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Our aim in this paper is to study the existence of local (in time) solutions for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms. This equation was proposed in view of applications to binary image inpainting. We also give some numerical simulations which show the efficiency of the model.

Introduction

The Cahn-Hilliard equation plays an important role in materials science and describes phase separation processes. This can be observed, e.g., when a binary alloy is cooled down sufficiently. One then observes a partial nucleation (i.e., the apparition of nucleides in the material) or a total nucleation, the so-called spinodal decomposition: the material quickly becomes inhomogeneous, forming a fine-grained structure in which each of the two components appears more or less alternatively. In a second stage, which is called coarsening and occurs at a slower time scale, these microstructures coarsen. Such phenomena play an essential role in the mechanical properties of the material, e.g., strength. We refer the reader to, e.g., [START_REF] Cahn | On spinodal decomposition[END_REF], [START_REF] Cahn | Free energy of a nonuniform system I. Interfacial free energy[END_REF], [START_REF] Cherfils | The Cahn-Hilliard equation with logarithmic potentials[END_REF], [START_REF] Elliott | The Cahn-Hilliard model for the kinetics of phase separation[END_REF], [START_REF] Kohn | Upper bounds for coarsening rates[END_REF], [START_REF] Langer | Theory of spinodal decomposition in alloys[END_REF], [START_REF] Maier-Paape | Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part I: Probability and wavelength estimate[END_REF], [START_REF] Maier-Paape | Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics[END_REF], [START_REF] Novick-Cohen | The Cahn-Hilliard equation: Mathematical and modeling perspectives[END_REF] and [START_REF] Novick-Cohen | The Cahn-Hilliard equation[END_REF] for more details.

It is also interesting to note that the Cahn-Hilliard equation, or some of its variants, is relevant in other contexts, in which phase separation and coarsening/clustering processes can be observed or come into play. We can mention, for instance, population dynamics (see [START_REF] Cohen | A generalized diffusion model for growth and dispersion in a population[END_REF]), bacterial films (see [START_REF] Klapper | Role of cohesion in the material description of biofilms[END_REF]), wound healing and tumor growth (see [START_REF] Cherfils | On a generalized Cahn-Hilliard equation with biological applications[END_REF], [START_REF] Khain | A generalized Cahn-Hilliard equation for biological applications[END_REF] and [START_REF] Miranville | Asymptotic behavior of a generalized Cahn-Hilliard equation with a proliferation term[END_REF]), thin films (see [START_REF] Oron | Long-scale evolution of thin liquid films[END_REF] and [START_REF] Thiele | Thin liquid films on a slightly inclined heated plate[END_REF]), image processing and inpainting (see [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF], [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF], [START_REF] Burger | Cahn-Hilliard inpainting and a generalization for grayvalue images[END_REF], [START_REF] Chalupeckí | Numerical studies of Cahn-Hilliard equations and applications in image processing[END_REF], [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] and [START_REF] Dolcetta | Area-preserving curve-shortening flows: from phase separation to image processing[END_REF]) and even the rings of Saturn (see [START_REF] Tremaine | On the origin of irregular structure in Saturn's rings[END_REF]) and the clustering of mussels (see [START_REF] Liu | Phase separation explains a new class of self-organized spatial patterns in ecological systems[END_REF]).

In particular, in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] and [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF], the authors proposed the following variant of the Cahn-Hilliard equation:

(1.1) ∂u ∂t + ∆ 2 u - 1 ∆f (u) + λ 0 χ Ω\D (u -h) = 0, > 0, λ 0 > 0,
in view of applications to binary image inpainting. Here, h = h(x) is a given (damaged) image and D ⊂ Ω is the inpainting region (Ω is the total region). Furthermore, the term λ 0 χ Ω\D (u -h), called fidelity term, is added in order to keep the solution u close to the image h outside the damaged region (χ denotes the indicator function). Finally, the nonlinear term f is regular and cubic, typically, f (s) = 4s 3 -6s 2 + 2s. The idea in this model is to solve (1.1) up to steady state in order to obtain an inpainted version u(x) of h(x). This equation was studied, endowed with Neumann boundary conditions, in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF], [START_REF] Burger | Cahn-Hilliard inpainting and a generalization for grayvalue images[END_REF] and [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF]. In particular, one has well-posedness and regularity results, as well as the existence of finite-dimensional attractors. Furthermore, numerical simulations were given. In particular, the simulations in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] show that, in some situations, a dynamic one step scheme with threshold involving the diffuse interface thickness (we note that, in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] and [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF], the authors first considered a large value of and then a smaller one in order to obtain their numerical simulations) allows to connect regions across large inpainting domains.

Our aim in this paper is to consider (1.1) now with logarithmic nonlinear terms f (note indeed that the original Cahn-Hilliard equation was actually proposed with thermodynamically relevant logarithmic nonlinear terms which follow from a mean-field model; regular (and, in particular, cubic) nonlinear terms are approximations of such logarithmic nonlinear terms).

The Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation, with logarithmic nonlinearities and Neumann boundary conditions, appears to be much more complicated, from a mathematical point of view, than the Cahn-Hilliard equation. Consequently, we are only able to prove the local (in time) existence of solutions.

We also give some numerical simulations which confirm that the one step algorithm with threshold proposed in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] is efficient. Actually, in that case, we can obtain better results, when using logarithmic nonlinear terms, than those obtained with polynomial nonlinear terms, as far as the convergence time is concerned. Furthermore, we give an example for which the one step algorithm gives much better results when considering a logarithmic nonlinearity.

Notation. We denote by ((•, •)) the usual L 2 -scalar product, with associated norm • . We further set

• -1 = (-∆) -1 2
• , where (-∆) -1 denotes the inverse minus Laplace operator associated with Neumann boundary conditions and acting on functions with null spatial average. More generally, • X denotes the norm on the Banach space X.

Throughout the paper, the same letters c and c denote (generally positive) constants which may vary from line to line.

Setting of the problem

We consider the following initial and boundary value problem in a bounded and regular domain Ω ⊂ R n , n = 1, 2 or 3, with boundary Γ:

(2.1) ∂u ∂t + ∆ 2 u -∆f (u) + χ Ω\D (x)(u -h) = 0, (2.2) ∂u ∂ν = ∂∆u ∂ν = 0 on Γ, (2.3 
)

u| t=0 = u 0 ,
where D Ω (for simplicity, we have set all constants in (1.1) equal to one).

We assume that h ∈ L 2 (Ω) and

(2.4)

Ω\D h dx = 0.
Remark 2.1. We need (2.4) in view of the mathematical analysis of the problem. However, this condition is not necessary for the numerical simulations below.

Furthermore, as far as the nonlinear term f is concerned, we assume that

(2.5) f = F , where F (s) = λ 1 2 (1 -s 2 ) + λ 2 2 ((1 -s) ln 1 -s 2 + (1 + s) ln 1 + s 2 ), 0 < λ 2 < λ 1 , s ∈ (-1, 1), hence f (s) = -λ 1 s + λ 2 2 ln 1 + s 1 -s , s ∈ (-1, 1).
Moreover, there holds

(2.6) f ≥ -λ 1 . Writing F (s) = λ 1 2 (1 -s 2 ) + F 1 (s) and f 1 = F 1 ,
we introduce, following [START_REF] Frigeri | Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials[END_REF] and for N ∈ N, the approximated function F 1,N ∈ C 4 (R) defined by (2.7)

F (4) 1,N (s) =      F (4) 1 (1 -1 N ), s ≥ 1 -1 N , F (4) 1 (s), |s| ≤ 1 -1 N , F (4) 1 (-1 + 1 N ), s ≤ -1 + 1 N , (2.8) 
F (k) 1,N (0) = F (k) 1 (0), k = 0, 1, 2, 3, so that (2.9) F 1,N (s) =      4 k=0 1 k! F (k) 1 (1 -1 N )(s -1 + 1 N ) k , s ≥ 1 -1 N , F 1 (s), |s| ≤ 1 -1 N , 4 k=0 
1 k! F (k) 1 (-1 + 1 N )(s + 1 -1 N ) k , s ≤ -1 + 1 N . Setting F N (s) = λ 1 2 (1 -s 2 ) + F 1,N (s), f 1,N = F 1,N and f N = F N , there holds (2.10) f 1,N ≥ 0, f N ≥ -λ 1 , (2.11) F N ≥ -c 1 , c 1 ≥ 0,
and (see [START_REF] Frigeri | Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials[END_REF] and [START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF])

(2.12) f N (s)s ≥ c 2 (F N (s) + |f N (s)|) -c 3 , c 2 > 0, c 3 ≥ 0, s ∈ R,
where the constants c i , i = 1, 2 and 3, are independent of N , for N large enough. We further have the Proposition 2.2. There holds, for N large enough,

(2.13) (f N (s + a) -f N (a))s ≥ c 4 (s 4 + a 2 s 2 ) -c 5 , c 4 > 0, c 5 ≥ 0, s, a ∈ R,
where the constants c 4 and c 5 are independent of N .

Proof. Note that it suffices to prove (2.13) for f 1,N . Furthermore, all constants below are independent of N .

Case 1: s + a ≥ 1 -1 N , a ≥ 1 -1 N .
We have, in that case and for N large enough,

(f 1,N (s + a) -f 1,N (a))s = s 3 k=0 1 k! f (k) 1 (1 - 1 N )((s + a -1 + 1 N ) k -(a -1 + 1 N ) k ) ≥ 1 6 ((s + a -1 + 1 N ) 3 -(a -1 + 1 N ) 3 )s.
Here and below, we use the facts that f

(k) 1 (1 -1 N ) ≥ 0, k = 0, ..., 3, and lim N →+∞ f 1 (1 - 1 N ) = +∞. It then follows from [8] that (f 1,N (s + a) -f 1,N (a))s ≥ c(s 4 + s 2 (a -1 + 1 N ) 2 ) -c ≥ c(s 4 + a 2 s 2 ) -c , c > 0, noting that |1 -1 N | ≤ 1. Case 2: s + a ≥ 1 -1 N , |a| ≤ 1 -1 N . Note that, in that case, s ≥ 1 -1 N -a ≥ 0. Furthermore, (f 1,N (s + a) -f 1,N (a))s = ( 3 k=0 1 k! f (k) 1 (1 - 1 N )(s + a -1 + 1 N ) k -f 1 (a))s. Noting that f 1 (1 -1 N ) ≥ f 1 (a)
and that |a| ≤ 1, we obtain, for N large enough,

(f 1,N (s + a) -f 1,N (a))s ≥ 1 6 (s + a -1 + 1 N ) 3 s ≥ 1 6 (s -2) 3 s ≥ cs 4 -c ≥ c(s 4 + a 2 s 2 ) -c , c > 0. Case 3: s + a ≥ 1 -1 N , a ≤ -1 + 1 N . Noting that f 1 (-s) = -f 1 (s), we have (f 1,N (s + a) -f 1,N (a))s = (2f 1 (1 - 1 N ) + f 1 (1 - 1 N )(s -2 + 2 N ) + 1 2 f 1 (1- 1 N )((s+a-1+ 1 N ) 2 +(a+1- 1 N ) 2 )+ 1 6 f 1 (1- 1 N )(s+a-1+ 1 N ) 3 -(a+1- 1 N ) 3 )s. Therefore, noting that s ≥ 1 -1 N -a ≥ 2 -2
N and a ≤ 0, we find, owing again to [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] and for N large enough,

(f 1,N (s + a) -f 1,N (a))s ≥ 1 6 ((s + a -1 + 1 N ) 3 -(a + 1 - 1 N ) 3 )s ≥ 1 12 ((s + a) 3 -a 3 )s -cs ≥ c(s 4 + a 2 s 2 ) -c , c > 0. Case 4: |s + a| ≤ 1 -1 N , |a| ≤ 1 -1 N . In that case, we have, noting that f 1 ≥ 0, (f 1,N (s + a) -f 1,N (a))s ≥ 0 ≥ K(s 4 + a 2 s 2 ) -c K , ∀K > 0, since |a| ≤ 1 and |s| ≤ 2. Case 5: |s + a| ≤ 1 -1 N , a ≥ 1 -1 N . Note that, in that case, s ≤ 1 -1
N -a ≤ 0 and, as s → -∞, a ∼ -s. Furthermore, for N large enough,

(f 1,N (s + a) -f 1,N (a))s = (f 1 (s + a) -f 1 (1 - 1 N ) -f 1 (1 - 1 N )(a -1 + 1 N ) - 1 2 f 1 (1 - 1 N )(a -1 + 1 N ) 2 - 1 6 f 1 (1 - 1 N )(a -1 + 1 N ) 3 )s ≥ - 1 6 (a -1 + 1 N ) 3 s ≥ - 1 12 a 3 s + cs.
Therefore, since, as s → -∞, -

1 12 a 3 s + cs ∼ 1 12 s 4 ∼ 1 24 (s 4 + a 2 s 2 ),
we deduce that, for s ≤ -s 0 and a ≥ s 0 (with |s

+ a| ≤ 1 -1 N ), s 0 > 0 independent of N , (f 1,N (s + a) -f 1,N (a))s ≥ 1 48 (s 4 + a 2 s 2 )
and the result follows.

The remaining cases can be treated in a similar way.

A priori estimates

In this section, all constants are independent of N . We consider, for N ∈ N, the approximated problem

(3.1) ∂u N ∂t + ∆ 2 u N -∆f N (u N ) + χ Ω\D (x)(u N -h) = 0, (3.2) ∂u N ∂ν = ∂∆u N ∂ν = 0 on Γ, (3.3) u N | t=0 = u 0 .
First, integrating (3.1) over Ω, we have, owing to (2.4),

(3.4) d u N dt + 1 Vol(Ω) Ω\D u N dx = 0, where • = 1 Vol(Ω) Ω • dx. Setting u N = u N + v N (so that v N = 0), we can rewrite (3.4) as (3.5) d u N dt + c 0 u N = - 1 Vol(Ω) Ω\D v N dx,
where c 0 = Vol(Ω\D) Vol(Ω) and v N is solution to

(3.6) ∂v N ∂t + ∆ 2 v N -∆(f N (u N ) -f N (u N ) ) + χ Ω\D (x)(u N -h) -χ Ω\D (x)(u N -h) = 0, (3.7) ∂v N ∂ν = ∂∆v N ∂ν = 0 on Γ, (3.8) v N | t=0 = v 0 = u 0 -u 0 .
We rewrite (3.6)-(3.7) in the equivalent form

(3.9) (-∆) -1 ∂v N ∂t -∆v N + f N (u N ) -f N (u N ) +(-∆) -1 (χ Ω\D (x)(u N -h) -χ Ω\D (x)(u N -h) ) = 0, (3.10) ∂v N ∂ν = 0 on Γ.
We multiply (3.9) by v N to obtain (3.15), we find a differential inequality of the form

(3.11) 1 2 d dt v N 2 -1 + ∇v N 2 +((f N (u N ) -f N (u N ) , v N )) + ((χ Ω\D (x)(u N -h), (-∆) -1 v N )) = 0. Noting that ((f N (u N ) -f N (u N ) , v N )) = ((f N (u N ) -f N ( u N ), v N )), it follows from (2.13) that (3.12) ((f N (u N ) -f N (u N ) , v N )) ≥ c 4 ( v N 4 L 4 (Ω) + u N 2 v N 2 ) -c. Furthermore, (3.13) |((χ Ω\D (x)(u N -h), (-∆) -1 v N ))| ≤ c( v N 2 + | u N | v N + h 2 ) ≤ c 4 2 ( v N 4 L 4 (Ω) + u N 2 v N 2 ) + c( h 2 + 1). We thus deduce from (3.11)-(3.13) that (3.14) d dt v N 2 -1 + ∇v N 2 + c 4 ( v N 4 L 4 (Ω) + u N 2 v N 2 ) ≤ c( h 2 + 1). Next, it follows from (3.5) that d u N 2 dt + c 0 u N 2 ≤ c v N 2 , hence (3.15) d u N 2 dt + c 0 u N 2 ≤ c 4 2 ( v N 4 L 4 (Ω) + u N 2 v N 2 ) + c. Summing (3.14) and
(3.16) dE 1,N dt + c( u N 2 H 1 (Ω) + v N 4 L 4 (Ω) + u N 2 v N 2 ) ≤ c( h 2 + 1), c > 0, where E 1,N = u N 2 + v N 2 -1 satisfies (3.17) E 1,N ≥ c u N 2 H -1 (Ω) , c > 0, where H -1 (Ω) is the topological dual of H 1 (Ω).
Here, we have used the fact that v →

( v 2 + v -v 2 -1 ) 1 2 (resp., v → ( v 2 + ∇v 2 ) 1 2 ) is a norm on H -1 (Ω) (resp., H 1 (Ω))
which is equivalent to the usual one (being understood that, for v ∈ H

-1 (Ω), then v = 1 Vol(Ω) v, 1 H -1 (Ω),H 1 (Ω) ).
We then multiply (3.1) by u N and have, owing to (2.10),

(3.18) d dt u N 2 + ∆u N 2 ≤ 2λ 1 ∇u N 2 + c( u N 2 + h 2 ).
Summing (3.16) and (3.18) multiplied by δ 1 , where δ 1 > 0 is chosen small enough, we obtain a differential inequality of the form

(3.19) dE 2,N dt + c( u N 2 H 2 (Ω) + v N 4 L 4 (Ω) + u N 2 v N 2 ) ≤ c( h 2 + 1), c > 0, where E 2,N = δ 1 u N 2 + E 1,N satisfies (3.20) E 2,N ≥ c u N 2 , c > 0.
We now rewrite (3.1)-(3.2) in the equivalent form

(3.21) ∂u N ∂t + χ Ω\D (x)(u N -h) = ∆µ N , (3.22) µ N = -∆u N + f N (u N ), (3.23 
) ∂u N ∂ν = ∂µ N ∂ν = 0 on Γ,
where, by analogy with the original Cahn-Hilliard equation, µ N is called chemical potential.

We multiply (3.21) by µ N and (3.22) by ∂u N ∂t to find

(3.24) 1 2 d dt ( ∇u N 2 + 2 Ω F N (u N ) dx) + ∇µ N 2 = -((u N -h, χ Ω\D (x)µ N )).
Furthermore, multiplying (3.22) by χ Ω\D (x)u N , we have

(3.25) ((u N , χ Ω\D (x)µ N )) = -((∆u N , χ Ω\D (x)u N )) + Ω\D f N (u N )u N dx.
Finally, it follows from (2.4) that

((h, χ Ω\D (x)µ N )) = ((χ Ω\D (x)h, µ N -µ N )), hence (3.26) |((h, χ Ω\D (x)µ N ))| ≤ c h ∇µ N .
We deduce from (2.12) and (3.24)-(3.26) that

(3.27) d dt ( ∇u N 2 + 2 Ω F N (u N ) dx) +c( ∇µ N 2 + Ω\D |f N (u N )| dx + Ω\D F N (u N ) dx) ≤ c ( u N 2 H 2 (Ω) + h 2 ), c > 0.
Summing (3.19) and (3.27) multiplied by δ 2 , where δ 2 > 0 is chosen small enough, we obtain a differential inequality of the form

(3.28) dE 3,N dt + c( u N 2 H 2 (Ω) + v N 4 L 4 (Ω) + u N 2 v N 2 + Ω\D |f N (u N )| dx + Ω\D F N (u N ) dx + ∇µ N 2 ) ≤ c( h 2 + 1), c > 0,
where

E 3,N = δ 2 ( ∇u N 2 + 2 Ω F N (u N ) dx) + E 2,N satisfies (3.29) E 3,N ≥ c u N 2 H 1 (Ω) -c , c > 0. Rewriting (3.21)-(3.22) in the equivalent form (3.30) (-∆) -1 ∂v N ∂t + (-∆) -1 (χ Ω\D (x)(u N -h) -χ Ω\D (x)(u N -h) ) = -(µ N -µ N ), (3.31) µ N -µ N = -∆v N + f N (u N ) -f N (u N ) ,
we deduce from (3.30) that

∂v N ∂t -1 ≤ c( u N + ∇µ N + h ), hence, owing to (3.5), (3.32) ∂u N ∂t H -1 (Ω) ≤ c( u N + ∇µ N + h ).
Furthermore, (3.31) yields 

(3.33) f N (u N ) -f N (u N ) ≤ c( u N H 2 (Ω) + ∇µ N ).
dE 3,N dt + c( u N 2 H 2 (Ω) + v N 4 L 4 (Ω) + u N 2 v N 2 + ∂u N ∂t 2 H -1 (Ω) + f N (u N ) -f N (u N ) 2 + Ω\D |f N (u N )| dx + Ω\D F N (u N ) dx + ∇µ N 2 ) ≤ c( h 2 + 1), c > 0.
We can note that (3.34) is not sufficient to pass to the limit in the nonlinear term f N (u N ) (say, in a variational formulation). To do so, we also need an estimate on | f N (u N ) | (in order to have an estimate on f N (u N ) ). This could be done if we were able to prove that | u N (t) | ≤ 1 -δ, t ≥ 0, δ ∈ (0, 1) (see [START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF]; see also below). Unfortunately, we are not able to prove such a result and, therefore, we will only be able to obtain a local (in time) result.

We now assume that | u 0 | < 1. Then, there exists δ ∈ (0, 1)

such that | u 0 | ≤ 1 -2δ. Therefore, since the function t → u N (t) is continuous, there exists T 0 = T 0 (δ, N ) such that, if t ∈ [0, T 0 ], then | u N (t) | ≤ 1 -δ.
Actually, we can note that it follows from (3.5) that u N (t) = e -c 0 t u 0 -e -c 0 t t 0 e c 0 s ds

Ω\D v N dx, so that (3.35) | u N (t) | ≤ | u 0 | + ce -c 0 t t 0 e c 0 s u N ds ≤ 1 -2δ + c(1 -e -c 0 t ),
where we emphasize that c = c(u 0 ) is independent of N (note indeed that it follows from (3.19)-(3.20) and Gronwall's lemma that u N is bounded uniformly with respect to time and N ). We can thus find

T 0 = T 0 (δ, u 0 ) independent of N such that, if t ∈ [0, T 0 ], then | u N (t) | ≤ 1 -δ.
Then, noting that we have a similar result for f (see [START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF]), it is not difficult to prove that, for N large enough,

(3.36) f N (s + m)s ≥ c m |f N (s + m)| -c m , c m > 0, c m ≥ 0, s ∈ R, m ∈ (-1, 1),
where the constants c m and c m depend continuously on m (see also [START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF]).

Remark 3.1. When |m| > 1, then we cannot expect to have such a result. Indeed, if, e.g., m = 3, then, as s → -2 -, f (s + 3)s tends to -∞, while |f (s + 3)| tends to +∞.

Having (3.36), we obtain, proceeding as in [START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF], Proposition A.2,

(3.37) | f N (v) | ≤ c δ v -v f N (v) -f N (v) + c δ , c δ > 0, c δ ≥ 0, v ∈ L 2 (Ω), | v | ≤ 1 -δ, δ ∈ (0, 1), for N ≥ N 0 = N 0 (δ).
It then follows from (3.37

) (taking v = u N ) that | f N (u N ) | ≤ c δ v N f N (u N ) -f N (u N ) + c δ , t ∈ [0, T 0 ], hence (3.38) T 0 0 | f N (u N ) | 2 ds ≤ c δ v N 2 L ∞ (0,T 0 ;L 2 (Ω)) f N (u N ) -f N (u N ) 2 L 2 ((0,T 0 )×Ω) + c δ . Therefore, noting that v → (| v | 2 + v -v 2 )
1 2 is a norm on L 2 (Ω) which is equivalent to the usual L 2 -norm, (3.33) and (3.38) yield that

(3.39) f N (u N ) L 2 ((0,T 0 )×Ω) ≤ c δ ( u N L ∞ (0,T 0 ;L 2 (Ω)) + 1)( u N L 2 (0,T 0 ;H 2 (Ω)) + ∇µ N L 2 ((0,T 0 )×Ω) n ) + c δ . Noting finally that µ N = f N (u N ) , we deduce that (3.40) µ N L 2 (0,T 0 ;H 1 (Ω)) ≤ c δ ( u N L ∞ (0,T 0 ;L 2 (Ω)) + 1)( u N L 2 (0,T 0 ;H 2 (Ω)) + ∇µ N L 2 ((0,T 0 )×Ω) n ) + c δ .

A local existence result

We have the Theorem 4.1. We assume that

u 0 ∈ H 1 (Ω), Ω F (u 0 ) dx < +∞, | u 0 | < 1 and -1 < u 0 (x) < 1 a.e.
x ∈ Ω. Then, there exists T 0 = T 0 (u 0 ) and a solution to

(2.1)-(2.3) on [0, T 0 ] such that u ∈ C([0, T 0 ]; H -1 (Ω)) ∩ L ∞ (0, T 0 ; H 1 (Ω)) ∩ L 2 (0, T 0 ; H 2 (Ω)) and ∂u ∂t ∈ L 2 (0, T 0 ; H -1 (Ω)). Furthermore, -1 < u(t, x) < 1 a.e. (t, x) ∈ (0, T 0 ) × Ω.
Proof. We consider the solution u N to the approximated problem (3.1)-(3.3) (the proof of existence, uniqueness and regularity of such a solution can be adapted from the results in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF], owing to (2.13)). Then, it follows from the a priori estimates derived in the previous section that, up to a subsequence, this solution converges to a limit function u such that

u N → u in L ∞ (0, T 0 ; H 1 (Ω)) weak-and in L 2 (0, T 0 ; H 2 (Ω)) weak, u N → u a.e. (t, x) ∈ (0, T 0 ) × Ω, ∂u N ∂t → ∂u ∂t in L 2 (0, T 0 ; H -1 (Ω)) weak.
The only difficulty here is to pass to the limit in the nonlinear term f N (u N ).

First, it follows from (3.39) that f N (u N ) is bounded, independently of N , in L 1 ((0, T 0 )× Ω). Then, it follows from the explicit expression of f N that

meas(E N,M ) ≤ cϕ( 1 N ), N ≤ M,
where

E N,M = {(t, x) ∈ (0, T 0 ) × Ω, |u M (t, x)| > 1 - 1 N } and ϕ(s) = 1 |f (1 -s)| ,
the constant c being independent of N and M . Note indeed that there holds (

T 0 0 Ω |f M (u M )| dx dt ≥ E N,M |f M (u M )| dx dt ≥ c meas(E N,M )|f (1 - 1 N )|, 4.1) 
where the constant c is independent of N and M (recall that f (-s) = -f (s)). We can pass to the limit M → +∞ (employing Fatou's lemma, see (4.1)) and then N → +∞ (noting that lim s→0 ϕ(s) = 0) to find

meas{(t, x) ∈ (0, T 0 ) × Ω, |u(t, x)| ≥ 1} = 0, so that -1 < u(t, x) < 1 a.e. (t, x) ∈ (0, T 0 ) × Ω.
Next, it follows from the above almost everywhere convergence of u N to u (and also from the explicit expression of f N ) that

(4.2) f N (u N ) → f (u) a.e. (t, x) ∈ (0, T 0 ) × Ω.
Finally, since, owing to (3.39),

f N (u N ) is bounded, independently of N , in L 2 ((0, T 0 ) × Ω), it follows from (4.2) that f N (u N ) → f (u) in L 2 ((0, T 0 ) × Ω) weak,
which finishes the proof of the passage to the limit. Remark 4.2. We assume that |u 0 (x)| ≤ 1 -δ a.e., δ ∈ (0, 1). Then, recalling that f N (s) = f (s) when |s| ≤ 1 -1 N , we can also obtain a local (in time) existence result. However, the local existence given by Theorem 4.1 is more general. Remark 4.3. a) When the positive constant c (which depends on Ω, D, h and, for the more general equation (1.1), on and λ 0 ) in (3.35) is small (namely, c ≤ δ), then one actually has a global (in time) existence result. Note however that, in concrete applications, λ 0 is large, while can be small, so that this condition should be too restrictive. b) When D = ∅, in which case one obtains the so-called Oono equation (for h = 0; see [START_REF] Miranville | Asymptotic behavior of the Cahn-Hilliard-Oono equation[END_REF], [START_REF] Oono | Computationally efficient modeling of ordering of quenched phases[END_REF] and [START_REF] Villain-Guillot | Phases modulées et dynamique de Cahn-Hilliard[END_REF]), one has a global well-posedness result (see [START_REF] Miranville | The Cahn-Hilliard-Oono equation with logarithmic potentials[END_REF]). One also has a global well-posedness result, for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation, when considering Dirichlet boundary conditions (see [START_REF] Miranville | A generalized Cahn-Hilliard equation with logarithmic potentials[END_REF]).

Numerical simulations

As far as the numerical simulations are concerned, we rewrite the problem in the form (5.1)

∂u ∂t + ∆µ + λ 0 χ Ω\D (x)(u -h) = 0, (5.2) µ = ∆u - 1 f (u), (5.3 
) ∂u ∂ν = ∂µ ∂ν = 0 on Γ, (5.4 
)

u |t=0 = u 0 ,
which has the advantage of splitting the fourth-order (in space) equation into a system of two second-order ones (see [START_REF] Elliott | A second order splitting method for the Cahn-Hilliard equation[END_REF], [START_REF] Grasselli | A splitting method for the Cahn-Hilliard equation with inertial term[END_REF] and [START_REF] Injrou | Stable discretizations of the Cahn-Hilliard-Gurtin equations[END_REF]). Consequently, we use a P1-finite element for the space discretization, together with a semi-implicit Euler time discretization (i.e., implicit for the linear terms and explicit for the nonlinear ones). The numerical simulations are performed with the software Freefem++ (see [17]).

In the numerical results presented below, Ω is a (0, 0.5) × (0, 0.5)-square. The triangulation is obtained by dividing Ω into 200 × 200 rectangles and by dividing each rectangle along the same diagonal.

In order to obtain the final inpainting results, we use a dynamic one step algorithm with threshold involving the diffuse interface thickness (see [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF]).

5.1.

Inpainting of a triangle. The gray region in Figure 1(a) corresponds to the inpainting region. We run the modified Cahn-Hilliard equation with f (s) = -2 ln (3)s + ln 1+s 1-s (note that f vanishes at -0.5 and 0.5), = 0.03, λ 0 = 900000 and ∆t = 0.05. Furthermore, we take the initial datum u 0 in [0, 0.5] (random in the inpainting region), so that | u 0 | < 1. We observe that the solution remains in (-1, 1) when considering an intermediate value of the diffuse interface thickness . We are close to a steady state at t = 0.45, as shown in Figure 1(b), and we replace all values larger than 1 4 by 1 2 and all those smaller than 1 4 by 0 to obtain the final inpainting in Figure 1(c). Then, we run again the modified Cahn-Hilliard equation with the same = 0.03, ∆t = 0.05 and λ 0 = 900000, but we now take f (s) = 4s 3 -6s 2 + 2s and the initial datum in [0, 1] instead of [0, 0.5] in order to have comparable inpainting results (note that the solution does not remain in the relevant interval [0, 1]). We are close to a steady state 2 by 1 and those smaller than 1 2 by 0.

at t = 1.2, as shown in Figure 1(d), and we replace all values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting in Figure 1(e).

Inpainting of a bar.

Here and in the other simulations below, the initial datum is taken as above.

In Figure 2(a), the gray region corresponds to the inpainting region. We run the modified Cahn-Hilliard equation with f (s) = -2 ln (3)s + ln 1+s 1-s , = 0.05, ∆t = 0.05 and λ 0 = 900000. We are close to a steady state at t = 0.4, as shown in Figure 2 we replace all values larger than 1 4 by 1 2 and all those smaller than 1 4 by 0 to obtain the final inpainting in Figure 2(c).

Furthermore, we run again the modified Cahn-Hilliard equation with the same = 0.05 and ∆t = 0.05, but we now take f (s) = 4s 3 -6s 2 + 2s and λ 0 = 500000 (note that, contrary to the next example below, a smaller value of λ 0 allows to have comparable inpainting results). We are close to a steady state at t = 0.75, as shown in Figure 2(d), and we replace all values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting in Figure 2(e).

a steady state at t = 1.2, as shown in Figure 3(d), and we replace all values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting in Figure 3(e).

Remark 5.1. We noticed in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] that the one step algorithm does not always work when the inpainting region is too large. We take here the same counterexample as in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] of the broken bar illustrated in Figure 4(a). We run the modified Cahn-Hilliard equation with f (s) = -2 ln (3)s + ln 1+s 1-s , ∆t = 0.05, λ 0 = 300000 and = 0.05. We are close to a steady state at t = 0.4 and we replace all values larger than 1 4 by 1 2 and all those smaller than 1 4 by 0 to obtain the final inpainting in Figure 4(b). Furthermore, we run again the modified Cahn-Hilliard equation with f (s) = 4s 3 -6s 2 + 2s, ∆t = 0.05, λ 0 = 300000 and = 0.05. We are close to a steady state at t = 5.6 and we replace all values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting in Figure 4(c). We thus observe that the one step algorithm gives better results for this example when taking a logarithmic nonlinear term. Actually, for a smaller value of λ 0 (namely, λ 0 = 100000), we observed in [START_REF] Cherfils | Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting[END_REF] that the algorithm fails for the polynomial nonlinear term; however, we again obtain good inpainting results for the logarithmic one. 

It thus follows from ( 3 .

 3 [START_REF] Miranville | Asymptotic behavior of the Cahn-Hilliard-Oono equation[END_REF]) and (3.32)-(3.33) that(3.34) 

Figure 1 .by 1 2 and those smaller than 1 4

 124 Figure 1. (a) Inpainting region in gray, = 0.03. (b) Solution at t = 0.45, f (s) = -2 ln (3)s + ln 1+s 1-s . (c) Replacing the values larger than 1 4 by 1 2 and those smaller than 1 4 by 0. (d) Solution at t = 1.2, f (s) = 4s 3 -6s 2 +2s. (e) Replacing the values larger than 1 2 by 1 and those smaller than 1 2 by 0.

  (b), and

Figure 2 .by 1 2 and those smaller than 1 4

 24 Figure 2. (a) Inpainting region in gray, = 0.05. (b) Solution at t = 0.4, f (s) = -2 ln (3)s+ln 1+s 1-s . (c)Replacing the values larger than 1 4 by 1 2 and those smaller than 1 4 by 0. (d) Solution at t = 0.75, f (s) = 4s 3 -6s 2 + 2s. (e) Replacing the values larger than 1 2 by 1 and those smaller than 1 2 by 0.

Figure 4 .

 4 Figure 4. (a) Larger inpainting region in gray, = 0.05. (b) Final inpainting result (solution close to a steady state at t = 0.4 with ∆t = 0.05). Here, f (s) = -2 ln (3)s + ln 1+s 1-s . (c) Final inpainting result (solution close to a steady state at t = 5.6 with ∆t = 0.05). Here, f (s) = 4s 3 -6s 2 + 2s.

2 by 1 and those smaller than 1 2 by 0.

5.3.

Inpainting of a four circles. The gray region in Figure 3(a) corresponds to the inpainting region. We run the modified Cahn-Hilliard equation with f (s) = -2 ln (3)s + ln 1+s 1-s , = 0.05, ∆t = 0.05 and λ 0 = 300000. We are close to a steady state at t = 0.4, as shown in Figure 3(b), and we replace all values larger than 1 4 by 1 2 and all those smaller than 1 4 by 0 to obtain the final inpainting in Figure 3(c). Furthermore, we run again the modified Cahn-Hilliard equation with the same = 0.05 and ∆t = 0.05, but we now take f (s) = 4s 3 -6s 2 + 2s and λ 0 = 900000. We are close to