the parity-check matrix H 2

H 2 = H 0 × (Diag(a) ⊗ I ℓ ) × I n 0 ⊗ Diag(1, β m , β 2m . . . , β (ℓ-1)m ) = H 1 × (Diag(a) ⊗ I ℓ )
where

H 1 = H 0 × I n 0 ⊗ Diag(1, β m , β 2m . . . , β (ℓ-1)m
) . In other words, given a (quasi-circulant) generator matrix G of C , we would like to find θ in S N 0 and γ 1 , . . . , γ n 0 in T ℓ such that the following equation holds:

H 1 × Diag(a) × P θ ⊗ I ℓ ×    P γ 1 0 . . . 0 P γn 0    × G = 0. (3) 
For the sake of simplicity, we assume that m is known and P γ i = I ℓ . If we set Γ = P θ × Diag(λ) then an attacker has to solve the linear system given in Equation ( 3) where the unknowns are the N 2 0 entries of Γ . It is important to note that there do exist a solution to Equation (3) that reveals both a and the set J. Each row of G must satisfy N -K = ℓ(N 0 -K 0 ) parity equations over F q 0 . But if we decompose each row of H 1 according to a basis Ω of F q 0 over F q , we actually get r(N -K) = rℓ(N 0 -K 0 ) parity equations. So the total number of equations is r(N -K)k = rℓ 2 (N 0 -K 0 )k 0 where we assume that k = k 0 ℓ. For instance if we consider the parameters A 16 we obtain 594, 441 unknowns and 61, 600 equations. An attacker has therefore to reduce the number of unknowns in order to guess Γ . However, with rℓ 2 (N 0 -K 0 )k 0 linear equations, an attacker can potentially guess any secret δ × δ matrix where δ = ℓ r(N 0 -K 0 )k 0 . Another strategy is then to set N 0 -δ random columns of Γ to zero and then to solve the resulting linear system. This method would give the right solution if only if the n 0 columns that intervene in the construction of the shortened alternant code are not set to zero. The success probability of this method is therefore ( N 0 -n 0 δ-n 0 ) ( N 0 δ )

. Additionally, for each random choice, one has to solve a linear system with a time complexity O(s ′2 δ 3 ) with coefficients in F 2 s ′ . In practice this attack does not give better results than direct decoding attack.

On the One-Wayness

We prove in this section that the primitive of our variant is also OW-CPA under the assumption that it is computationally impossible to distinguish a random quasi-cyclic code from an alternant quasicyclic code. We show that decoding an arbitrary quasi-cyclic code is also an NP-Hard problem. For doing so, we propose another decisional problem called quasi-cyclic syndrome decoding. We prove that this new problem is also NP-Complete.

Definition 13 (Quasi-cyclic syndrome decoding). Given ℓ > 1 (we avoid the case l = 1 which corresponds to a degenerate case) matrices A 1 , . . . , A ℓ of size r * × n * over F q , an integer w < ℓn * and a word z in F ℓr * q . Let A be the ℓr * × ℓn * matrix:

A =      A 1 • • • • • • A ℓ A ℓ A 1 • • • A ℓ-1 . . . . . . . . . . . . A 2 • • • A ℓ A 1     
Does there exist e in F ℓn * q of weight wt(e) ≤ w such that A × e T = z?

Proposition 1. The quasi-cyclic syndrome decoding problem is NP-Complete.

Proof. We consider an instance H, w and z of the syndrome decoding problem. We define w * = 2w, the 2r-tuple z * = (z, z) and the following 2r × 2n matrix A:

A = H 0 0 H .

Clearly A, z * and w * are constructed in polynomial time. Assume now that there exist e in F n q of weight wt(e) ≤ w such that H × e T = z. Then wt(e * ) ≤ w * and A × e * T = z * .

Conversely assume that there exists e * in F 2n q of weight wt(e * ) ≤ w * such that A × e * T = z * . If we denote e * = (e 1 , e 2 ) where e 1 is formed by the first n symbols and e 2 by the last n symbols. Obviously we have either e 1 or e 2 of weight ≤ w * /2 and for both of them H × e j T = z.

This result ensures that in the worse decoding random quasi-cyclic codes is a difficult problem. One may think that classical algorithms can be modified by taking into account the quasi-cyclic structure of the codes. This fact can be favorably used to indeed improve performances of generic algorithms, and one can reasonably expect to decrease by a factor the order of quasi-cyclicity ℓ the work factor of the general decoding algorithms. Note that the proposed parameters in Table 5.1 take into account this fact.

Conclusion

In this paper we presented a new way to reduce the size of the public key for code-based cryptosystems like McEliece or Niederreiter schemes by the use of quasi-cyclic alternant codes and very strongly punctured codes. The use of quasi-cyclic codes permits to reach a public key of as low as 6500 bits for a security of 2 80 or 11,000 bits for 2 107 . We prove the NP-completeness of decoding quasi-cyclic codes. An implementation of our scheme ran at 120 Mb/s for encryption speed which makes it far better than RSA or NTRU cryptosystems (see [START_REF] Biswas | Mceliece cryptosystem implementation: theory and practice[END_REF] for comparisons). Such low parameters together with the high speed of the system open the doors to new potential applications for code-based cryptography in smart cards for instance, where such an algorithm can be used for key exchange or authentication.
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 1 Quasi-cyclic Codes Definition 4. A circulant matrix M is an ℓ × ℓ matrix obtained by cyclically right shifting the first row:

  1)m ) " 8. Randomly pick Pπ ∈ Sn 0 . Set H 3 = H 2 × (P π ⊗ I ℓ ) 9. Randomly pick Pσ 1 , . . . , Pσ n 0 in T ℓ . Set Choose a subfield Fq ⊂ Fq 0 Let Ω = {ω1, . . . , ωr} be an arbitrary basis of Fq 0 over Fq. Decompose each entry of H 4 according to Ω. Set H 5 the resulting nrℓ × n matrix with n = ℓn0 11. Transform H 5 into an nrℓ × n matrix H
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