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LIPSCHITZ REGULARITY FOR CENSORED
SUBDIFFUSIVE INTEGRO-DIFFERENTIAL EQUATIONS
WITH SUPERFRACTIONAL GRADIENT TERMS.

GUY BARLES AND ERWIN TOPP

ABSTRACT. In this paper we are interested in integro-differential elliptic
and parabolic equations involving nonlocal operators with order less
than one, and a gradient term whose coercivity growth makes it the
leading term in the equation. We obtain Lipschitz regularity results
for the associated stationary Dirichlet problem in the case when the
nonlocality of the operator is confined to the domain, feature which is
known in the literature as censored nonlocality. As an application of this
result, we obtain strong comparison principles which allow us to prove
the well-posedness of both the stationary and evolution problems, and
steady/ergodic large time behavior for the associated evolution problem.

1. INTRODUCTION.

In [8], the authors, in collaboration with O. Ley and S. Koike, investigate
regularity properties for subsolutions of integro-differential stationary equa-
tions with a super-fractional gradient term, providing analogous results for
nonlocal equations to the ones of Capuzzo-Dolcetta, Porretta and Leoni [14]
for superquadratic degenerate elliptic second-order pdes (see also Barles [1]).
In the present work, our aim is to obtain analogous results but for integro-
differential operators of order o < 1, still with a super-fractional gradient
term, but in the (intriguing) case of censored operators set in bounded do-
mains.

In order to be more specific, we consider the model problem

(L) )+ (~A)7u(e) + ()| Du(a)|™ = f(z) in©,

where Q c RV is a bounded domain, A > 0 and b, f : Q) — R are continuous
functions with b(x) > 0 on . For o € (0, 2), the integro-differential operator

(—A)Z/ ? is known in the literature as the censored fractional Laplacian of
order o, and is defined through the expression

(1.2)  (=A)7%u(z) = Cny P.V. . Q[u(x +2) — u(@)]]z| "N d,
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where P.V. stands for the Cauchy principal value and Cy, > 0 is a well-
known normalizing constant, see [13, 20]. The “censored” appellative is
referred to the fact that the integration on the set {z + z € Q} makes the
jumps outside 2 being indeed censored.

In the scope of this paper, besides the mentioned censored nonlocality
feature of the problem, the main assumptions are 0 < o < 1 (subdiffusive
operator of order less than 1), and m > o (superfractional coercivity con-
dition). The study of this case is motivated by two principal reasons: first,
under such conditions we are able to obtain regularity properties that are
(maybe surprisingly) more sophisticated than in [8]; indeed, we are not only
able to obtain global Holder continuity but also global Lipschitz regularity
for bounded subsolutions of (1.1). Secondly, we obtain comparison prin-
ciple and well-posedness of the Dirichlet problem both for stationary and
evolution equations, namely

(1.3) up + M4 (=A) 2w+ b(z) |Du™ = f(z) in Qx (0,00).

Concerning Dirichlet problems for nonlocal equations, we remark that in
general the Dirichlet boundary condition has to be imposed on the com-
plementary of ). Typically, if we replace (—A)Z” in (1.1) or (1.3) by the

fractional Laplacian (—A)?/? defined as

(=) 2u(z) = Cno PV | [u(z + 2) — u(z)]|z|~ N+ dz,
RN
then this requires the value of the function in the whole space to be evalu-
ated, and the Dirichlet problem reads

(1.4) Ma(x) + (~A)72u(x) + b(@) [ Dul™ = f(&) in,

' u = in Q°.

On the contrary, in the censored case, since we use only the values of
in €2, we can complement (1.1) with a classical boundary condition

(1.5) u=¢ on 08,

for a boundary data ¢ € C(99).

A third interesting question that can be handled with the development of
regularity and comparison properties on the current setting is the study of
the large time behavior for Cauchy-Dirichlet problem associated to (1.3). We
both study the cases when the censored parabolic problem has a steady state
asymptotic behavior, and the case of the ergodic large time behavior, situ-
ation in which we have to solve a stationary problem with state-constraint
boundary condition (the ergodic problem).

We want to mention immediately a very important point related to our
regularity and well-posedness issues (and, as a consequence, the large time
behavior issues) and which justifies our choice of the parameters 0 < o < 1
and m > o : under these conditions, we are able to solve the censored
Dirichlet problem in its full generality, but this is because we use in a key
way the regularity result for (1.1). On the contrary, in the case o > 1
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and m > o, we are unable to prove that the censored Dirichlet problem is
well-posed, even with the regularity results of [8].

Now we detail the different points discussed above, starting with regu-
larity. At this respect, we remark the results given in [14, 1] are concerned
with superquadratic second-order degenerate elliptic problems like

(1.6) M — Tr(A(x)D*u) + b(z)|Du|™ = f(z) in Q,

ie. when m > 2. In [14, 1], the authors prove that if v : & — R is a
bounded viscosity subsolution of (1.6), then wu is locally Holder continuous
with exponent « := (m—2)(m—1)"! and the local Hélder seminorm depends
only on the data (L* bounds on A, b and upper bound on f) and ||\u"||oco,
where 4~ = min(u, 0).

In many interesting situations (A = 0 or cases where we have a bound
on Au which depends only on the datas), this Holder seminorm does not
really depend on any L* bound nor oscillation of « and actually provides
an estimate on the L° norm of u. The Hélder exponent (m—2)(m—1)"" just
comes from a simple balance of powers in (1.6) and this Holder regularity
can be extended up to the boundary of the domain if it is regular enough.

This strategy was recently applied in [8] to get regularity results to integro-
differential problems for which (1.1) is a particular case. However, the pres-
ence of the nonlocal term has an effect on the results in two main directions:
first, the global Holder exponent found by this method does not follow any-
more the “natural” balance of powers in (1.1). Related to this, we must
take into account the fact that (super)solutions to superfractional nonlocal
problems (censored or not) may not satisfy the boundary condition in the
classical sense (we come back later to this fact in a more detailed way).
This creates a difficulty which is more evident in the non-censored setting
because in this framework we must consider the evaluation of the nonlocal
term on functions developing boundary jump discontinuities, and this gives
way to unbounded terms near the boundary. A second consequence of the
non locality of the operator is that the Holder regularity results of [8] do not
provide, in general, an estimate on the L* norm of u but on the contrary
rely on this L° norm. This is where censored problems come into play: in
these cases, and if m > 1, the Holder regularity results of [8] provide an
estimate on the L> norm of u (or more precisely on its oscillation).

In this article, we obtain the global Holder regularity results of [8] in the
case 0 < 1 and m > o through a simpler proof, and we extend these results
to global Lipschitz continuity for bounded subsolutions to (1.1). As in [8],
the censorship of the operator leads us to a control of the oscillation for
subsolutions to (1.1) when m > 1.

The next step is to consider the well-posedness of the (stationary and
evolution) nonlocal Dirichlet problem, and as we already mentioned above,
we must deal with the presence of loss of the boundary condition. We shall
mention that this phenomena also arises in local pdes like (1.6) because
of the leading effect of the gradient term. Indeed, the classical Dirichlet
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problem (with boundary data being really satisfied by the solution) cannot
be solved in general and one has to use the generalized Dirichlet problem
in the sense of viscosity solutions. We refer to the Users’ guide [17] and
references therein for an introduction of this concept and to [6, 24] for the
applications to (1.6)-(1.5) where it is shown that the generalized Dirichlet
problem is well-posed in C(2) or C(2 x [0,T]), and with examples where
the solution is different from ¢ at points on 0f).

For nonlocal equations, the possible loss of the boundary conditions was
first studied systematically in Barles, Chasseigne and Imbert [4] where an
explicit example of such loss of boundary condition is provided for a non-
censored operator. The first study of Dirichlet problems for nonlocal equa-
tions with loss of boundary conditions was done in [27], where well-posedness
for non-censored nonlocal Hamilton-Jacobi problems which are not necessar-
ily coercive in the gradient are obtained, and then in [12] in the non-censored
but coercive case. As it can be seen in [12, 27|, the non-censorship of the
operator allows to incorporate the exterior data ¢ in (1.4) into the equa-
tion. Roughly speaking, this procedure creates “new” terms coming from
the nonlocal operator, including an extra discount factor that turns out the
problem to be strictly proper, from which the solvability of the Dirichlet
problem can be obtained even if the A term is negative.

The current censored setting shares some aspects of the pde framework
since the problem is really set on © and no extra information outside 2 comes
into play. However, the censorship of the operator must be regarded as an x-
dependence, and it is known that such dependence creates special difficulties
not only in the study of well-posedness [7], but also in regularity [3]. It is
because of this difficulty that the case ¢ > 1 is not treated in the full
generality neither for Dirichlet nor for Neumann problems (see [5]). Of
course, in the Dirichlet case, the difficulty comes from the loss of boundary
conditions, otherwise a more standard comparison result is enough to prove
the well-posedness : this is for example the case for o > 1,m < 0.

In this article the Lipschitz continuity of subsolutions allows us to turn
around these difficulties and to obtain a strong comparison principle for (1.1)-
(1.5) and its evolution counterpart. In this last case, we have to use a (clas-
sical) regularization in time to reduce to a situation where we have Lipschitz
continuity in x. The key point is that this regularity permits to control the
estimates of the nonlocal term when it is of order o < 1.

We remark that the global Holder regularity results of [8] would not be
enough to treat the case ¢ > 1 and to treat the case ¢ < 1 would have
been more involved. Moreover, we recall that the generalized notion of
solution involves an evaluation of the equation on the boundary, and such an
evaluation has no clear meaning in superdiffusive problems (that is when o >
1 in (1.2)) mainly because of the asymmetry of the domain of integration.
In fact, some special requirements on the test functions must be considered
in this context, see [5, 20].
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We finish with the application of regularity and comparison results in
the study of large time behavior of the solutions of the evolution problem.
In the case when A > 0, this problem has the expected convergence to
the steady-state solution, while if A = 0 and m > 1, we prove that the
asymptotic behavior of this problem resembles the second-order case studied
by T. Tchamba in [26], i.e. a suitable ergodic asymptotic behavior

u(z,t) = —ct + uso(x) + o(1) ,

where the function ue, is a solution to the ergodic problem.

The steady-state asymptotic behavior is closely related with the unique-
ness of the associated stationary problem and the strict positiveness of A
is a nondegeneracy condition for this problem. It is interesting to compare
this steady-state behavior with the corresponding asymptotic behavior in
non-censored problems. As we mentioned above, the non-censorship of the
operator implies the existence of an extra discount factor leading to the men-
tioned nondegeneracy condition even if A is negative, provided the nonlocal
operator recovers sufficient information from Q°.

A qualitatively different asymptotic behavior is observed in the case A =
0 and m > 1, case in which we obtain robust regularity results leading
to the solvability of the ergodic problem similarly to the periodic setting,
where no boundary is considered, see [2, 8]. However, here we face an
ergodic problem which is a state-constraint problem, as in [26]. The study
of the ergodic problem is closely connected to the study of the (stationary)
Dirichlet problem, while, again as in [26], the convergence of u(x,t) + ct
t0 U relies on a Strong Maximum Principle type argument. The Strong
Maximum Principle we use is inspired by Coville [16] (see also Ciomaga [15]),
and it is more related with a topological property of the the support of the
measure defining the nonlocal operator than with its ellipticity.

The article is organized along the same lines as this introduction : in
Section 2, we provide our regularity results, proving first local Lipschitz
continuity, then global Holder regularity results and finally a global Lipschitz
continuity result. Section 3 is devoted to state and prove the main Strong
Comparison Result and to deduce the well-posedness of the initial boundary
value problem. In Section 4, we study the ergodic problem, obtaining the
existence and uniqueness (up to a constant) of the solutions invoking the
Strong Maximum Principle. Finally we describe the different large time
behavior of the solutions of the initial boundary value problem in Section 5.

Basic Notation and notion of solution. For x € RY and r > 0, we
denote B, (x) the open ball centered at = with radius r, B, if z = 0, and B
if additionally r = 1.

For z € O, we denote dp(x) = dist(x,00). In the case O = Q we simply
write d(x). For § > 0, we denote O5 = {z € O : do(z) < ¢6}. By the
smoothness of the boundary of the domain, we can find dg > 0 such that
the distance function is of class C? in Qs,, see [21].



We use the notion of viscosity solution with generalized boundary condi-
tion, see [17] for an introduction of this notion in the second-order setting
and [4] in the nonlocal setting. For stationary problems set in a domain
Q C RY, for a subsolution we mean an upper semicontinuous (usc for short)
function on Q which satisfies the viscosity inequality in € with general-
ized boundary condition on 9€2. We analogously define a supersolution as
a lower semicontinuous (lIsc for short) function on Q satisfying the corre-
sponding viscosity inequality in 2 with generalized boundary condition on
0f). For a viscosity solution we mean a function which is both a viscosity
sub and supersolution.

We consider the corresponding notion of viscosity solutions for the para-
bolic setting.

2. REGULARITY FOR THE STATIONARY PROBLEM.

In this section, we are going to provide general regularity results for equa-
tions in which the nonlocal operator has the general form

(2.1) Z(u,z) = /]RN [u(x + 2) — u(z)|ve(dz),

for x € Q, v, a nonnegative regular measure of RV, and for any bounded
function u : RN — R which has a sufficient regularity at x depending on
the singularity of the measure at z = 0. Because of the assumptions we are
going to introduce below, Z(u, x) is well-defined if u is C! in B,.(x) for some
r > 0.

To be more precise, we describe the assumptions on the nonlocal term.

(MO) If Q, = U,eqir +supp{v.}}, the family {v,}, satisfies
0, C Q.

Assumption (M0) means that, for each x € Q, x + 2z € Q if 2 € supp{vz }
and then the domain of integration in (2.1) can be replaced just by Q — x.
For this reason we say the nonlocal operator 7 has a censored nature since
the jumps outside ) are actually censored.

Next we impose restrictions on the possible singularities of the measures
Vg.

(M1) There exists a constant C; > 0 and o € (0,1) such that, for all

B €10,2] and all § > 0, we have

sup | min{1,[2|"}v,(dz) < Cihg 4 (9),

zeQ J B
where hg ;(6) is defined for § > 0 as
§p—o iff<o
hgo(d) =14 |In(d)|+1 ifB=0c
1 if B > o,

and where we use the convention |z|? = 1,z € RN when 8 = 0.
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(M2) There exists Co > 0 and o € (0,1) such that, for all 5 € (0,2] and
all 6 € (0,1) we have

sup/ 2P (dz) < Co6°77.
z€Q J Bs

Roughly speaking, assumptions (M1) and (M2) say Z has at most order
o € (0,1). Below we always assume that (M1) and (M2) are satisfied with
the same o.

Examples of censored nonlocal operator satisfying (M0)-(M2) are the cen-
sored fractional Laplacian of order o (see (1.2)) and regional operators de-
pending on the distance to the boundary of the domain (see [23]), typically

(2.2) Z(u,x) = /B [u(z 4 2) — u(x)]]z| N+ dz.
()

For viscosity evaluation purposes, for aset D C RY, 2 € Q and ¢ € C(9),
we define

T1D)(6,2) = /D (6(x + 2) — $(@)wa(da),

each time the integral makes sense.
In what follows, we are going to argue on the simpler equation

(2.3) —ZI(u,x) + bg|Du|™ = Ag, in Q,

where by > 0 and Ag > 0.
We start with the following preliminary result concerning the interior
regularity for bounded subsolutions of (2.3).

Lemma 2.1. Let T be a nonlocal operator as in (2.1) satisfying (MO0)-(M2)
with the same o € (0,1), and m > o. If u is an usc, bounded viscosity
subsolution to Equation (2.3), then, there exists K,rq > 0 such that, for all
0 <r<rg, we have

(@) - uly)| < Kr-ta—yl, for allz,y € Q\ Q.
The constant K only depends on the data and oscg(u).

Proof: For x € (), we consider the function

Dy iy = uly) — de(y), yel

with ¢, (y) := u(z) + Kd~'(z)|x — y| and K > 0 to be fixed later. Our aim
is to prove that ®,(y) < 0 for any y € € for some K large enough which
does not depend on x. Indeed, if this is true for any z € Q\ Q,, the result
is proved.

Note that the function ®, is usc on 2 and therefore it attains its (non-
negative) maximum at a point §y € Q. We argue by contradiction assuming
that ®,(g) > 0. Since ®,(z) = 0, we clearly have § # x.



Furthermore, if we take K > 4oscg(u), from the inequality @, (z) < ©,.(7)
we see that § € €. Indeed, it implies

Kd(x) Yz — | < 20scq(u) ,

and therefore |z — | < d(z)/2, which leads to d(y) > d(x)/2.
We can write the viscosity subsolution inequality for uw at 4 since ¢, is
smooth enough at § and, for each 0 < § < d(x)/2, we have

(2.4) —Z[Bs|(¢2,9) — Z|B§)(u,g) + bg K™d™™(z) < Ap.
By the Lipschitz continuity ¢, and (M2) we readily get
I[Bs)(¢2,7) < CoKd ™" (x)6'7,

where the constant C appears in (M2). On the other hand, by (M1) we
have

Z[B§](u,y) < 2C1oscq(u)d?,
and then, replacing these estimates into (2.4) we obtain
(2.5) boK™d(z)™™ < CoKd(z) 1677 + Choscg(u)d™7 + Ay.
and we end up with

K™ < c(Kd(x)m—lal—ff + oscq (w)d(z)™5 + d(m)m),

for some constant C' > 0 depending only on the data.
Now we choose 6 = (1 + oscq(u))d(z)/K (assuming that K > 2(1 +
0scq(u))) in the above expression which becomes

K™ < C<KU(1 4 oscq (u)) 7 d(x)™ 7 + 1),

From this last inequality and since m > o, we conclude the result by
choosing K large enough to get a contradiction. We point out that the
above analysis drives us to an estimate of the size of K like

C max{(1 + oscg ()= m=9) 1 4+ oscq(u)},
for some C' > 0 not depending on r nor oscg(u). The proof is complete. [
The next lemma improves the Lipschitz seminorm.

Lemma 2.2. Assume that Q is a bounded, C'-domain, let I be a nonlocal
operator as in (2.1) satisfying (MO0)-(M2) with the same o € (0,1), and
m > o. If u is an usc, bounded viscosity subsolution to Equation (2.3),
then, there exists C,rg > 0 such that, for all 0 < r < rg, we have

[u(z) —uly)] < Cr=7/™|z —y|  forz,y € Q\Q,

where the constant C' depends on the data and the constant K of Lemma 2.1.
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Proof: From Lemma 2.1 and Rademacher’s Theorem, we know that any
bounded subsolution of (2.3) is differentiable a.e. in . Hence, we can
evaluate the equation a.e. and therefore we can write

bo|Du(x)|™ < Ag+ Z(u,x) a.e. in Q.
Writing
I(u,x) = Z[Bj ol (u; ) + I[By(z) 2] (u, ),
by (M1) and (M2) we arrive at

bo| Du(z)|™ < Ag + Coscg(u)d(z)™7 + Cd(x)l_" essup {|Du(y)|},
YEBy(a)/2(®)

for some C > 0 not depending on x, K or oscg(u). Applying Lemma 2.1
over |Du(y)| we conclude

(2.6) |Du(z)| < Cd(z)~/™,
where
(2.7) C=CQ1+K)Y/m,

with C' > 0 depending on the data, and K is given by Lemma 2.1.
The result is a direct consequence of this inequality. In fact, consider
0 < r < min{dy, 70}, where r¢ is given in Lemma 2.1 and d¢ is such that
the distance function is smooth in {2s,. We recall that, for any = € Qj,,
there exists a unique “projection” & € 9 such that d(z) = | — | and Z is
equal to = z — d(z)Dd(z). The “” notation always denotes below such a
projection.
Let z,y € Q\ Q,. If |z —y| < r/2, then we have
[z,y] :={tz+ (1 —-t)y:t e (0,1)} C Q.
Moreover, for each z € [z,y] we have d(z) > r/2. In fact
d(z) =d(tz + (1 — t)y) = d(x) + (d(tz + (1 — t)y) — d(z))
Zd(x) — |z — (tr + (1 = t)y)|
>d(z) — (1 - t)|lz - y|
>r—r/2(1 —t),
concluding d(z) > r/2 since t € [0,1]. We use this in the following formal
computation (arguing as if u were C!, but the justification is more than
classical) together with (2.6) to write down
1

u(z) —u(y) = / %u(tw + (1 —t)y)dt
0

1
gc/d(tm + (1= b)) ™ — yldt
0

<C min{d(z),d(y)} /™ |z —y|,
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implying that
(2.8) [u(z) = u(y)| < Cr=/™|z —y|.

On the other hand, if |z — y| > r/2, the only difficulty is close to the
boundary and we may assume d(z),d(y) < d9. Then, we denote xg,yo € 2
as the points such that g = Z, 49 = y and d(z¢) = d(yo) = dp. Then, we
have

(2.9)  u(z) —uly) = (u(r) — ulzo)) + (u(zo) — ulyo)) + (ulyo) — u(y))-

For the first and third term on the right hand side of (2.9) we have clearly
[, z0], [y, yo] C 2 and then we can apply the same argument leading to (2.8)
to conclude

[u(@) — u(wo)|, [uly) —ulyo)| < Cr=/™|a —y|.

On the other hand, for the second term of the right-hand side of (2.9) we
apply Lemma 2.1 and the regularity of the boundary to conclude

lu(zo) — u(yo)| < Clz — y|

with a constant C' independent of . This concludes the proof. O
With this last lemma we are in position to prove the Holder regularity up
to the boundary.

Proposition 2.3. (GLOBAL HOLDER ESTIMATES) Assume that § is a
bounded, C*-domain, let T be a nonlocal operator as in (2.1) satisfying (M0)-
(M2) with the same o € (0,1), and m > o. If u is an usc, bounded viscosity
subsolution to Equation (2.3), then, there exists a constant Cy > 0 such that

lu(z) — u(y)| < Colz —y| ™™,  for all z,y € Q,

where Cy depends on the data and oscq(u). B
In particular, v : @ — R can be extended as a continuous function on Q.

Proof: If |x — y| < min{d(z),d(y)}, then we use directly Lemma 2.2 to
conclude

[u(w) — u(y)| < Cminfd(z),d(y)}~"/" |z~ y| < CCla — g1/,

where C is given by (2.7) and C > 0 depends only on the data.

Now, assuming min{d(z),d(y)} < |z — y| (which implies that both z and
y are close to the boundary since |z —y| can be chosen less than (say) dp/2),
we proceed in a similar way as Lemma 2.2, considering a parameter § with
|r —y| < § < 0y and define zg5,ys € Q such that d(zs) = d(ys) = § and
25 = &,9s = y. Then, following (2.9) we write

u(z) —uly) = u(x) — u(xs) + u(ws) — w(ys) + u(ys) — u(y),

and using Lemma 2.2 we get |u(zs) — u(ys)| < C6~7/™ |z — y|, meanwhile,
using again Lemma 2.2 we can write (again formally but this is easy to
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justify)
1
u(w) ~ ulas) < [ [Dulta + (1~ t)z5)]|o - aslds
0

1
<C / (td(z) + (1 — t)0) ™7™ (8 — d(z))dt
0

<C(1—o/m)~} ('™ = d(x)'=/™),
and in the same way for u(ys) —u(y). This estimates imply the existence of
a constant C' > 0 such that
lu(z) — u(y)| < CCE=/™ +67/™|x —y|) forall § > |z —yl.
Taking infimum over these § we arrive to the inequality
ju(w) — u(y)| < CClw —y| "=

where C' > 0 depends only on the data. We finish recalling that by the
definition of C' = C(1 4 K)Y™, where the constraints on K are given at the
end of the proof of Lemma 2.1. O

The first consequence of the last proposition is the following
Corollary 2.4. (OSCILLATION BOUND) Assume that §) is a bounded, C*-
domain, let T be a nonlocal operator as in (2.1) satisfying (M0)-(M2) with

the same o € (0,1), and m > 1. Let u be an usc, bounded viscosity subsolu-
tion to Equation (2.3) and consider the function

3 u(x) if v €Q
u(x) =9 limsup u(y) if x € 0.Q
y—x,yeN)

Then, there exists C > 0 depending only on the data such that
oscg () < C.

Proof: Note & = u in Q. In view of Proposition 2.3, we see that @ is
well-defined in  and it is Hélder continuous on §2. Moreover, we can write
ja(e) — a(y)| < C(L+ K)V™ |z —y|tm=/m,

for each z,y € Q. Thus, we can take Tyin, Tmae € ! making
U(Tmaz) — W(Tmin) = 08cq (1),
from which we obtain
oscq (@) < C(1+ K)Y™diam(Q)m=o)/m,
But the end of the proof of Lemma 2.1 provides the constraint
K = Cmax{(1 4 oscg(u)) 1=/ (M=) 1 4 oscq(u)}

for some constant C > 0 depending only on the data. Since we assume
m > 1, the exponent (1 — o)/(m — o) is less than 1 and therefore we can
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choose K as C'(1 4 oscg(u)) for some C' large enough depending only on
the data. Hence, changing perhaps the constant, the above inequality reads

oscq(it) < C(1 + oscq (@) /" diam(Q) "7/,
providing an estimate on the oscillation of u. O

The following is the main result of this paper

Theorem 2.5. (GLOBAL LIPSCHITZ REGULARITY) Assume that Q is a

bounded, C*-domain, let T be a nonlocal operator as in (2.1) satisfying (M0)-

(M2) with the same o € (0,1), and m > o. If u is an usc, bounded viscosity

subsolution to Equation (2.3), then, there exists a constant L > 0 such that
u(z) —u(y)| < Llz —yl,  foralz,yeQ,

where the constant L depends on the data and oscg(u).

We point out that, in this result, m can be less or equal to 1. Notice that,
while for m > 1 Corollary 2.4 provides a bound on the oscillation of u, we
do not have such bound in the m = 1-case. Therefore, in Theorem 2.5, the
oscillation can be seen as an external and additional data.

In proving this theorem we require the following

Lemma 2.6. Let T be a nonlocal operator as in (2.1) satisfying (M0)-(M2)
with the same o € (0,1). Then, there exists 6 € (0,00) and C > 0 such that,
for each B € (0,0)

Z(d?,x) < CdP~°(x), for all z € Q.
Proof: Note that d? : © — R is bounded and smooth in Q5. We start
considering § < dp/4 and for x € Q5 we write
(2.10)
I(d,x) = I[Bd(m)/2](d67 ) + Z[Bsyja \ Bd(:v)/2](d67 ) + I[B§0/4](d5, ),

and we estimate each term separately. For the first integral term in the
right-hand side of (2.10), we can perform a Taylor expansion to write

(Bl (@, 0) < 5@)/2P [ [alate),
Bi(z)/2
from which, applying (M2) we arrive at

I[By(z2)(d°, x) < Cd”~ ().

For the second integral term in (2.10), we use that z — d?(z) is f-Holder
continuous in {25, and therefore we can write

I[Bsy /4 \ Bagw)2l(d’, ) < C 2|7V (d2),
Bsg/a\Ba(z)/2
with C' > 0 not depending on x or §. Applying (M1), we conclude

I[Bsy/a \ Baa)2)(d°,z) < CdP~7 ().
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Finally, using the boundedness of d” in ©, (MO0) and (M1), for the third
integral term in the right-hand side of (2.10), we conclude

I[B;, ,)(d,z) < C8; 7,

where C' > 0 depends only on diam((2). Joining the above estimates in the
right-hand side of (2.10), we conclude the result taking 0 smaller if it is
necessary. ]

Proof of Theorem 2.5: Denote v = 1 — o/m the Holder exponent of
Lemma 2.3. Let x € Q and f € (0,min{v,0}) fixed. For L > 1 and
0 < n < 1, we consider the function

y = () = u(y) — da(y),

where the function ¢, has the form

¢a(y) = Lly — x| — nd’ (y).

Our aim is to prove that, for L large enough (with a size which does
not depend on ), we have ®,(y) < 0 on Q, for all  small enough (possibly
depending on L and/or z). If this is true, we deduce the Lipschitz continuity
from this property by letting 1 tend to 0. Of course, the difficulty is to get
such property close to the boundary and therefore we may assume that
d(x) < §/2 with 6 as in Lemma 2.6.

We argue by contradiction, assuming that

(2.11) max @, > er, > 0,
Q

for each L large and 7 small. -

By the upper semicontinuity of u, there exists ¢ € € attaining the max-
imum in (2.11), and this maximum cannot be equal to x since e, > 0.
Moreover, 4y € () since otherwise, for a > 0 small enough, the inequality
O(y+aDd(z)) < P,(y) leads to

na’ < u(y) —u(y + aDd(y)) + L(|g + aDd(y) — x| = |5 — x|),
and by the Holder regularity given by Proposition 2.3, we arrive at
na® < Cya + La,

which is a contradiction when a > 0 is small since 8 < .
Since y € Q and y # z, we can write the viscosity subsolution inequality
for w with test function ¢, at . Thus, for all § > 0 we can write

(2.12) —Z[Bs|(¢, §) — Z[B](u, §) + bo| Doz (7)™ < Ao,

and the idea is to estimate each term in the right-hand side separately. Note
that

I[Bs|(¢2,y) = LJ1 — nJ2,
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with
J = /B 17+ 2 — | — |7 — 2l)wy(dz),
)

Jy = /B 25 + 2) — d° (@)]vy(d2).

Since o < 1 and applying (M1), we easily conclude that
Jp < G160,

Now, using that ®,(z) < ®,(y) and considering 1 small in terms of
diam(€2), we see that
(2.13) |7 — x| < L™ (oscg (1) + 1).

Since we are considering z such that d(x) < §/2 with § as in Lemma 2.6,
by the last inequality we can take L large enough (depending on oscg(u)
and J, and, a fortiori, on dy) to get d(y) < 6. Then, by Lemma 2.6, we can
write

J2 < Cd”7(y),
where C not depends on Z,y, L or . Then, by the estimates for J; and J
we obtain
I[Bs)(¢s,§) < CLE"™7 + Cnd®=7 (p).

Concerning the integral term outside Bgs, the Holder continuity of u on

given by Lemma 2.3 allows us to write

Z[B§](u,y) < C / |2[Yvg(dz) < C6T77,
Bj

where C > 0 depends only on the data and the constant Cy of Proposi-
tion 2.3. In summary, concerning the integral terms we have the estimate

(214)  T(Bs)(@e. ) + Z[B5)(u, ) < C(L8'7 +7d"7(5) + 6777,

Now we deal with the first-order term. A straightforward computation
gives us -
Dé(y) = L(y — x) = npd’~" () Dd(y),
with @ )
— y—x
A T
Recalling y depends on 7, at this point we have two different situations :
either there exists a subsequence such that d(y) > d(x) as n tends to zero,
or d(y) < d(x) as 1 tends to zero. In the former case, nd(7)?~1 < nd(x)?~!
and therefore d(7)°~! — 0 as n — 0. This yields |D¢, ()| > L + 0,(1). In
the second case, computing | D¢, (7)|?, we see that

[Déa(9)]* = L? + 0?5201 () — 208Ld° " (5)(Dd(7), (7 — @)).-
But z,y € Qs, where d is C?, and performing a Taylor expansion we get
d(z) — d(y) = (Dd(y), (z — 9)) + o(|y — ),
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which replaced into the above expression for | D¢, (z)|? drives us to

’D¢$(g)‘2 —I2 + n2/82d2(571) (g)
= 20BLd" () ((d(y) = d(@))/17 — =] = (1)),
where o(1) — 0 when |Z —y| — 0. But taking into account that d(y) < d(z),
we are led to
|Déw () = L + 7?27 () — 2nBLd7 (g)o(1),
and by using Cauchy-Schwarz inequality, we arrive at
(2.16) [Dex(@)* > L2/2 +0?52d*P 1 (7) /2,

for all L large and n small enough.

Then, depending on the case we are looking at, we replace (2.14) and (2.16)
or |D¢,(y)] > L + o,(1) into (2.12) to obtain, for all z € Q,§ > 0, L large
(depending only on the data and the oscillation of u) and 7 small depending
on L and z, the inequality

(217) L™+ (" ()" < C(Ag + L8+ 8777 4 9d 0 (7)),

(2.15)

for some constant C' > 0 depending only on the data.
From this inequality, we claim that there exists an universal constant
Ag > 0 such that

(2.18) Cnd”=7(y) — (nd”~ ()™ < Ao,

for all n small. We postpone the justification of this claim until the end of
this proof.
Using this claim into (2.17), we observe that

"< C<A0 L L6V 450 4 A0>.

Hence, in the case m > 1, since o0 < 1 we can fix 6 > 0 small in terms
of C to conclude the result by taking L large in terms of the data and the
oscillation of u. In the case m < 1, we take § = L~! > 0 and since m > o,
we conclude taking L large in terms of the data and the oscillation of wu.
This concludes the proof of the theorem.

Now we address the claim leading to (2.18). We write
6 =nd"°(y),
from which, we obtain that
Cnd”=(7) = (nd” =1 (@)™ = CO = 670",

where 7 :=m(1—p)/(c —B) > 0 and o := m(1—0)/(c — ) > 0. Note that
since m > o, we can fix 8 > 0 small enough to get 7 > 1. With this choice
we can consider n < C~Y% and with this we arrive at

Cnd”=? (g)—(nd* = (9))™ < C(0—07) < Cr7/7 V(1) < C(r-1) =: A,
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which is a constant depending only on the data, but not on 7, L or x. This
concludes the claim. O

3. COMPARISON PRINCIPLE AND WELL-POSEDNESS.

In this section we use the notation @ = Q x (0,400) and 9Q = 9N x
(0,+00). Here we address the well-posedness of the following Cauchy-
Dirichlet evolution problem

up — Z(u(-,t),z) + H(z,u,Du) =f, inQ
(CP) u =9, indQ
u =wupg, inQx{0}.
where 7 is a nonlocal operator with the form (2.1) satisfying conditions
(M0)-(M2), H € C(Q xR xRM), f € C(Q), ¢ € C(OQ) and uy € C(Q).

We also request the following compatibility condition between ¢ and ug
(3.1) ug =¢ on O,

On H we additionally assume the properness condition
(H1) For all R > 0, there exists Ag > 0 nonnegative such that, for all x € Q,
u > v with |ul,|v] < R and p € RN, we have

H(x’uﬂp) - H(x’vap) > AR(U - U).

In order to apply the regularity results of the previous section, we consider
the coercivity condition
(H2) There exists m > 0 and ¢ > 0 such that, for each R > 0 there exists
Cpr > 0 satisfying

H(.%',?“,p) 2 Q’p‘m - CR7

for all x € Q,p € RY and |r| < R.

Finally, in addition to (M0)-(M2), we will require the following continuity
assumption over the measures {v,} defining 7

(M3) Let o € (0,1) given in (M1), (M2) and h as in (M1). Then, for each
B > 0, there exists a modulus of continuity wg, such that for all z,y € )
and 6 > 0, we have

| JalP wa(dz) = (@) < (15 ha(8)) wpalle — o)
§

Note that (M3) holds in the censored fractional Laplacian case (see (1.2))
and regional operators depending on the distance to the boundary (see (2.2)).

The main result of this section reads as follows

Proposition 3.1. Assume that Q is a bounded, C'-domain and let T be a
nonlocal operator as in (2.1) satisfying (M0)-(M3) with the same o € (0,1).
Assume also that H € C(Q x R x RN) satisfies (H1)-(H2) with m > o, f €

C(Q), ¢ € C(0Q), ug € C(2) and that (3.1) holds. If u,v are respectively
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viscosity subsolution and supersolution to (CP) which are bounded in each
compact subset of Q, then

u<v inQUQ x {0}.
Moreover, if @ is defined by

u(x,t) if (z,t) € QU Q x {0}

(3.2) a(w,t) = limsup  u(y,s)  if (v,t) € 0Q,
(y,8)—(x,t),y€R

then @ < v in Q.

Before giving the proof of this result, we start with two lemmas concerning
the (parabolic) boundary condition of problem (CP). Next result states
classical initial condition holds mainly by the compatibility condition (3.1)

Lemma 3.2. Under the assumptions of Proposition 3.1, for all x € Q we
have u(z,0) < ug(x) < v(z,0).

We refer to [18] for a proof of Lemma 3.2 in the second-order case which
can be readily adapted to the current framework. We continue with the
classical boundary condition for subsolutions

Lemma 3.3. Under the assumptions of Proposition 3.1, u(z,t) < ¢(x,t)
for each (x,t) € 0Q).

We may refer to [4, 12, 27] for a proof of this result in very similar settings.

Remark 3.4. A classical strategy to deal with the well-posedness of (CP) in
C(Q) is to argue over the redefined function @ in (3.2) instead of the original
subsolution u, see [4, 12, 27| and the second-order references therein. Note
that @ =wu in Q, & < u on QU Q x {0} and therefore Lemmas 3.2 and 3.3
hold for . Moreover, U is a (generalized) viscosity subsolution to the problem
if w is. Thus, for simplicity, we are going to assume that v = @ on Q in
order to avoid the superscript “~7.

The arguments to come are carried out on the finite time horizon problem
ou —Z(u(-t),z) + H(x,u,Du) = f, inQr
(CPr) u =¢, noQr
u =wup, inQx {0},

where, for T' > 0, we denote Q7 =  x (0,7] and 9Qr = 9Q x (0,T]. The
infinite horizon setting for Proposition 3.1 is readily obtained by taking a
sequence of problems (CPr) with 7' — +4o0.

We require the following lemmas in order to apply the regularity results
of the previous section

Lemma 3.5. Assume p € C(0Qr), f € C(Qr) and H € C(Q x R x RY)
satisfies (H2). Let u be bounded usc viscosity subsolution to problem
{ ow —Z(u,x) + H(zx,u,Du) =f in Qr

(3.3) u =@ indQr,
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For v > 0 and (z,t) € Qr, consider u”, the sup-convolution in time of u,
which is given by the expression
(3.4) u(x,t) = sup {u(z,s) —y (s —t)?}.

s€[0,7T]

Then, there exists a constant a, > 0 with ay, — 0 as v — 0 such that u”

18 a viscosity subsolution to problem
u] —Z(W (-, t),x) + H(z,u?,DuY) = f+o0,(1), inQx (ay,T]
ul =7, in 02 x [a,T],

where 0,(1) = 0 as v — 0 and depends exclusively on the modulus of conti-
nuity of f.

The proof of the above lemma follows closely the arguments of [9, 12].
Note that by Lemma 3.3 the boundary condition in the above equation is
satisfied in the classical sense.

It is a well-known fact that for each v > 0 and x € Q, t + u(x,t) is Lip-
schitz continuous in [0, T'], with Lipschitz constant C., := 4Ty ~!. Therefore,
for any ¢ € (ay, T, the function x — u”(x,t) is a subsolution to

—I(u,z) + H(z,u, Du) < f+0,(1) +C, in Q.
Applying Theorem 2.5, we conclude the following

Lemma 3.6. Let u be a bounded viscosity subsolution to problem (3.3). Let
v >0, u defined as in (3.4) and ay the constant given in Lemma 3.5. Then,
uY € Lip(Q x [ay,T]).

Now we are in position ot provide the

Proof of Proposition 3.1: By contradiction, we assume that v — v is
positive at some point on Q7. Then, for all n > 0 small in terms of 7" and
the supremum of © — v on @, we see that
M :=sup{u —v —nt} > 0.
Qr

By semicontinuity, this supremum is attained at some point (xg, ) € Q7.
Taking 1 smaller if it is necessary, by Lemma 3.2 we have tg > 0. From this
point, we fix such an n > 0.

For a > 0, notice the function

(,t) = u(z, ) —o(x,t) — it — af|lz = zo* + (t — t0)?)
attains its unique maximum on Qr at (wg,%p), and in fact this maximum
equals M. Recalling the definition of u” in (3.4), we define
(35) Myi= sup {u)(@1) — v(w,t) —nt — allz — zof> + (¢ — to)?)}.
(‘Tvt)eQT

By definition of u” we see that M, > M and this supremum is attained
at some point (z,,ty) € Qp. Since (zg,%p) is a strict maximum point,
properties of the sup-convolution imply that (x.,ty) = (zo,t0) as v — 0.
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We are going to consider the case z, € 9€) for all . The case z, € Q with
d(z~) uniformly positive with respect to «y is obtained by easier arguments
and computations, see [12, 27].

We follow Soner’s penalization procedure introduced in [25] (see also [17,
12, 27]). We double variables, consider a parameter ¢ > 0 and define the
function

O(x,y,s,t) :=u(x,s) —v(y,t) — d(x,y,s,t),

where, denoting £ = (Dd(z),0) € RV*1, we define

$w,y,s,t) = e ((z,8) = (y,1)) = €7 + 05 + ally — 2ol* + (t — t0)?).
~ Since @ is upper semicontinuous in Q1 xQr, there exists a point (Z, ¥, 5,1) €
Q1 X Q1 where the function ® attains its maximum. By the inequality

©(2,7,5,1) > ©(zy + eDd(24), Ty, 14, t5)

and the continuity of 7, classical viscosity arguments lead us to
(3.6)

(7,5),(5,1) = (24, 1), | (T —g) — Dd(z,)] =0, € '[s—i =0,

and u'(z,5) = u(xy,ty), v(7,1) = v(zy,t,),
as € = 0. Moreover, for all € small, the same inequality implies that

®(z,7,8,t) > M/2.

This inequality implies that 7 (Z, §) > v(y, t) and therefore, using Lemma 3.3
and the continuity of ¢, we deduce that, if 7 € 09,

(3.7) e(y,t) > v(y, 1)
Thus, the supersolution inequality holds at (7,t) for v even if § € 9Q. On
the other hand, the second convergence in (3.6) leads us to

(3.8) T =y +eDd(zy) + o(e),
form which we conclude that € € for all € small. Indeed, by a simple
Taylor’s expansion, d being C'*
d(@) = d(g) + eDd(x,) - DA(G) + ofe),
and since §y — x4 as € — 0, we have
d(z) > €| Dd(z)|” + o(e),

and d(z) > 0 for e small enough since |Dd(x)| = 1. In conclusion, Z € €2
and we can write down a subsolution viscosity inequality for u” at (z, 5).

Now we substract the corresponding viscosity inequalities for u” at (z, )
(see Lemma 3.5) and v at (,¢) and then, for all 6 > 0 we can write

(3.9) A—T° —T5 < 0,(1),

where
I(S = I[Bé](¢('ay_’ gaf)’j) _I[Bé](_gb(j’ -,§,f),g),
T’ = I[B§|(u (-, 5), 2) — Z[B§)(v(- 1), 9),

K
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and
A= @9+ 00)(E.5,5:0) ~ 1(,5) + 17D
+ H(z,u"(2,5),p) — H(y,v(y,1), 9),
with
p= Duo(2,5,5,1) = (e ((2,5) — (5,1) - ),
q= - Dy@(f,ﬂ, 5’5) =p- 20[(g - CC(])-

The core of the remaining of the proof is to estimate T5, 7% and A. We
start with the later. Recalling that u” € Lip({2x[a~,T]) and that (z, 9, 5,1) is
a maximum point for ®, we have |p| < L, for all € small, where L, > 0 is the
Lipschitz constant for u” given in Lemma 3.6. Denoting R = ||t |oo +][v]|c0,
applying (H1) together with the (uniform) continuity of f in Q7 and (3.6),
we see that

A> n— 05(1) + )‘R(u’y('i"g) - U(@at_)) + H('f'??}(gaf)a]j) - H(@?”(gaf)aq)a

with 0¢(1) — 0 as ¢ — 0 depending only on the modulus of continuity of f.
Hence, by the uniform continuity of H on compact sets of Q x R x RV we
arrive at

A =1 —0a(1) = 0c(1) + Ar(u(7,5) — v(5,1)),
and by the definition of M, in (3.5) together with (3.6) and the continuity
of Ar, we conclude

(3.10) A>n—0q(1) —0e(1) + ApM.
Now we address the nonlocal terms. By the smoothness of ¢, we have
(3.11) Ts < e Los(1),

where 05(1) — 0 as § — 0 and does not depend on e.
On the other hand, for Z° we can write

70 = /C[u'y(i“ +2,5) —u(Z,5)|(vz(dz) — vy(dz))

—i—/c[zﬂ(x—i-z,s) g+ zt) — (u(z,5) — v(y,1)]yy(dz)
=: If + Ig.
For Z¢, by Lemma 3.6 and (M3) we have
Zis <C Ly wiq(|T —9)),
for some C' > 0 not depending on € or 0. Thus, by (3.6) we can write
7P < Lyo(1).
Now, for Z3, we divide the region of integration as

BS = (BEN(Q—2)U(BS\ (Q— 7)) = O, UOy.
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At this point we notice that (MO) says that supp{r;} C Q — g and there-
fore, by using that (Z, 7, 5,t) is a maximum for ®, we can write

3 < Ca/ |z|vg(dz) + 2R | vy(dz).
@1 92
By (M1) we can control the first integral term in the right-hand side of
the last inequality by C'«v for some universal constant C' > 0. Using again
that supp{r;} C Q — ¥, applying (3.8) and the arguments given in [12, 27]
we conclude that ©s is uniformly away the origin and vanishes as ¢ — 0.
This last fact and (M2) lead us to the following estimate

| vtz = o0,
B2
and therefore we arrive at
I8 < Ca+ Roc(1).
Using this, (3.11) and (3.10) into (3.9) we can write
N+ ARM — 04(1) — 0c(1) — € tos(1) < 0,(1).

Recalling that Ap is nonnegative, we arrive to a contradiction with n > 0
by taking § — 0, — 0,7 — 0 and o — O. U

As it is usual in the viscosity theory, comparison principle lead us to the
following well-posedness result for (CP).

Proposition 3.7. Assume hypotheses of Proposition 3.1 hold. Then, there

exists a unique u € C(Q), viscosity solution to problem (CP). For each
T > 0, this solution satisfies

u(z, )] < (I[H(0,0)l|l e @) + [ fllzee(@r)) T+ [0l @) + [luollpe @),

for all (z,t) € Q. Moreover, if there exists A9 > 0 such that, for all R > 0,
AR > X, and f,p are uniformly bounded, then u is uniformly bounded in
Q, with

Ju(z, t)] < A5 UH (- 0,0)]| oo @) + 11 Loo(@y) + 121l 00) + [0l oo (@)
for all (z,t) € Q.

The existence of a solution in the case wug, @ are smooth follows from
the application of Perron’s method for discontinuous solutions with gener-
alized boundary conditions and comparison principle, see [17, 22, 18]. The
existence and uniqueness for general continuous initial and boundary data
is obtained by approximation through smooth data and viscosity stability.
The L°°-estimates for the solution are easily obtained by taking sub and
supersolutions for the problem with the form (z,t) — £(Cit + C2), with
C1 > 0 and Cy > 0 suitable constants depending on the data.

Following the same lines of the proof of Proposition 3.1 we can get the
corresponding results for the state-constraint evolution problem and for the
stationary equation. Both results are presented next.
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Proposition 3.8. Under the assumptions of Proposition 8.1, comparison
principle holds for bounded viscosity sub and supersolutions of the state-
constraint problem

ou —Z(u,x) + H(z,u,Du) =f in Qr,
(3.12) ou —Z(u,x) + H(x,u, Du) > f in 0QT,
U =up on 2 x {0}.

Roughly speaking, we understand a (viscosity) solution to (3.12) as a
function which is a subsolution in Q)7 and a viscosity supersolution in Qr,
see [19].

Proposition 3.9. Let Z be as in (2.1) defined through a family of measures
{va} satisfying (M0O)-(M3) with the same o < 1. Let ¢ € C(0R), H €
C(Q2 x R x R") satisfying (H1) and (H2) with m > o. We consider the
problem

(3.13)

—Z(u) + H(z,u,Du) = 0 in Q,
U = @ n 082,

Further, assume one of the following additional hypotheses on H holds
(i) There exists Ao > 0 such that, for all R > 0, we have Ar > \.

(ii) For each x € Q, the function (r,p) — H(z,r,p) is convex and prob-
lem (3.13) has a bounded strict subsolution.

If u,v are bounded, respective sub and supersolution to the problem (3.13),
then u < v in Q. Moreover, if we define

. u(x) if © €€,
(3.14) a(z,t) = ¢ limsup u(y) if © € 092,
y—x,yeN)

then @ < v in Q. In the above setting, there exists a unique solution u € C(€2)
for (3.13).

We finish this section with the following well-known consequence of com-
parison principle. See [26] for a proof.

Lemma 3.10. Assume the hypotheses of Proposition 5.1 hold. Assume
further that ¢ € C(9Q),f € C(Q) are bounded and ug € C*(Q) with
l[uollcr@y < A for some A > 0. Then, the unique viscosity solution u €

C(Q) to problem (CP) satisfies
lu(z,t) — u(z, s)| < CAlt —s|, for all s,t >0; x €,
where C' > 0 depends only on the data.

The importance of this lemma is that once we assume the initial data
is smooth, we have the time derivative of the solution to (CP) is bounded.
Thus, by Theorem 2.5 we see that the solution to (CP) is uniformly Lipschitz
(in space and time) on Q.
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4. THE ERGODIC PROBLEM.

In this section we are interested in the existence and uniqueness of a
constant ¢ € R for which the state-constraint problem

—Z(u) + Ho(z,Du) =c¢ inQ,
(4.1) { —Z(u) + Hg(x, Du) >c¢  on 09Q,

has a bounded viscosity solution. Here and below H is a continuous function
which satisfies (H2) with m > 1. Such a problem is known in the literature
as the ergodic problem. The key questions are the uniqueness of ¢ as well as
the structure of the solutions u to this problem. For definition and further
concepts associated to state-constraint problems we refer to [19].

4.1. Solvability. Existence of ¢ comes as a consequence of comparison and
regularity results given in the previous sections.

Proposition 4.1. Let T as in (2.1) satisfying (M0)-(M3) with the same
o <1 and Hy € C(Q x RY) satisfying (H2) with m > 1. Then, there ewists
a unique constant ¢ € R for which the problem (4.1) has a viscosity solution

in C(§2), which is Lipschitz continuous on §).

Following Tchamba [26], the above proposition can be obtained through
the next lemmas.

Lemma 4.2. Let T as in (2.1) satisfying (M0)-(M3) with the same o < 1,
and Hy € C(Q x RY) satisfying (H2). For each a € (0,1), there exists a
unique viscosity solution uy, € C(§2) to the problem

au —Z(u) + Ho(z, Du) =0 in €,

au —Z(u) + Ho(z, Du) >0 on 082,
and such a solution satisfies the inequality

(4.3) ot ooy < €

(4.2)

for C > 0 independent of c.

Proof: For R > 0, we are going to introduce the intermediate problem

(4.4 au —Z(u) + Ho(z,Du) =0 in Q,
4) u =R on 0f),

Since a > 0, by Proposition 3.9 there exists a unique solution u, g € C(£2)
to (4.4). Since the constant function equals to —a*IHHO(-,O)HLoo(Q) is a
subsolution for this problem, we have uq r > —a*IHHO(-,O)HLOO(Q). The
idea is to provide an upper bound which is independent of R. For this, we
recall g > 0 is such that the function z — dist(x,9) is smooth in the set
Qs,- We are going to denote d € C?(2)NC(2) a nonnegative function defined
as d(x) = dist(z,09Q) if € Qs, and which is strictly positive (depending
only on dp) in 2\ Q5,. Then, for 8 € (0,1) and by Lemma 2.6 we see that

Z(dP,x) < Cd°~°(x), forall z € Q.
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For z € Q and by the coercivity of Hy, evaluating the function —d”
into (4.4) we see that

a(=dP(z)) — Z(—dP,x) + Ho(z, —Bd°~(z)Dd(z))
> — diam(Q)? — Cd® 7 () + cfmd™P D (z) - C,

where C,c > 0 are universal constants. Recalling the coercivity degree of
Hy given by m > o in (H2), fixing 0 < § < (m —o0)/(m —1) if m > 1 and
any > 0 if m < 1, and taking 6 < d9/4 very small in terms of the data,
we conclude —d? is a supersolution to (4.4) in the set Q5. Moreover, this
function is a supersolution up to 052 in the generalized sense because there is
no smooth function touching —d® from below at the boundary. Additionally,
there exists a constant C; > 0 (depending only on the data and §) such that,
for all z € 2\ Q55 we have

A=dB(x)) = Z(=d’, ) + Ho(x,—Bd" " (z)Dd(z)) > —C.

Then, considering the function
b(w) =207 (1Ho (-, 0)l| e o + C1 ) = & (@),

we see by the above discussion that 1 is a viscosity supersolution (in the
generalizaed boundary sense) to (4.4) and therefore, by strong comparison
principle, for all R > 0 we get the estimate

—a M[Ho(+,0)[| o () < tar < 207" (||H0('a0)||L°°(Q) + Cl)-

Hence, defining C' = 2([Ho(+, 0)|| oo () + C1) and taking R > C/a, the
the solution uq r to (4.4) cannot satisfy the boundary condition for su-
persolutions in the classical sense and then it satisfies the state-constraint
problem (4.2). By uniqueness, we conclude the result labeling u, = uq, g for
all R > C/a. The estimate (4.3) for ug is inherited from the corresponding
inequality for uq,g. O
Lemma 4.3. Let T as in (2.1) satisfying (M0)-(M3) and Hy € C(2 x RY)
satisfying (H2). Then, for each o € (0,1), the solution u, € C() of the
problem (4.2) is Lipschitz continuous in Q with Lipschitz constant depending
on the data and oscg(ug).

In particular, if m > 1 in (H2), the Lipschitz constant depends only on
the data and not on a nor ||uq|[ e (-

The proof comes as a combination of (4.3) and Theorem 2.5. The addi-
tional property for superlinear Hamiltonians comes from Corollary 2.4.

Proof of Proposition 4.1: Fix x* € () and denoting u,, the unique solution
to (4.2) given in Lemma 4.2, we define

Vo (T) = up(x) — un(x*), z€Q,



25

which is a viscosity solution to

avy — I(va) + Ho(z, Dvy) = —aug(z*) in ,
avy — I(va) + Ho(z, Dvy) > —aug(z*) on 052,

By (4.3) we see that auq(x*) is uniformly bounded as o — 0. Thus, by
Corollary 2.4 and Lemma 4.3, the family {va }ae(o,1) is uniformly bounded
and equi-Lipschitz. Then, letting @ — 0, classical stability results provide

us the existence of a pair (v, c) € Lip(£2) x R, viscosity solution to (4.1).
Concerning the uniqueness of ¢, we consider (v, ¢1), (v2,c2) € Lip(Q) x R
solving the ergodic problem. It is direct to see that for each ¢ = 1,2, the

function w;(x,t) := v;(x) — ¢;t solves the parabolic state-constraint problem

Oyw; — Z(w,z) + Ho(z, Dw;) =0 in Qr,
Oyw; — L(w;,x) + Ho(xz, Dw;) >0 in 0Q,
wp = on ) x {0}.

Applying comparison principle given in Proposition 3.8, we see that
wi(z,1) < wa(x,t) + [[v1 — va[peo(qyy for all (z,t) € Q.

Thus, coa—c1 < 2|y —v2||Lo<,(Q)/t and we arrive at co < ¢; making t — oo.
Exchanging the roles of ¢; and ¢y we conclude the uniqueness of c. O

4.2. Strong Maximum Principle. Here we provide a version of the Strong
Maximum Principle which is going to play a key role in the arguments to
come. This Strong Maximum Principle is inspired by arguments from Cov-
ille [16] (see also Ciomaga [15]).

For this, we introduce the evolutive counterpart of (4.1)

{ Ou — I(u) + Ho(x, Du) in Q,

(45) Ou— I(u) + Holz, Du) > on 9Q.

c
c

Recalling Hy € C(QxRYN) trivially satisfies (H1), Proposition 3.8 provides
us comparison principle for (4.5) and therefore we can get

Lemma 4.4. Assume (M0)-(M3) holds with the same o < 1 and Hy €
C(Q x RN) satisfies (H2). Let u usc in Q, v Isc in Q with u,v € L=(QT)
for all T > 0 be respective sub and supersolutions to problem (4.5). For
t € [0,+00), define

(4.6) K(t) = sgg{u(x, t) —v(x,t)}.

Then, for all 0 < s <'t, we have k(t) < k(s).

Next we introduce some notation: let {v;}, in the definition of Z and for
x € RY we define inductively

Xo(z) ={z}, Xpp(x)= |J {£+supp{re})}, forneN,
£€Xn ()
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and

(4.7) X(x) = | J X
neN
The Strong Maximum Principle presented here relies in the nonlocality
of the operator under the “iterative covering property” which is close to the
ideas of Coville [16] but it has to be combined here with different arguments.
This property is established through the condition

(4.8) X(x)=Q, forallzel.
Notice this condition is satisfied by our two main examples (1.2) and (2.2).

Proposition 4.5. (STRONG MAXIMUM PRINCIPLE) Let T as in (2.1),
where {v,} satisfies (M0)-(M3) and (4.8), and Hy € C(Q x RN) satisfy-
ing (H2).

1.- Strong Maximum Principle - Parabolic Version: Let u,v be respective
bounded, viscosity sub and supersolution to (4.5), with u = @ as in (3.2).
Let k as in (4.6) and assume there exists to > 0 satisfying

K(to) = sup{r(t)}.
t>0

Then, the function u — v is constant in 0 x [0,t9]. Moreover, we have

(u—v)(x,t) = k(0), for all (z,t) € Q x [0, g].

2.- Strong Maximum Principle - Stationary Version: Let u,v be respective
bounded viscosity sub and supersolution to (4.1), with u = @ as in (3.14).
Then, u — v is constant in 2.

Proof: We focus in the parabolic version, and we start defining T' = tg + 1.
As we did it in the proof of comparison principle Proposition 3.1, we may
assume u is Lipschitz continuous (in space and time) in Q7 by replacing u
by its sup-convolution u”. We avoid the direct use of u” for simplicity.

Notice that by Lemma 4.4, we see that «(t) = x(0) for all ¢t € [0,tp]. Fix
7 € (0,t0), denote

M, ={zxeQ:(u—v)(x,7)=r(1)},

and choose a point x, € M. For simplicity, we also assume that z, € 2,
otherwise we apply Soner type penalization procedure used in the proof of
the comparison principle instead of the function ® below. In that case, the
control of the integral terms can be made in the same way as in the proof
of the comparison principle.

Consider €, @ > 0 and define the function

q)(x,y’ S’t) = u(x’ S) - U(y,t) - qb(x,y, S’t)’
with ¢(z,y,s,1) == e *(lz —y[* + (s = t)*) + (s — 7)* + |z — z,|?). This

function attains its maximum (Z, g, 3,t) in Q1 X Qr, and using the inequality

®(z,7,5,t) > (w0, 10,7, 7),
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we see that, keeping o > 0,
(4.9)
s5t—1, Z,y—>x; and u(Z,s)— u(z.,7), 0(7,t)—v(r,,T),

as € — 0. Moreover, by the Lipschitz continuity of u, p := 2¢~2(z — 7) is
uniformly bounded as € — 0. Thus, properly using ¢ as a test function for
u at (Z,3) and for v at (g,t) and substracting the corresponding viscosity
inequalities, for each § > 0 we can write

(4.10) 20(5 — 1) — (e L+ a)os(1) = I° + A <0,
where
7° .= I[B§)(u(-, 5), %) — Z[B§|(v (- 1), 7)
A:=Hy(z,p+ oz —x;)) — Ho(y, D).

Note that by the continuity of Hy, using (4.9) and the boundedness of p,
we readily conclude that

A =0(1) 4+ 04(1).

Now we deal with the nonlocal terms. Using (M3), the Lipschitz conti-
nuity of u and (4.9), we can write

% < Lo.(1) + / (W@ + 2,5) — o(f + 2.7) — (u(E, 5) — v(7, D)vy(d2)
Ben(Q—z)

= [ D @ we)
B§\(2-7)
—: Lo (1) + I¢ — 13,
where L > 0 is the Lipschitz constant for w. But using that =, € €, by
the second convergence in (4.9) we see that By C (2 — &) for each 0 <
¢ < d(z;)/2. By (M3) we have supp{ry} C (2 — y) and using again the
second convergence in (4.9) we obtain [supp{vy} \ (2 —Z)] — 0 as € — 0.

This together with the boundedness of v and (M1) allows us to write, for
all 0 <0 < ¢

Zg = 06(1)7
meanwhile, using that (Z, 7, 5,) is maximum for ® and (M2) lead us to
z <oyt [ (a8 g+ 2D~ (u(@5) o5 Dvg(d:),
Be,N(Q-3)

Replacing the above estimates for A and Z° in (4.10), we make § —
0 to get rid of the term ¢ los(1). Recalling (4.9), by the boundedness
assumptions for u and v and the continuity of the measure given by (M3),
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keeping ¢’ > 0 and making ¢ — 0 and finally o — 0, Dominated Convergence
Theorem leads us to

— [ e ) =t 57) — (uler7) — o), (d2) <0
B§,N(Q—zr)

but since x, € M, and by the upper semicontinuity of u — v, we arrive at

/ (u(zr +2,7) —v(xr + 2,7) — (u(zr, 7) — (27, T))Vyg, (d2) = 0.
Bg,N(Q-=z7)

Thus, since ¢’ > 0 is arbitrary, we conclude that v — v = k(1) in X (z,)
and proceeding inductively as above, we obtain

(u—v)(x,7) = k(1) for each x € U Xn(zr),
neN

from which we obtain (u—v)(-,7) = () in Q by applying (4.8). The result
for 7 = 0 and 7 = g can be easily obtained by Lemma 4.4 and the upper
semicontinuity of v — v. O

As a consequence of the Strong Maximum Principle, we obtain the fol-
lowing

Proposition 4.6. Let Z as in (2.1) satisfying (M0)-(M3) and the iterative
covering property (4.8), let Hy € C(QxRN) satisfying (H2) with m > 1 and
c the unique ergodic constant given in Proposition 4.1. Then, the solution
to (4.1) is unique up to an additive constant.

Proof: Consider (v;,c) € Lip(Q2) x R, i = 1,2 be two solutions to (4.1).
Then, we may cast v; as a subsolution (in ) to the problem for which v
is a solution. Thus, we conclude vo = v1 + C for some C € R by the Strong
Maximum Principle. O

5. LARGE TIME BEHAVIOR.

For simplicity, in this section we concentrate on the parabolic problem

Ou+ A —Z(u) + Ho(z,Du) = 0 in Q,
(CP) u = ¢  ondQ,
u = ug onx {0},

where A > 0. In the rest of this section, we always assume Z is as in (2.1) and
satisfies (MO), (M1)-(M2) with the same o € (0,1), and (M3). We also as-
sume Hy € C(QxRY) satisfies (H2) with m > o, and ug € C(Q), ¢ € C(99)
satisfy the compatibility condition (3.1). In this setting, problem (CP’) can
be uniquely solved in C(Q).

For simplicity, we assume a smooth initial data ug in (CP’) and then the
solution to this parabolic problem will be Lipschitz continuous in Q with Lip-

schitz constant depending on the data and the ||ug[|c1(q), see Lemma 3.10.
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We get the large time behavior for the general case ug € C(2) by approx-
imation through smooth initial data, see [26] for a complete exposition of
these arguments.

We start with the study of parabolic problems for which we have steady
state asymptotic behavior.

Theorem 5.1. Assume one of the following conditions hold
(i) A > 0.
(ii) A = 0, the ergodic constant c associated to the ergodic problem (4.1) is
negative, and the function p — Hy(x,p) is convex for all x € Q.
In both cases, there exists a unique C(Q)-viscosity solution to the problem

(Sy) A —Z(u) + Hy(z,Du) = 0 in Q,
A u = @ on 05,

and therefore, the unique solution to (CP’) converges uniformly on Q as
t — oo to the unique viscosity solution to (Sy).

Proof: The solvability of (S)) in the case A > 0 comes as a consequence
of the case (i) in Proposition 3.9. In case (i), we notice that a solution
to (4.1) is a strict subsolution to problem (Sp) and we fall in case (i7) of
Proposition 3.9, from which the solvability of (Sp) holds.

We note that in both cases () and (i), the solution u to (CP’) is bounded
in Q. In fact, this can be easily seen in case (i) through Proposition 3.7.
For case (ii), we see that the function

(1) = Uoo(2) — [|too — @l (002) — [|too — woll Lo (02)
where u«, is a solution to the ergodic problem (4.1), is a visosity subsolution
to the problem satisfied by u, and by comparison principle we conclude
Uoo — |[ttos = @l| Lo (902) — [Jtioo — 0|l e (@) <u on Q.

To find an upper bound for u, we fix £ € Q and denote K = 2diam(f2).
By (H2) there exists a constant C'x > 0 depending on the data and K such
that the function

(2,1) o Cre1 = K=o — ) + e sy + ol 1= (),

is a viscosity supersolution to (CP’) and from this we see that
u < C + |¢llLosa0) + [luollL=(2) on Q.
From this point, we argue simulteneously for cases (i) and (7). The above

analysis implies u is uniformly bounded on (. Then, the functions

u(x,t) = imsup u(z,t/e), w(x,t) = liminf u(z,t/e),

e—0,z— =022
are well-defined in (. Naturally we have u < @ in Q UQ x {0}. Besides,
for each t > 0, applying half-relaxed limits method [10, 11] we have the
functions
x— u(x,t) and x> u(z,t)
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are respective viscosity sub and supersolution to the problem (Sy). Thus,
by comparison we have 4 < u and then they coincide in Q.
We claim that & = % on 9Q and postpone its justification until the end
of the convergence proof. If this happens, then the function
v Ulx,t) = a(z,t) = u(x,t) = lim  u(z,t/e), x€
z—x,e—0

)

is in C'(2) and it is a viscosity solution to (Sy), which is the unique one by
Proposition 3.9. From this, we easily conclude the uniform convergence on {2
of the solution of the parabolic problem (CP’) to the stationary problem (S))
as t — oo.

Now we deal with the claim. Let xzo € 992. Note that by definition, for
each 7 > 0 small, there exist v, 2, €  and €, > 0 satisfying |xg — yy|, |zo —
zp| < n and such that

u(zo,t) — w(zo, t) < n+ulyy, t/en) — ul(zy, t/e).
But we have u is uniformly Lipschitz in Q (see Lemma 3.10) and then
(o, t) — u(zo,t) < n+ Clluollcrqyn,
for some C' > 0 depending only on the data. A similar lower bound can be
stated and since n is arbitrary, we conclude the equality. O

Now we address the ergodic large time behavior.

Theorem 5.2. Assume A\ = 0, T satisfies the iterative covering property

(4.8) and that Hy satisfies (H2) with m > 1. Let u € C(Q) be the unique

solution to (CP’) and (ueo,c) € Lip(Q2) x R be an ergodic pair solution
to (4.1). Then

1.- CasE L. If ¢ > 0, then (So) has no bounded viscosity solution. Moreover,
the function (x,t) — u(x,t) + ct is uniformly bounded in Q) and

u+ct = uso + K uniformly in Q, ast — 400,
for some constant K € R depending on H,ug,p and c.

2.- CASE II. If ¢ = 0, then any bounded solution to (Sg) has the form us,+ K
for some constant K € R such that us + K < ¢ on 02. Moreover,

U — Uso + K uniformly in Q, ast — +oo,

for some constant K € R depending on H,ug,p and c, and such that us +
K < ¢ on 09.

Proof: 1.- Case I: The nonexistence of a bounded viscosity solution for
(Sp) can be proved by contradiction. If ¢ is a bounded viscosity solution
to (Sp), since ¢ > 0 we have ¢ is an strict subsolution for the equation in
Q corresponding to (SC.). The function us — 2(||tcol|oo + ||@||oc) — 1 is
a solution for this last problem, and therefore, by comparison principle we
arrive at ¢ < Uoo — 2(||Uso|oo + ||@]]oo) — 1 in Q, which is a contradiction.
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For the convergence, we start noting that the function v(x,t) = u(x,t)+ct
is a viscosity solution to the problem

O —I(v)+ Ho(z,Dv) = ¢ in Q,
v = @p+ct on 0Q,
vo= up on 2 x {0}.

Now, considering the functions

Vi (2,t) = uoo (2, 1) £ ([[uco|| Loo (@) + [l Lo (002) + [[u0ll oo (02))
we note that 1_ is a viscosity subsolution for the above problem satisfying
the boundary condition in the classical sense because ¢ > 0, meanwhile
is a viscosity supersolution for the same problem satisfying the boundary
condition in the generalized sense. Thus, we obtain that v is uniformly
bounded in @ (by a constant depending on the data and |[tso|| oo (02))-
Now, considering v as a subsolution to the equation

(5.1) Ouw — Z(u) + Ho(z,Du) = ¢ in Q,

and us, as a supersolution for the state-constraint problem associated to
this equation. Defining
(5.2) k(t) = max{v(z,t) — us(z)}, t>0,
z€Q

we can apply Lemma 4.4 to conclude that  is decreasing in t. Since it is
also bounded, we conclude that x(t) — &k € R, as t — oo.

Considering {v, }1 the sequence of functions in Lip(Q) given by vi(x,t) =
v(x,t +ti), we see that

| (2,t) — v (2, )] < Cle—2'|+(C+c)|t—t|, for each (z,t), (2',t) € Q,

where C' > 0 depends on the data and the smoothness of ug. Then, {vy}
is equicontinuous and bounded, and by Arzela-Ascoli Theorem, up to sub-
sequences, vy — ¥ € Lip(Q), uniformly in Q7 for each T > 0. Stability
results for viscosity solutions imply that the limit function v satisfies (5.1).
Evaluating (5.2) in t + ¢ and taking limit as kK — oo we arrive at

k= max{0(x,t) — uso(x)} for each ¢ >0,
xS

and since u is a solution for the state-constraint problem associated to (5.1),
by the application of the Strong Maximum Principle given by Proposi-
tion 4.5, we conclude that

v(2,t) = Uso(x) + K, for all (x,t) € Q.

This, together with the definition of ¥ and the nonincreasing property of
K allows us to conclude the result.

2.- Case II: Let ¢ € C(2) be a bounded solution to (Sp). Since us is a
solution to (SCp) it can be regarded as a viscosity supersolution to (Sp)
with generalized boundary condition. Thus, the stationary version of the
Strong Maximum Principle leads us to the existence of a constant K € R
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such that ¢ = us + K. But the stationary version of Lemma 3.3 implies
that ¢ < ¢ on 012, from which we conclude the result. The convergence
proof follows the same lines of the previous case. O
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