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Giant black hole ringings induced by massive gravity
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A distorted black hole radiates gravitational waves in order to settle down in one of the geometries
permitted by the no-hair theorem. During that relaxation phase, a characteristic damped ringing is
generated. It can be theoretically constructed from the black hole quasinormal frequencies (which
govern its oscillating behavior and its decay) and from the associated excitation factors (which
determine intrinsically its amplitude) by carefully taking into account the source of the distortion.
Here, by considering the Schwarzschild black hole in the framework of massive gravity, we show that
the excitation factors have an unexpected strong resonant behavior leading to giant ringings which
are, moreover, slowly decaying. Such extraordinary black hole ringings could be observed by the
next generations of gravitational wave detectors and allow us to test the various massive gravity
theories or their absence could be used to impose strong constraints on the graviton mass.

PACS numbers: 04.70.Bw, 04.30.-w, 04.25.Nx, 04.50.Kd

Introduction.— Gravitational waves, a major predic-
tion of Einstein’s general relativity, should be observed
directly in a near future by the next generations of grav-
itational wave detectors. Another fascinating prediction
of Einstein’s theory, the existence of black holes (BHs),
should be simultaneously confirmed. Indeed, if in its final
stage the astrophysical process generating the observed
gravitational radiation involves a distorted BH, the sig-
nal is then dominated, at intermediate time scales, by a
characteristic damped ringing. It is due to the BH which
radiates away all its distortions in the form of gravita-
tional waves and relaxes toward a state permitted by the
no-hair theorem. The frequencies and decay rates de-
scribing that ringing define the complex resonance spec-
trum of the BH. They are linked to its quasinormal modes
(QNMs) [1–4], i.e., to those mode solutions of the wave
equation which propagate inward at the horizon and out-
ward at spatial infinity, and they can be considered as the
BH fingerprint : they indicate beyond all doubt the ex-
istence of a horizon and they could be used to determine
unambiguously the mass as well as the angular momen-
tum of the BH.
These last years, generalizations of general relativity

mediated by a massive spin-2 particle are the subject of
intense activity (see Ref. [5] for a recent review). They
have their source in the 70-year old Fierz-Pauli theory
[6]. They are motivated by purely theoretical considera-
tions (the study of the deformations of general relativity
with the graviton mass as deformation parameter) but
they also arise from field theories in spacetimes with ex-
tra dimensions. Furthermore, and this is surely the main
raison of their success, they could explain, without dark
energy, the accelerated expansion of the present Universe.
Of course, a hypothetical massive graviton is surely an
ultralight particle (see Ref. [7] for a description of the
experimental constraints on the graviton mass but note

that the mass limit strongly depends on the theory con-
sidered).
It is therefore natural to study BH perturbations and

to reconsider gravitational radiation from BHs in massive
gravity. It is only very recently that some works on this
subject by Babichev and Fabbri [8] and by Brito, Cardoso
and Pani [9, 10] have been achieved. They mainly discuss
the fundamental problem of BH stability and therefore
the existence of BHs in massive gravity. Of course, this
depends on the model of gravity considered but, once
we assume stability, it becomes really interesting to work
on the structure of the signal emitted by a distorted BH
with in mind the possibility to test, in a near future, the
various massive spin-2 field theories with gravitational
wave detectors.
Since the seventies, an increasing number of frequency-

and time-domain studies dealing with massive fields
propagating in BH spacetimes have highlighted the im-
portant modifications induced by the mass parameter
which concern more or less directly the signal emitted by
a distorted BH : (i) the resonance spectrum is enriched
by the complex frequencies corresponding to quasibound
states (see Refs. [11–14] for important pioneering works
and Ref. [9] for a recent study in massive gravity); (ii) as
the mass parameter increases, the quasinormal frequen-
cies migrate in the complex plane, a behavior observed
numerically by various authors (see, e.g., Refs. [15, 16] for
pioneering works and Ref. [9] for a recent study in mas-
sive gravity) and analytically described recently [17, 18];
(iii) at very late time (i.e., after the quasinormal ringing),
the signal emitted by the relaxing BH is not described
by the usual power-law tail behavior [19] but, roughly
speaking, by oscillations with a slowly-decaying ampli-
tude (see, e.g., Ref. [20] as well as Ref. [21] for a recent
study in massive gravity).
In a future article [22], we intend to discuss as fully
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as possible a new effect with amazing consequences : for
massive bosonic fields in the Schwarzschild spacetime, the
excitation factors of the QNMs have a strong resonant
behavior which induces giant ringings. It is a totally
unexpected effect. Indeed, until now it was assumed that,
for massive fields, quasinormal ringings are less easily
excited (see the introduction of Ref. [23] and references
therein). We shall describe this effect numerically and
confirm it analytically from semiclassical considerations
based on the properties of the unstable circular geodesics
on which a massive particle can orbit the BH.
In this letter, we only consider the massive spin-2 field

because of its theoretical importance and due to the fas-
cinating observational consequences that our results pre-
dict for such a field. We limit our study to the Fierz-
Pauli theory in the Schwarzschild spacetime [9] which
can be obtained, e.g., by linearization of the ghost-free
bimetric theory of Hassan, Schmidt-May and von Strauss
discussed in Ref. [24] and which is inspired by the funda-
mental work of de Rham, Gabadadze and Tolley [25, 26].
Furthermore, we mainly focus on the odd-parity ℓ = 1
mode of this field (similar results can be obtained for the
other modes - see also Ref. [22]) and on the associated
QNMs. Our letter is organized as follows. We first estab-
lish numerically the resonant behavior of the excitation
factor of the (ℓ = 1, n = 0) QNM (and briefly discuss its
overtones). It occurs in a large domain around a critical
value of the mass parameter where the QNM is, in ad-
dition, weakly damped. As a consequence, it induces gi-
ant and slowly decaying ringings. These are constructed
directly from the retarded Green function (an intrinsic
point of view) and we compare them with the ringing
generated by the odd-parity (ℓ = 2, n = 0) QNM of the
massless theory which, in the context of Einstein grav-
ity, provides one of the most important contribution to
the BH ringing. With in mind observational considera-
tions, it is necessary to check that a realistic perturbation
describing the BH distortion does not neutralize the res-
onant effect previously discussed and to study ringings
constructed from the quasinormal excitation coefficients
(an extrinsic point of view) because they permit us to
include the contribution of the perturbation into the BH
response [27]. We then describe the perturbation by an
initial value problem, an approach which has regularly
provided interesting results [27–29]. We show that the
excitation coefficient of the (ℓ = 1, n = 0) QNM also has
a resonant behavior which still leads to giant and slowly
decaying ringings. In a conclusion, we discuss some pos-
sible extensions of our work and its interest for gravita-
tional wave astrophysics and theoretical physics.
Throughout this letter, we display our numerical re-

sults by using the dimensionless coupling constant α̃ =
2Mµ/mP

2 (here M , µ and mP =
√

~c/G denote respec-
tively the mass of the BH, the rest mass of the gravi-
ton and the Planck mass). We adopt units such that
~ = c = G = 1 and assume a harmonic time dependence

exp(−iωt) for the spin-2 field. We describe the exterior
of the Schwarzschild BH by using both the radial coordi-
nate r ∈]2M,+∞[ and the so-called tortoise coordinate
r∗ ∈]−∞,+∞[ given by r∗(r) = r+2M ln[r/(2M)− 1].
Resonant behavior of the quasinormal excitation fac-

tors and associated “intrinsic” giant ringings.— In
Schwarzschild spacetime, the partial amplitude φ(t, r) de-
scribing the odd-parity ℓ = 1 mode of the massive spin-2
field satisfies [9] (the angular momentum index ℓ = 1 will
be, from now on, suppressed in all the formulas)

[

−
∂2

∂t2
+

∂2

∂r2∗
− V (r)

]

φ(t, r) = 0 (1)

with the effective potential V (r) given by

V (r) =

(

1−
2M

r

)(

µ2 +
6

r2
−

16M

r3

)

. (2)

The associated retarded Green function can be written
as

Gret(t; r, r
′) = −

∫ +∞+ic

−∞+ic

dω

2π

φin
ω (r<)φ

up
ω (r>)

W (ω)
e−iωt (3)

where c > 0, r< = min(r, r′), r> = max(r, r′) and with
W (ω) denoting the Wronskian of the functions φin

ω and
φup
ω . These two functions are linearly independent solu-

tions of the Regge-Wheeler equation

d2φω

dr2∗
+
[

ω2 − V (r)
]

φω = 0. (4)

When Im(ω) > 0, φin
ω is uniquely defined by its ingoing

behavior at the event horizon, i.e., for r∗ → −∞ φin
ω (r) ∼

exp[−iωr∗] and, at spatial infinity, i.e., for r∗ → +∞, it
has an asymptotic behavior of the form

φin
ω (r) ∼

√

ω

p(ω)

[

A(−)(ω)e−i[p(ω)r∗+[Mµ2/p(ω)] ln(r/M)]

+A(+)(ω)e+i[p(ω)r∗+[Mµ2/p(ω)] ln(r/M)]
]

. (5)

Similarly, φup
ω is uniquely defined by its outgoing be-

havior at spatial infinity, i.e., for r∗ → +∞, φup
ω (r) ∼

√

ω/p(ω) exp{+i[p(ω)r∗ + [Mµ2/p(ω)] ln(r/M)]} and,
at the horizon, i.e., for r∗ → −∞ it has an asymptotic
behavior of the form

φup
ω (r) ∼ B(−)(ω)e−iωr∗ +B(+)(ω)e+iωr∗ . (6)

Here p(ω) =
√

ω2 − µ2 denotes the “wave number”
while A(−)(ω), A(+)(ω), B(−)(ω) and B(+)(ω) are com-
plex amplitudes which, like the in- and up- modes, can
be defined by analytic continuation in the full com-
plex ω-plane (or, more precisely, in a well-chosen multi-
sheeted Riemann surface). By evaluating the Wron-
skian W (ω) at r∗ → −∞ and r∗ → +∞, we obtain
W (ω) = 2iωA(−)(ω) = 2iωB(+)(ω).
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If the Wronskian W (ω) vanishes, the functions φin
ω and

φup
ω are linearly dependent and propagate inward at the

horizon and outward at spatial infinity, a behavior which
defines the QNMs. The zeros of the Wronskian lying in
the lower part of the complex ω-plane are the frequencies
of the ℓ = 1 QNMs. They are symmetrically distributed
with respect to the imaginary ω-axis. The contour of in-
tegration in Eq. (3) may be deformed in order to capture
them [28]. By Cauchy’s Theorem, we can extract from
the retarded Green function (3) a residue series over the
quasinormal frequencies ωn lying in the fourth quadrant
of the complex ω-plane. We then obtain the contribution
describing the BH ringing. It is given by

GQNM
ret (t; r, r′) = 2Re

[

∑

n

Bnφ̃ωn
(r)φ̃ωn

(r′)

× e−iωnt+ip(ωn)r∗+ip(ωn)r
′

∗
+i[Mµ2/p(ωn)] ln(rr

′/M2)

]

(7)

where

Bn =

(

1

2p(ω)

A(+)(ω)
dA(−)(ω)

dω

)

ω=ωn

(8)

denotes the excitation factor corresponding to the com-
plex frequency ωn. In Eq. (7), the modes φ̃ωn

(r) are de-
fined by normalizing the modes φin

ωn

(r) so that φ̃ωn
(r) ∼ 1

as r → +∞. In the sum, n = 0 corresponds to
the fundamental QNM (i.e., the least damped one) and
n = 1, 2, . . . to the overtones.
Quasinormal retarded Green functions such as (7) do

not provide physically relevant results at “early times”
due to their exponentially divergent behavior as t de-
creases. It is necessary to determine, from physical con-
siderations, the time beyond which they can be used and
such a time is the starting time tstart of the BH ringing.
tstart can be “easily” obtained for massless fields (see,
e.g., Ref. [27]). Indeed, we first note that the QNMs are
semiclassically associated with the peak of the effective
potential located close to r∗ ≈ 0. Then, by assuming that
the source at r′∗ and the observer at r∗ are far from the
BH (i.e., that r∗, r

′
∗ ≫ 2M) we have tstart ≈ r∗ + r′∗ (it

is approximatively the time taken for the signal to travel
from the source to the peak of the potential and then
to reach the observer). For massive fields, the previous
considerations must be slightly modified. We take into
account the dispersive behavior of the QNMs and define
tstart from group velocities. From the dispersion relation
p(ω) =

√

ω2 − µ2, we can show that the group velocity
corresponding to the quasinormal frequency ωn is given
by vg = Re[p(ωn)]/Re[ωn]. Because the peak of the ef-
fective potential still remains located close to r∗ ≈ 0, we
then obtain tstart ≈ (r∗ + r′∗)Re[ωn]/Re[p(ωn)] (here, we
neglect the contribution of [Mµ2/p(ωn)] ln(rr

′/M2)).
In Fig. 1, we display the effect of the graviton mass on

ω0 (see also Fig. 2 in Ref. [9]) and in Fig. 2, we exhibit
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FIG. 1. Complex frequency ω0 of the odd-parity (ℓ = 1, n =
0) QNM.
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FIG. 2. Resonant behavior of the excitation factor B0 of the
odd-parity (ℓ = 1, n = 0) QNM. The maximum of |B0| occurs
for the critical value α̃ ≈ 0.89757; we then have 2Mω0 ≈
0.85969073 − 0.03878222i and B0 ≈ 3.25237 + 19.28190i.

the strong resonant behavior of B0 occurring around the
critical value α̃ ≈ 0.90. The same kind of resonant be-
havior exists for the excitation factors Bn with n 6= 0 but
the resonance amplitude decreases rapidly as the over-
tone index n increases.
The resonant behavior of the excitation factor B0 oc-

curring for masses in a range where the QNM is a long-
lived mode (see Figs. 1 and 2) induces giant ringings
which are, moreover, slowly or even very slowly decaying.
In Fig. 3, we plot, for two values of the graviton mass, the
BH “intrinsic” ringings constructed from the quasinormal
retarded Green function (7) and we compare them to the
ringing generated by the odd-parity (ℓ = 2, n = 0) QNM
of the massless spin-2 field with quasinormal frequency
2Mω20 ≈ 0.74734337− 0.17792463i and with excitation
factor B20 ≈ 0.12690 + 0.02032i. Similar results can be
obtained for various locations of the source and the ob-
server. Giant BH ringings also exist for n 6= 0 but with
less impressive characteristics.
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FIG. 3. Extraordinary “intrinsic” ringings induced by mas-
sive gravity and comparison with the ringing generated in Ein-
stein gravity. The results are obtained from (7) with r = 50M
and r′ = 10M .
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Resonant behavior of the quasinormal excitation coeffi-

cients and associated “extrinsic” giant ringings.— In the
previous section, we focussed on “intrinsic” ringings, i.e.,
on ringings directly constructed from the quasinormal re-
tarded Green function and therefore depending only on
the BH properties. Of course, with in mind astrophysical
applications, it is now necessary to check that giant ring-
ings also exist in the presence of a realistic perturbation
or, in other words, that the convolution of the source of
the perturbation with the retarded Green function does
not modify, in a fundamental way, our results. This is a
complex problem and, in this letter, we just discuss some
of its elementary aspects.
Some years ago, dealing with the observability of quasi-

normal ringings, Andersson and Glampedakis associated
to each QNM an effective amplitude heff achievable af-
ter matched filtering [30, 31]. For the massive QNMs
considered here, it reads

heff ∼ Re
[

2
√

−Re(ωn)/Im(ωn) p(ωn)Bn

]

. (9)

We can use it in order to determine the effective ampli-
tude of the ringings generated by the odd-parity (ℓ =
1, n = 0) QNM of massive gravity; we obtain |heff | ≈
54.74 for α̃ = 0.89 and |heff | ≈ 13.02 for α̃ = 1.05. For
the ringing generated by the odd-parity (ℓ = 2, n = 0)
QNM of Einstein gravity we have |heff | ≈ 0.40. This is in
perfect agreement with our previous results and suggests
that giant BH ringings are astrophysically relevant and
observable. However, it should be noted that Andersson-
Glampedakis formula must be taken with a pinch of salt.
As noted in Ref. [27], it seems helpful only if the quasi-
normal ringing is excited by localized initial data. So, it
is necessary to consider a more general approach.
We now describe the BH perturbation by an initial

value problem with Gaussian initial data. More precisely,
we consider that, at t = 0, the partial amplitude φ(t, r)
governed by (1) satisfies

φ(t = 0, r) = φ0(r) ≡ φ0 exp

[

−
a2

(2M)2
(r∗ − β)2

]

(10)

and ∂tφ(t = 0, r) = 0. By Green’s Theorem, we can show
that the time evolution of φ(t, r) is described, for t >
0, by φ(t, r) =

∫

∂tGret(t; r, r
′)φ0(r

′)dr′∗. We can insert
(3) into this expression and deform again the contour of
integration on ω in order to capture the contributions of
the QNMs. We then isolate the BH ringing generated by
the initial data:

φQNM(t, r) = 2Re

[

∑

n

iωnCn

× e−iωnt+ip(ωn)r∗+i[Mµ2/p(ωn)] ln(r/M)

]

. (11)

Here Cn denotes the excitation coefficient of the QNM
with overtone index n. It takes explicitly into account
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Abs@C0�H2MLD

Re@C0�H2MLD

Im@C0�H2MLD

0.0 0.2 0.4 0.6 0.8 1.0
-6

-4

-2

0

2

4

6

Α
�

C 0
�H

2M
L

FIG. 4. Resonant behavior, in massive gravity, of the excita-
tion coefficient C0 of the odd-parity (ℓ = 1, n = 0) QNM. It is
obtained from (12) by using (10) with φ0 = 1, a = 1 and β =
10M . The maximum of |C0|/(2M) occurs for the critical value
α̃ ≈ 0.88808; we then have 2Mω0 ≈ 0.85277076−0.04084908i
and C0/(2M) ≈ −4.02613 − 1.93037i.
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the role of the BH perturbation and is given by

Cn = Bn

∫

φ0(r
′)φin

ωn

(r′)
√

ωn/p(ωn)A(+)(ωn)
dr′∗. (12)

The excitation coefficients Cn, like the excitation fac-
tors Bn, have a resonant behavior but it is now more
attenuated. Moreover, the maximum amplitude of the
resonance is slightly shifted but still occurs for masses in
a range where the QNM is a long-lived mode. In Fig. 4,
we exhibit the strong resonant behavior of C0 for particu-
lar values of the parameters defining the initial data (10).
It occurs around the critical value α̃ ≈ 0.89 and is rather
similar to the behavior of the corresponding excitation
factor B0. It should be noted that we have checked that it
depends very little on the parameters defining the initial
data (10) (see Ref. [22] for a detailed study). Of course,
for overtones, the resonance is more and more attenuated
as the overtone index n increases so, the ringings gener-
ated by the fundamental QNM are certainly the most
interesting.
In Fig. 5, we plot, for the two values of the graviton

mass considered in Fig. 3, the BH “extrinsic” ringings
defined by (11) and we compare them to the ringing gen-
erated by the odd-parity (ℓ = 2, n = 0) QNM of the mass-
less spin-2 field. This last one is constructed by noting
that, for the same initial data, the excitation coefficient
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of the QNM is given by C20/(2M) ≈ 0.50761− 0.29210i.
Similar results as those displayed in Fig. 5 can be ob-
tained for various values of the parameters defining the
initial data (10) and for various locations of the observer.
Even if the role of the perturbation is taken into account,
extraordinary BH ringings exist.
Conclusion.— In this letter, by considering the massive

spin-2 field in Schwarzschild spacetime, we have pointed
out a new effect in BH physics : the existence around
particular values of the mass parameter of a strong res-
onant behavior for the excitation factors of the QNMs
with, as a consequence, the existence of giant and slowly-
decaying ringings. Such results are, in fact, a general
feature of massive field theories in the Schwarzschild BH
[22]. It would be interesting to study more realistic per-
turbations than the distortion described here by an initial
value problem (e.g., the excitation of the BH by a par-
ticle falling radially or plunging), to consider alternative
massive gravity theories and to extend our study to the
Kerr BH. Finally, we would like to note that :

(i) The Schwarzschild BH interacting with a mas-
sive spin-2 field is in general unstable [8, 9] (see, however,
Ref. [10]). In the context of the theory considered here,
the instability is due to the behavior of the propagat-
ing ℓ = 0 mode [9]. It is a “low-mass” instability which
disappears for α̃ above the threshold value α̃c ≈ 0.86.
So, the giant ringings predicted here occurring near and
above the critical value α̃ ≈ 0.89 are physically relevant.

(ii) Even if the graviton is an ultralight particle,
when it interacts with a supermassive BH, values of the
coupling constant α̃ leading to giant ringings can be eas-
ily reached. Indeed, supermassive BHs have their masses
lying approximately between 106M⊙ and 2 × 1010M⊙;
so, if we assume that µ ≈ 1.35 × 10−55 kg (it seems to
be the superior limit of the graviton mass in the frame-
work of the ordinary Fierz-Pauli theory [32]), we have
α̃ lying approximately between 10−3 and 20. As a con-
sequence, due to the enormous number of supermassive
BHs in the Universe, the extraordinary BH ringings dis-
cussed here could be observed by the next generations of
gravitational wave detectors and used to test the various
massive gravity theories or their absence could allow us
to impose strong constraints on the graviton mass and to
support, in a new way, Einstein’s general relativity.
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