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Pulsed-laser deposition is known as a well-suited method for growing thin films of oxide compounds 
presenting a wide range of functional properties. A limitation of this method for industrial process is 
the very anisotropic expansion dynamics of the plasma plume, which induces difficulties to grow on 
large scale films with homogeneous thickness and composition. The specific aspect of the crystalline 
or orientation uniformity has not been investigated, despite its important role on oxide films proper-

ties. In this work, the crystalline parameters and the texture of zinc oxide films are studied as a func-

tion of position with respect to the central axis of the plasma plume. We demonstrate the existence 
of large non-uniformities in the films. The stoichiometry, the lattice parameter, and the distribution 
of crystallites orientations drastically depend on the position with respect to the plume axis, i.e., on 
the oblique incidence of the ablated species. The origin of these non-uniformities, in particular, the 
unexpected tilted orientation of the ZnO c-axis may be attributed to the combined effects of the 
oblique incidence and of the ratio between oxygen and zinc fluxes reaching the surface of the grow-

ing film.

INTRODUCTION

Pulsed-laser deposition (PLD) is a well suited deposition

method for growing thin films of oxide compounds present-

ing either the physical properties of their bulk counterparts

or new ones by changes in stoichiometry.1 Owing to the sim-

plicity of the PLD process, oxide films can be deposited

without sophisticated vacuum equipment, and the stoichio-

metric transfer of the target material to the substrate may

usually be achieved, even in the case of complex materials.

A limitation of PLD in industrial process is the very aniso-

tropic character of ablation, which leads to severe non-

uniformities at large scale in film thickness and composi-

tion,2–7 resulting in non-uniformities in film properties.8

Actually, without any additional technologies to improve the

thickness and composition uniformity, the substrate surface

covered by a nearly homogeneous film is only about 1 cm2.

A lot of efforts have been devoted to homogenize the film

thickness and composition through various modifications of

the PLD process: controlled laser rastering on large diameter

targets coupled with target and/or substrate movements,1,9

inverse PLD10 or off-axis deposition,11 which in counterpart

leads to a large decrease of the deposition rate. However, de-

spite the important role of crystalline structure on oxide films

properties, the specific aspect of structural uniformity of

such large area films has not been widely studied.

The aim of this paper is to show how the anisotropy of

the PLD process influences the crystalline structure of oxide

films. In particular, we have tried to answer the following

question: do the structural properties (crystalline phase, cell

axis parameters, and texture) of the film depend on the posi-

tion with respect to the centre of the ablation plume? Owing

to the large number of studies on ZnO films, this material

was chosen as a model system. Indeed, undoped or doped

ZnO thin films can be used for a wide range of applications,

and their properties drastically depend upon the structure and

microstructure.1,12–15 We have investigated in details the

stoichiometry and the crystalline characteristics (lattice pa-

rameters and domains orientation) of ZnO thin films as a

function of position with respect to the central axis of the

plasma plume, i.e. as a function of the oblique incidence of

the ablated species. Unexpected tilted orientations of the

ZnO c-axis were evidenced in the films, and their origin was

related to the combined effects of the oblique incidence and

of the oxygen and zinc fluxes reaching the substrate.

EXPERIMENTAL

Zinc oxide films were grown by PLD onto Si substrates

covered by the native oxide (2 nm thick), or thermally oxi-

dized SiO2 on Si substrates by using a frequency quadrupled

Nd:YAG laser (5 ns pulse duration, 10 Hz repetition rate) in

the experimental set-up described elsewhere.16 Pulses in the

0.5–2 J/cm2 (with a spot diameter about 1 mm) were used to

ablate a pure ZnO ceramic target located at 5.5 cm in front of

the substrate. This study is a part of a work on the correlation
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between the growth conditions and physical properties of

zinc oxide films. To obtain a high density of carriers in the

films, a low oxygen pressure was used during the growth to

create oxygen vacancies, i.e., electrons donors. Film deposi-

tions were thus carried out under 10�6 mbar residual pres-

sure, at room temperature (RT) and 500 �C.

The thickness and composition of the ZnO films were

measured by Rutherford backscattering spectrometry (RBS)

using the 2.5 MeV Van de Graaff accelerator of the SAFIR

IBA laboratory, University Pierre et Marie Curie. A 4Heþ

ion beam with a 1 mm diameter was used for these experi-

ments. Owing to the low RBS yield on light elements, the

oxygen content of the film was only determined with a 4%

precision, while the zinc content was determined with a 1%

accuracy. To study the crystalline structure of the films, X-

ray diffraction (XRD) measurements were performed with a

four circle goniometer (Philips Xpert MRD) using the Cu Ka
radiation. Symmetric Bragg-Brentano geometry and asym-

metric XRD were used to determine the lattice parameters

and texture of the zinc oxide film as a function of position

with respect to the normal to the target. Cross sectional foils

were prepared for transmission electron microscopy (TEM)

observations by a standard mechanical procedure involving

grinding, dimpling, and argon ion milling until electron

transparency. The foils were observed by conventional TEM

and high resolution transmission electron microscopy

(HRTEM) using a FEG 2010 JEOL equipment operated at

200 kV. Image processing was performed using the commer-

cial DigitalMicrograph software from GATAN.

RESULTS

The anisotropic character of the PLD method is sche-

matically represented in the inset of Fig. 1. The ablation

plume is centred on the normal to the target at the laser spot

position. Owing to the plume expansion, the flux of incident

species from the target to the substrate depends upon the

position with respect to the plume central axis. In the inset,

the angle a of which is directly related to the substrate

position x and distance d between the target and the sub-

strate: tg a¼ x/d, has been defined as the “deposition angle.”

In this paper, this deposition angle a plays a major role on

the film structure, and it has been used as the key parameter

in the next figures instead of the x position. It follows from

the anisotropy of the process that the film thickness is not

uniform, as shown in Fig. 1, for a zinc oxide film grown at

RT and 10�6 mbar. A bell shape curve of the normalized

thickness (th/th0 with th0 being the thickness for a¼ 0) is

observed as a function of the deposition angle a. Such an

angular distribution of thickness has been usually observed

for a lot of materials deposited by PLD,2–7 and these curves

have been interpreted in the frame of the Anisimov’s model.4

The same kind of curve was observed in this work for zinc

oxide films deposited by PLD at 500 �C.

Fig. 1 clearly demonstrates that the O/Zn composition

ratio varies as a function of the substrate position. Such non

uniform angular distribution of elements has been previously

reported for multicomponent materials, i.e., in the PLD

plume, the spatial distribution of the elements depends upon

their mass in relation with gas scattering process.17–21 The

studies concerning the angular distribution in oxide materials

were generally not focused on the angular distribution of ox-

ygen with respect to the cations. For oxygen, in addition to

the difference of mass with the cations which can play a role,

another problem is the high volatility of this element leading

to large losses during PLD, which must be compensated by

working under an oxygen pressure in order to obtain stoichi-

ometric compounds. The ratio of fluxes of oxygen and cation

governs the oxygen incorporation in the oxide films.22,23 It

can be deduced from Fig. 1 that for a¼ 0 (region I) where a

largely oxygen deficient zinc oxide is formed, the growth

conditions are highly reducing (i.e., cations flux largely

higher than the oxygen flux). For increasing deposition angle

(region II), the oxygen deficiency in the film decreases corre-

sponding to an increase of the O/Zn ratio of fluxes. A further

increase of this ratio leads to the formation of stoichiometric

ZnO in region III. Similar experiments carried out at 500 �C
lead to a similar behavior attenuated by an increase of the

oxygen incorporation in the film due to the high temperature.

As a matter of fact, a ZnO0.9 was observed for a¼ 0.

X-ray diffraction h-2h diagrams recorded for various a
values (Fig. 2) show drastic structural non-uniformities.

Three distinct regions can be defined. In the central region,

i.e., zone I (�5�< a< 5�), a sole diffraction peak is present

corresponding to the 002 diffraction line of a c-axis ori-

ented (001) ZnO film. In the intermediate zone II

(5�< a< 20�), both the 002 and 101 peaks are present

attesting of the polycrystalline like character in this zone.

For larger oblique incidences, i.e., in zone III (a> 20�), a

sharp 002 diffraction line is observed, while a slight contri-

bution of the 101 diffraction line cannot be excluded. The

inset in Fig. 2 represents the variation of the 002 peak inten-

sity as a function of the angle of incidence of the species.

The intensity of the 002 peak normalized to the film thick-

ness is also presented in the inset, and shows that a higher

texture is observed at large a values. The three zones are

clearly evidenced in the inset, and rather abrupt transitions

are observed between the different zones.

FIG. 1. Thickness and composition variation for a Zn oxide film grown by

PLD at RT and 10�6 mbar, as a function of substrate position (the origin of

position being the normal to the target at the laser spot). The corresponding

incident angle for the species is also indicated. The schematic description of

the anisotropic character of PLD is presented in inset.



The c-axis texture is usually predominant for ZnO films

whatever the substrate and the growth method.24–26 This is

related to the nature of the (001) ZnO planes and to the high

growth kinetic along the [001] direction.26 In the wurtzite struc-

ture, the (00l) planes are polar (either Zn or O atomic planes)

and the surface free energy of such planes diverges,27 while the

non-polar prismatic planes ((100) or (110)) have a lower sur-

face free energy. In principle, the growth of ZnO films should

thus occur with a prismatic plane parallel to the substrate.

However, kinetics effects influence the film formation, and the

very high growth rate of ZnO along the c-axis direction leads

to a columnar growth,1,28 which is observed despite the unfav-

orable surface free energy of the (00l) family planes.

The appearance of (101)-oriented ZnO crystallites in the

zone II seems related to the evolution of the ratio of fluxes (O/

Zn) as a function of the position on the substrate. Indeed, it has

been observed by sputtering29 as well as by PLD30 that Zn rich

conditions lead to pure c-axis texture, while increasing oxygen

flux leads to the formation of mixed (001) and (101) textures.

A change in texture associated with a change in the pressure of

the ambient gas has already been observed in other systems16,31

and could be related to the change in surface free energy of the

planes as a function of the conditions,32 i.e., surfactant effects

related to oxygen rich growth conditions in the present case.

In addition to these micro-structural differences, the lat-

tice parameter value was also found to vary as it can be

deduced from Fig. 3. For films grown at RT, this parameter

is higher than the bulk value (0.5206 nm), and decreases

with the deposition angle. For a growth at 500 �C, this effect

is very limited: one observes a very weak decrease towards

the bulk value for increasing incidence angle. Moreover, on

contrary to the growth at RT, the 101 diffraction peak is not

observed for films grown at 500 �C. The variations in the lat-

tice parameter of zinc oxide PLD films are usually attributed

to the presence of strain in the films,1,13 but the variation in

oxygen composition as a function of position on the substrate

(Fig. 2) may also play a role.

The specific three distinct crystalline zones were further

studied by transmission electron microscopy, and Fig. 4

shows the cross-sectional low magnification TEM images of

the zinc oxide film at three different positions on the sub-

strate. A sharp interface and a columnar growth of the film

are observed in Figs. 4(a) and 4(c) corresponding, respec-

tively, to the central region (zone I) and to the external zone

(zone III). By contrast, no columnar structure appears in the

intermediate region (zone II), confirming the polycrystalline

nature of the zinc oxide film in this zone. The selected area

electron diffraction (SAED) patterns (corresponding to an

area of about 0.1 lm2) below the TEM images are in good

agreement with the XRD data. Indeed, elongated 002 spots

due to an angle distribution of the crystallographic orienta-

tion of the columns are observed in the SAED patterns corre-

sponding to zone I and zone III. This distribution covers an

angle of about 27.5� and 20� for zones I and III, respectively.

Figs. 5(a) and 5(b) are high resolution TEM images

from a cross section of region II. Fig. 5(a) shows a (101)-ori-

ented ZnO crystallite close to the SiO2/Si substrate. The

FIG. 2. X-ray diffraction diagram for a Zn oxide film grown at room T and

10�6 mbar as function of the angle of incidence of the species a. The varia-

tions of the intensity (as recorded and normalized to the film thickness) of

the 002 diffraction line of ZnO as a function of the incident angle of the spe-

cies a is presented in inset.

FIG. 3. c-axis parameter values as a function of the incident angle of the

species a for films grown under 10�6 mbar and at room T and 500 �C.

FIG. 4. Dark field TEM images of cross sectional views of three different

regions called zone I (a), zone II (b), and zone III (c) in the text. Note the

decreasing thickness value from zone I to zone III. The corresponding

SAED patterns are reported in (d), (e), and (f) for zones I, II, and III, respec-

tively. Clear (001) textures are observed for zones I and III. By contrast, this

texture is not visible for zone II.



polycrystalline nature of the zone II clearly appears via the

various orientations of the ZnO crystallites. Fig. 5(b) shows

typical region of zone II where the growth is no longer co-

lumnar but granular with grains randomly oriented in appear-

ance. As an example, two [001] directions from two

different grains are indicated and they appear clearly misor-

iented each other by an angle of about 20�.
Complementary information was obtained by 002 pole

figure measurements. In such figures, the 002 poles are char-

acterized by a declination (w) and azimuthal (u) angle, which

define the precise orientation of the (001)-oriented ZnO crys-

tallites with respect to the normal to the substrate. Fig. 6(a)

shows that under normal incidence (a¼ 0), i.e., in zone I, a

single broad 002 pole centered at W¼ 0 is observed meaning

that the [001] axes are distributed symmetrically around the

normal to the substrate. In the same way, in Fig. 6(c) obtained

for a¼ 25�, i.e., zone III, a single pole centered at W¼ 0 is

also present. The comparison of Figs. 6(a) and 6(c) clearly

confirms a better c-axis texture in zone III than in zone I.

In Fig. 6(b) corresponding to zone II (a¼ 13�), a well-

defined single 002 pole is not present. On the contrary, a

distribution of 002 poles is observed, looking like a fiber tex-

ture, approximately centered in the direction of incident

species (indicated with an arrow). However, this distribution

of 002 poles is not fully circular, and a large strengthening of

the 002 pole distribution is present in the direction

opposite to that of the incident species. Looking at the high

values of the declination (W around 75�), another

semi-circular pole distribution (with a limited intensity)

seems to be present in the direction opposite to the incident

species.

To determine quantitatively the tilt of the ZnO c-axis

with respect to the normal to the substrate (b angle) and its

variation with the deposition angle a, i.e. to determine the

b¼ f(a) variation, W scans for the 002 diffraction line were

registered as a function of the position on the substrate, and

are presented in Fig. 7. As expected from Fig. 6(a), under

normal incidence a single broad peak centered at W¼ 0� is

present. This broad peak corresponds to the wide angle dis-

persion of the [001] axis with respect to the normal already

observed in the SAED (Fig. 4).

For increasing a values, this main peak moves in the

direction opposite to the incident species, which is indicated

on each W scan by a mark, i.e., the orientation of the [001]

axis is located in the forward direction, as shown in an inset

of Fig. 7. This is the reverse of the orientation classically

reported in the case of the shadowing effect associated with

oblique incidence deposition films.33–35 Actually, under an

oblique angle deposition a at room temperature (low adatom

mobility), due to the self-shadowing effect, a columnar

growth is observed inclined towards the incoming flux of

species. An empirical relationship between the incidence

angle a and the inclination of texture b "tg a¼ 2 tg b" has

been previously reported for films grown by various meth-

ods.33–35 The reverse situation is observed here. The position

of the maximum of the main peak in Fig. 7 measures the tilt

b of the c-axis, and its variation is presented in Fig. 8. The

angle b is at first an increasing function of a, but for a> 20�

(end of zone II), the tilt of the c-axis decreases sharply and

for a higher than 25�, b is equal to zero meaning that a c-axis

texture is present for large oblique incidence.

In Fig. 7, in addition to the “central” (main) intense

peak, two other low intensity peaks can be distinguished in

the W scans recorded for 5�< a< 20�. These W scans corre-

sponding to zone II are presented with a logarithm scale in

an inset in Fig. 7, allowing a better observation of the low in-

tensity peaks. These smaller peaks are located at a roughly

equal angular distance of the main peak, i.e., around 60�, and

these two smaller peaks follow the variation of position of

the main peak, meaning that a well-defined relationship

exists between these peaks. Two points have to be taken into

consideration to explain the origin of these low intensity

peaks. First, (101)-oriented ZnO crystallites are present in

zone II (and zone III) as evidenced by XRD analyses (Fig.

2), and second, the angle between the (001) and (101) planes

in the ZnO wurtzite structure is 61.6�. As a result, assuming

that the (001) and (101)-oriented crystallites in zone II are

both inclined by b, the two low intensity peaks are due to the

(001) planes of these (101) (and (10-1)) oriented crystallites

tilted by an angle b. More detailed explanations of the origin

FIG. 5. HREM images taken in zone II and confirming the loss of the (001)

texture in this region. The substrate/film interface is horizontal. The poly-

crystalline character of this zone appears with (101) and (001)-oriented

grains in (a) and large variation in the (001)-oriented grains is present in (b).

FIG. 6. Pole figure of the (002) ZnO planes for (a) a¼ 0�, (b) a¼ 13�, and (c) a¼ 25�.



of these two low intensity peaks are given in the Appendix

of this paper. Moreover, all these peaks are not symmetric, a

broadening is observed on each peak, mainly in the direction

of the incident species, meaning that a rather wide distribu-

tion of the tilt value exists for the (001) and (101)-oriented

crystallites.

Finally, the influence of the substrate temperature was

studied. This parameter plays an important role on the c-axis

inclination, as it can be deduced from Fig. 9, which repre-

sents the W scans obtained for a film grown at 500 �C and

10�6 mbar. These W scans show that contrary to the RT

case, the c-axis is very close to the normal to the substrate.

This is due to the high surface diffusion coefficient for the

incident species at 500 �C. However, a clear deviation of a

few degrees is observed in the b¼ f(a) presented in the inset

of Fig. 9, meaning that the structural quality of the ZnO films

depends upon the incident direction of the species even at

high T. Interestingly, this slight deviation was found towards

the direction of the incident species, as it is observed in the

case of the shadowing effect (as indicated in the inset pre-

sented in this figure).33

DISCUSSION

The (001) or mixed (001) and (101) ZnO textures, tilted

or not, were observed as a function of the position on the sub-

strate, i.e., as a function of the oblique incidence a of the spe-

cies. Generally, under oblique angle deposition at RT by

thermal evaporation or sputtering, the film texture is inclined

towards the incident species direction, due to the shadowing

effect and limited atom diffusion.33–35 For the films grown by

PLD at RT, we always observe an inclination of the c-axis in

the forward direction, i.e., the reverse of the shadowing effect.

A possible explanation of this specific tilt of the (001)

and (101)-oriented ZnO crystallites could be searched in the

frame of the combined effects of the oblique angle deposi-

tion and variation of the ratio of fluxes (O/Zn) as a function

of position. The tilt of these (001) and (101)-oriented crystal-

lites is observed in zone II in which growth occurs under

oblique incidence and with a O/Zn ratio leading to the for-

mation of oxygen deficient zinc oxide, i.e., under reducing

conditions with a Zn excess. These two conditions are not

present elsewhere in the films. In zone I, the incident species

are mainly normal to the substrate, and despite the strong

reducing character of the ratio of fluxes (O/Zn), a c-axis tex-

ture is observed. In zone III (a> 25�), the oblique incidence

is present but the ratio of fluxes (O/Zn) is no longer reducing

as it leads to a stoichiometric film, which presents a c-axis

texture. Reducing growth conditions (Zn excess) and oblique

angle deposition are thus both needed to observe the tilt of

the (001) and (101)-oriented crystallites.

To explain the tilt of the (001) and (101)-oriented crys-

tallites, the effect of stress during the growth has to be con-

sidered. Actually, residual stress plays an important role in

the micro-structural evolution of thin films.36,37 In the case

of PLD, the incident species possess a high kinetic energy,

up to 100 eV (Refs. 1 and 3) under typical conditions, and

FIG. 7. W scan for the 002 reflection

plane as a function of the incident

angle of species a for a ZnO film

grown at room T and 10�6 mbar. The

W scans corresponding to the zone II

are presented with a log scale in one

inset. The other inset shows schemati-

cally the respective directions of the

incident species and the tilted c-axis.

FIG. 8. Variation of the tilt b of the c-axis as a function of the incident angle

of the species a.



they irradiate the surface of the growing film. Under ener-

getic bombardment conditions, a large compressive stress is

observed during the growth of thin films, due to the atomic

peening, which not only induces defects inside the crystalli-

tes but also promotes the incorporation of excess atoms in

the grain boundaries.36

In the present case, under normal incidence (zone I), the

excess Zn atoms will be incorporated at the grain boundaries

between c-axis oriented crystallites, leading thus to a broad-

ening of the angular distribution of these crystallites. Under

oblique incidence (zone II), the excess Zn atoms will be pref-

erentially incorporated in the exposed side of the crystallites

rather than in the shadowed side. This will give a tilt of the

c-axis crystallites towards the shadowed side, i.e., in the

direction opposite to the incident species with respect to the

normal to the substrate. At larger incidence angle (zone III),

two phenomena occur: (i) excess Zn atoms are not present (a

stoichiometric film is formed in this zone) and (ii) the kinetic

energy of the species decreases at large angles,38 i.e.,

decreasing thus the atomic peening effect. As a result, the

usual c-axis texture is observed.

Similar observations have been recently reported.39,40

Indeed, oblique-angle sputtering of ZnO in a reducing atmos-

phere, i.e., a 20% hydrogen–argon gas mixture, led to the

formation of “bent ZnO columns” in the direction opposite

to the incident species.39 The TEM experiments revealed

that the lattice bending phenomenon was accommodated by

dislocation networks where the exposed side to the incident

species of the column contains more dislocation than the

shadowed side. Such a process leads to the columns bending

towards the shadowed side, i.e., in the opposite direction to

the incident species. This oblique angle deposition under

argon-hydrogen reducing ambient has been used to grow

highly oriented non-polar ZnO thin films on glass sub-

strates.40 The microstructure of the non polar ZnO films con-

sists in a stack of grains with the c-axis gradually rotated

with increasing thickness from the normal to the nearly lat-

eral direction with respect to the substrate surface.40 This

“lattice bending phenomenon” could be described as the

result of the stress induced by the oblique incident species

(atomic peening) on the ZnO crystallites.

In the literature concerning ZnO films grown under

oblique incidence, the results are rather confusing. Indeed, a

columnar structure inclined towards the incident species has

been reported in some cases,41 while ZnO films grown by

DC sputtering were found to present their c-axis inclined in

the forward direction (with a few degrees) with respect to the

incident species.42 These contradictory results could be due

to the differences in the nature (neutral or ionic) and kinetic

energy of the incident species in the various deposition proc-

esses used for films growth.41 In particular, due the high ki-

netic energy of the species, the PLD growth presents

similarities with the ion beam assisted deposition (IBAD)

method. The IBAD process can lead to the growth of films

with “unusual” texture, i.e., different from that deduced from

surface free energy considerations.43 The changes in film

texture in IBAD are explained by the preferential sputtering

of differently oriented crystallites.44,45 It follows that the

crystal directions able to reduce sputtering and lattice dam-

ages are the most open channeling directions, which limit

the impinging ions–atoms collisions; they will therefore be

favored in the growth.45 For ZnO, the (001) oriented crystal-

lites are very sensitive to ion irradiations, while the (100)

and (110) axes are ion channeling directions, i.e., ion irradia-

tion will induce (100) or (110) ZnO texture.46 In our work,

we do not observe the (100) or (110) textures, whatever the

oblique incidence a of the species, meaning that sputtering

cannot explain our results.

The substrate temperature is an important parameter on

the film microstructure. We only observe a behavior compat-

ible with the shadowing effect for films grown at relatively

high substrate temperature (500 �C) (see Fig. 9). However, in

FIG. 9. W scan for the 002 reflection

plane as a function of the incident

angle of species a for a ZnO film

grown at 500 �C and 10�6 mbar. The

inset shows schematically the respec-

tive directions of the incident species

and the tilted c-axis.



this case the tilted b values are very small (only a few

degrees) for oblique incidence up to 25�. The reason why

would be that at 500 �C, the incident Zn species possess a

high surface mobility that allows their migration on the film

surface, which is generally very efficient to avoid the tilt of

the column associated to the shadowing effect.34

Taking into account the results obtained in this work it

comes that the methods used to obtain uniform film thickness

and composition by PLD based on rotation and motion of the

substrate with respect to the target could not necessarily lead

to uniform crystalline orientation for large area ZnO films.

At the best they will give a mean ZnO (00l) orientation nor-

mal to the substrate, but with a very broad angular distribu-

tion. The film deposition at relatively high T may decrease

these crystalline non-uniformities. This is certainly the rea-

son why it was necessary to work at very high temperature

(1000 �C) to obtain uniform crystalline films on large scale.47

However, such a high deposition temperature would be a

severe problem for a lot of devices involving such films. On

the other hand, the approaches based on off-axis deposition

would certainly give films with a uniform crystalline struc-

ture, but the related low deposition rate seems to preclude

their common use in industrial context.

CONCLUSIONS

In addition to the non-uniformities in ZnO film thickness

and stoichiometry as a function of position on the substrate,

we have evidenced large non-uniformities in the crystalline

lattice parameter and orientation in relation with the oblique

incidence of the species emitted during PLD. Actually, (001)

or mixed (001) and (101) ZnO textures, tilted or not, are

observed as a function of the position on the substrate, i.e.,

as a function of the oblique incidence a of the species. As a

matter of fact, for the film grown at RT, the ZnO c-axis

presents an inclination angle which cannot be described by

the well-known shadowing effect. The main parameters

governing the unexpected tilt of the (001) and (101)-oriented

crystallites are the oblique incidence of the species combined

to the ratio of fluxes of oxygen and Zn species, which both

depends upon the position on the substrate.

This work demonstrates that all the methods used to

obtain uniform film thickness and composition by PLD and

which are mainly based on rotation and motion of the sub-

strate with respect to the target will not necessarily lead to

films with uniform crystalline orientation. At the best they

will give a mean ZnO (001) orientation normal to the

substrate, but with a broad angular distribution, i.e., a quasi

polycrystalline film will be obtained. The structural non-

uniformities have to be taken into account in the next genera-

tion of PLD systems for large area deposition. New

approaches are needed to obtain using a moderate growth

temperature, thin films with an acceptable deposition rate

and a perfect crystalline uniformity on large dimension.
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APPENDIX: INTERPRETATION OF W SCANS

In this work, the w scans recorded for the 002 diffraction

line show the presence of a main peak located at a b angle

depending of the oblique incidence a, with two other low in-

tensity peaks located at about bþ 60� (Fig. 7). It follows that

the main peak located at b is due to the (001)-oriented ZnO

crystallites (C(001)) tilted by a b angle. Moreover, the pres-

ence of both (001) and (101)-oriented ZnO crystallites in the

films has been established (Fig. 2). As the angle between the

(002) and (101) planes of the ZnO wurtzite structure is equal

to 61.6�, the assumption that both (001) and (101)-oriented

crystallites are tilted by the same b angle leads to the conclu-

sion that the two low intensity peaks correspond to the (002)

FIG. 10. Schematic representation of

the contributions of the (001) and

(101)-oriented ZnO crystallites to W
scans for the 002 (a) and 101 (b) reflec-

tion lines.



planes of the (101) and (10-1) ZnO crystallites (C(101) and

C(10-1)) tilted by the b angle, as it is schematized in Fig.

10(a) in which these peaks are located at b 6 61.6�.
In this frame, it comes that a W scan of the 101 ZnO dif-

fraction line will show a peak located at b, corresponding to

the C(101) and C(10-1) ZnO crystallites tilted by an angle b,

and two peaks located at b 6 61.6�, corresponding to the

(101) planes of the C(001) crystallites tilted by an angle b. To

check this approach, W scans of the 002 and 101 diffraction

lines were recorded for an oblique incidence (a¼ 20), and

they are shown in Figs. 11(a) and 11(b). The comparison of

these two W scans shows the coincidence of both the

“central” 002 and 101 peaks, as well as the coincidence of

the 002 and 101 peaks located at 661.6� from the “central”

peaks. We can thus conclude that the W scans presented in

Fig. 7 are due to the presence of both (001) and (101)-ori-

ented crystallites tilted by a b angle with respect to the nor-

mal to the substrate.
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