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Bearing Fault Detection in DFIG-Based Wind
Turbines Using the First Intrinsic Mode Function

Y. Amirat, V. Choqueuse, M.E.H. Benbouzid and J.F. Charpentier

Abstract—Wind energy conversion systems have become a focal
point in the research of renewable energy sources. In order
to make the DFIG-based wind turbines so competitive as the
classical electric power stations it is important to reduce the
operational and maintenance costs by continuously monitoring
the condition of these systems. This paper provides a method
for bearing fault detection in DFIG-based wind turbines. The
proposed method uses the first Intrinsic Mode Function (IMF)
of the stator current signal. After extracting the first IMF,
amplitude-demodulation is performed to reveal a generator
bearing fault. Experimental results show that the proposed
method significantly improves the result of classical amplitude-
demodulation techniques for failure detection.

Index Terms—Wind turbine, Doubly Fed Induction Generator
(DFIG), fault detection, bearings, signal processing

I. INTRODUCTION

Wind energy conversion systems is the fastest-growing
source of new electric generation in the world and it is ex-
pected to remain so for some time. In order to be more reliable
and competitive than classical power generation systems and
due to geographical location of DFIG-based wind turbines,
it is important to prevent failure and to reduce maintenance
cost. A deep knowledge about all the phenomena involved
during the occurrence of a failure constitutes an essential
background for the development of any failure diagnostic
system. Regarding a failure as a particular input acting on
the generator, a diagnostic system must be able to detect its
occurrence, as well as to isolate it from all other inputs such as
disturbances and controls affecting the behavior of the DFIG.
For the failure detection problem, we would like to know if
a failure exists or not in the Wind energy conversion system
via the processing of available measurements.

A quantitative analysis of real wind turbine failure data has
shown important features of failure rate values and trends [1]-
[3]. A failures number distribution check-off is reported in
Fig. 1 for Swedish wind power plants that occurred between
2000 and 2004 [3]. This figure shows that 45% of failures
were linked to the electrical system, sensors and blades/pitch
components. Experience feedback of wind turbine industries
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Fig. 1. Failures number distribution for Swedish wind power plants between
2000-2004 [3].

corroborates that the major concern is on the electrical system.
Typical failures include:

o Generator bearing failure

o Dynamic air-gap irregularities

« Stator and rotor winding insulation failures.
o Inter-turn short circuits in stator windings

o Broken rotor bar or cracked rotor end-rings
o Harmonic derating

Many methods are available for condition monitoring of
DFIG-based wind turbines. These include electrical quantities
signature analysis (current, power,...), vibration monitoring,
temperature monitoring and oil monitoring. In the case of
DFIG-based wind turbines, it has been shown that failure in
the drive train could be diagnosed from the electrical quantities
of the generator. This principle has been used to diagnose
unbalance and failure in the blades of a small wind turbine by
measuring the power spectrum density at the turbine generator
terminals [4]. The advantage of electrical signature analysis
over other monitoring techniques is that the signals are easily
accessible during operation i.e. the current can be acquired
by current transformer, the voltage via a voltage transformer
and the power by computation. Moreover, current and voltage
transducers are usually cheaper than vibration and torque
transducers. In this paper, the generator current is employed to
detect faults in wind turbines. From a decision point of view,
failure detection based on the current signal usually involves
two steps: 1) a preprocessing step and a 2) failure detection
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Fig. 2. Fault detection framework.

step (see Fig.2). The aim of the preprocessing step is to project
the signal into a new space in order to facilitate the failure
detection. In the literature, many preprocessing techniques
have been proposed. These include the popular Fast Fourier
Transform (FFT) [5], time-frequency representations [6]—[8],
time-scale decompositions [9]-[11] and AM/FM demodulation
techniques [12]-[16]. The major drawback of FFT and time-
frequency representations is that they require the knowledge
of the frequency components affected by the generator failure.
Similarly, analysis based on wavelet decomposition usually
requires the knowledge of the scale associated with the failure.
Another commonly used method is the AM/FM demodulation
technique. AM/FM demodulation technique is a well-suited
tool for data preprocessing since most of the machine failure
leads to current modulation [7], [8]. Under the assumption of a
mono-component signal (i.e. z(n) = a(n)cos(¢p(n))), classical
demodulation approaches are the Hilbert transform [13], [14]
and the Teager energy operator [15], [16]. Unfortunately, in
practice, both of these approaches are inappropriate as the
mono-component assumption is rarely satisfied. To satisfy this
assumption, band-pass filtering can be employed, however, it
requires the knowledge of the central band-pass frequency and
a proper filter design.

In this paper, we propose to use an Empirical Mode De-
composition (EMD) [17] to automatically extract a mono-
component signal, called Intrinsic Mode Function (IMF), from
the stator current signal. Then, we employ an Hilbert transform
for AM demodulation. As opposed to the Hilbert-Huang trans-
form which has been previously used for failure detection [18],
[19], we propose to exploit only the first IMF since it contains
most of the useful information. This paper is organized as
follows. Section II presents the proposed approach and Section
IIT reports on the experimental results.

II. PREPROCESSING BASED ON THE FIRST IMF AND AM
DEMODULATION

Let us denote by z(n) (n = 1,---, N) the stator current
signal. Under the multi-component assumption, x(n) can be
decomposed as

x(n) =) ar(n)cos(dx(n)) +r(n) (1)
— S——
= IMF, ()
where IMFy,(n) is the k*" Intrinsic Mode Function (IMF) and
r(n) is the residue. In practice, the IMFs are unknown and
must be extracted from the stator current signal x(n).
A. Extraction of the First IMF

The IMFs and the residue can be extracted from x(n) by
using an Empirical Mode Decomposition (EMD) [17]. This

decomposition can be described as follows:

1) Identification of all extrema of z(n)

2) Interpolation between minimal (resp. maxima) ending
up with some envelope €5, (1) (resp. €max(n)).

3) computation of the mean:

Emin (n) + Cmax (’I’L)

r(n) = 5 2
4) extraction of the detail:
IMFy(n) = z(n) —r(n) 3)

5) Iteration on the residue r(n).

In practice, this algorithm has to be refined by a shifting
process until the detail IMFy(n) can be considered as an
Intrinsic Mode Function [20]. In the following, we only
decompose the stator current signal into one IMF and a
residue (k = 1) since this decomposition concentrates most
of the useful information about the failure into one IMF.
Increasing the number of components k tends to spread the
information about the failure through several IMFs which can
render interpretation more difficult.

Figures 3 to 6 present the current z(n), the first IMF
IMF;(n) and the residue 7(n) after one iteration of the
EMD algorithm for healthy and faulty generators. For healthy
generators (Figs. 3 and 5), one can notice that the first IMF is
close to 0 and that the signal (n) is close the residue r(n). On
the contrary, for faulty generators, Figs. 4 and 6 show that the
first IMF is no longer equal to 0. This behavior can be observed
for faulty generators with bearing inner race deterioration
(Fig. 4) and with bearing ball deterioration (Fig. 6).

B. Amplitude Demodulation

After applying the EMD, the first IMF is a mono-component
signal which can be further processed with a classical de-
modulation tool. Indeed using (1), the first IMF, y(n), can be
expressed as

y(n) = IMFy (n) = ax(n)cos(¢1(n)) )

Under the assumption that a failure leads to stator amplitude
modulation, most of the useful information is contained in the
amplitude envelope |a;(n)|. To extract |ai(n)| from y(n), we
propose to use an amplitude demodulation technique based
on the Discrete Hilbert transform (DHT). The DHT of y(n)
is given by [21]

Hly(n)] = F~ {F{y(n)}.u(n)} )

where F{.} and F'{.} correspond to the Fast Fourier
Transform (FFT) and Inverse FFT (IFFT), respectively, and
where u(n) is defined as:

1, nzo,%
ufn)=4 2, n=12,...,5-1 (6)
0, n=5-1,--- N—1
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Fig. 3. EMD: Healthy generator (load 100W).
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Fig. 4. EMD: Bearing inner race deterioration (load 100W).

The estimated envelope, denoted |a; (n)|, is then given by [21]

[61(n)] = \/y2(n) + (Hy(m)])’ ™

Figures 7 to 10 display the amplitude envelope |a;(n)| for
healthy and faulty generators. For healthy generators in Figs. 7
and 9, one can notice that the envelopes are close to 0
and do not exhibit strong variation. On the contrary, for
faulty generators in Figs. 8 and 10, one can observe that the
amplitude envelopes is no longer equal to 0 and exhibit much
more variation.

C. Failure Detection Criterion

In this section, we propose a simple criterion to distinguish
between healthy and faulty generators. Let us consider the
mono-component signal y(n) in (4). Without any failure, there
is no amplitude modulation and so |a;(n)]| is approximatively
constant. When a failure occurs, the envelope |a1(n)| is no
longer constant and exhibits variation. One measure of the
amount of variation is the variance which is defined as

1 Nl
of =+ > ([ax(n)] = p)* ®)

n=0
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Fig. 5. EMD: Healthy generator (load 300W)
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Fig. 6. EMD: Bearing ball deterioration (load 300W).

where  is the average of |a;(n)], i.e.
| Nl
n= ; @ (n)| ©

For healthy generator, |a;(n)| is supposed to be constant and
so 02 = 0. On the contrary, for faulty generators, [a;(n)]
exhibits variation and so o2 > 0. Therefore, the value of
the statistical criterion o2 can be used to distinguish between
healthy and faulty generators. One should note that the coef-
ficient N determines the compromise between robustness and
reactivity of the criterion 2. Indeed, for a large NN, o2 is less
sensible to noise but it requires to analyse more data, which
can increase latency of the diagnosis system.

II1. EXPERIMENTAL RESULTS

In this section, the result of the proposed approach is
presented with experimental signals. Figure 11 describes the
experimental setup that is operated in the motor configuration
for experimental easiness. It is composed of two parts: a
mechanical part that has a tacho-generator, a three-phase
induction motor and an alternator. The tacho-generator is a



0.4

0.35[

0.3

025

la,®)1

0.2

0151

0.1

0.05

Ry /! e s b st s Mbonssn
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (s)

[9)

Fig. 7. AM demodulation: Healthy generator (load 100W).
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Fig. 8.  AM demodulation: Bearing inner race deterioration (load 100W).

DC machine that generates 90 V at 3000 rpm. It is used to
measure the speed. It produces linear voltage between 2500
and 3000 rpm. The alternator is a three-phase synchronous
machine with a regulator and a rectifier circuit that stabilize
the output voltage at 12 VDC. The advantage of using a
car alternator instead of DC generator is obtaining constant
output voltage at various speeds. The induction motor could
be identically loaded at different speeds. Moreover, if the
induction motor is supplied from the network, motor current
will have time harmonic components as well as bearing fault
harmonics. This makes it harder to determine the bearing
failure effect on the stator current and therefore complicates
the fault detection process. For these reasons, the induction
motor is fed by an alternator. By this way, supply harmonics
effects are eliminated and only bearing failure effects could
be observed on the stator current.

The tested induction motor has the following rated parame-
ters: 0.75kW, 220/380V, 1.95/3.4 A, 2780rpm, 50Hz, 2 poles,
Y-connected. It has two 6204.2ZR type bearings. From the
bearing data sheet the following parameters are obtained: The
outside diameter is 47 mm and inside one is 20mm. Assuming
that the inner and the outer races have the same thickness gives
the pitch diameter Dp = 31.85mm. The bearing has eight
balls (N = 8) with an approximate diameter of Dp = 12mm
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Fig. 9. AM demodulation: Healthy generator (load 300W).
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Fig. 10. AM demodulation: Bearing ball deterioration (load 300W).

TABLE I
VALUES OF THE PROPOSED CRITERION 02 FOR HEALTHY AND FAULTY
GENERATORS (LOAD 100 W).

Signal

Generator a(n) y(n) = IMF1(n)

Healthy generator 0?2 =0.02527 | o2 =0.00020

Inner race deterioration o2 = 0.05036 o2 = 0.00766

Cage deterioration 02 =0.05840 | o2 =0.01156

Ball deterioration 02 =0.05517 o2 =0.00933
TABLE 1I

VALUES OF THE PROPOSED CRITERION o2 FOR HEALTHY AND FAULTY
GENERATORS (LOAD 200 W).

Signal
Generator : z(n) y(n) = IMF1 (n)
Healthy generator 0?2 =0.01953 o2 = 0.00012
Inner race deterioration | o2 = 0.03893 o2 = 0.00642
Cage deterioration o? = 0.04627 o2 = 0.00231
Ball deterioration 02 =0.04652 | o2 =0.01138
and a contact angle § = 0°. These bearings are made to

fail by drilling holes of various radiuses with a diamond
twist bit while controlling temperature by oil circulation in
experiments. Some of the artificially deteriorated bearings are
shown in Fig. 12.

Tables I, II and III present the value of the failure detection
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Fig. 12. Artificially deteriorated bearings: (a) outer race deterioration, (b)
inner race deterioration, (c) cage deterioration, (d) ball deterioration [22].

TABLE III
VALUES OF THE PROPOSED CRITERION 02 FOR HEALTHY AND FAULTY
GENERATORS (LOAD 300 W).

Signal
Generator ¢ z(n) y(n) = IMF1(n)
Healthy generator 02 =0.01612 o2 =0.00001
Inner race deterioration o2 =0.03457 o2 =0.00468
Cage deterioration 02 =0.03197 o2 = 0.00210
Ball deterioration 02 =0.03324 | 02 =0.01113

criterion o2 for several generator configurations. Let us denote
x[n] the current signal. To highlight the use of the EMD
preprocessing, the value of o2 is also presented when the
amplitude demodulation in (7) is performed on the signal
current x(n), directly, instead of on the first IMF y(n). The
three tables show that criterion o2 is a good generator failure
indicator which can be employed to detect several bearing
failures (including inner race deterioration, cage deterioration
and ball deterioration). Indeed, in each table, o2 increases
for faulty generators. Furthermore, the experimental results
indicate that the proposed method works well under varying
load conditions (100W, 200W and 300W). Compared to the
direct application of amplitude-demodulation technique, the
three tables also show that the use of the first Intrinsic Mode
Function makes the failure detection easier. For example in
table II1, a ball deterioration leads to an increase of 106% when

the amplitude demodulation is performed on z(n) whereas it
leads to an increase of 11120% when it is performed on y(n).
This result is not surprising since the stator current signal z(n)
is usually multi-components in practice and so the amplitude
demodulation cannot be extracted directly from xz(n). This
explains why o2 = 0 for healthy generator when it is
computed from z(n). On the contrary, the EMD preprocessing
guarantees that the extracted IMF y(n) is a mono-component
signal. Then, this signal can be further processed using an
amplitude demodulation technique.

IV. CONCLUSION

The study reported in this paper focused on the bearing
fault detection in DFIG-based wind turbine. Bearing failure
is detected using current analysis. First, a mono-component
signal is extracted from the stator current signal using an Em-
pirical Mode Decomposition (EMD). Then, the first Intrinsic
Mode Function is analyzed through amplitude-demodulation.
The experimental results show that the proposed method works
well under different conditions and can be applied for the
detection of several bearing failures. Moreover, results show
that the EMD preprocessing makes the failure detection easier
as compared to the direct use of an amplitude demodulation
technique.
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