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Abstract This paper deals with the development of the lin-1 Introduction

ear vibration of a general viscoelastic structure, withcalo

wall acoustic impedance, containing an inviscid compressi this paper we are interested in developing a computationa
ible liquid (but with an additional volume dissipative t&km model of sloshing for compressible liquids in taking into
with surface tension (capillarity) and sloshing effectsda account surface tension (capillarity) effects. Concegnire
neglecting the effects of internal gravity waves and the-ela fundamental of the physics of capillarity phenomena, we re-
togravity operator. The sloshing problems of incomprdssib fer the reader, for example, to [13,14], and to [33,44] fer th
liquids with capillarity effects in elastic structures éyiha  classical theory of capillarity. Some developments of the b
major difficulty induced by the boundary contact conditionshavior of liquids in microgravity environment are presehte
on the triple line because the capillarity forces are forceén [1,16,36,38,43].

per unit length while the elastic forces are forces per unit General analyzes of sloshing problems for incompress-
surface. The proposed framework has the following noveible liquids in rigid structures can be found in [20, 31].
features: (i) introducing a new appropriate boundary condi  For sloshing problems of incompressible liquids in vis-
tion for the contact angle condition compatible with a de-coelastic structures with simple geometry and analyzed us-
formable structure considered here as viscoelastic,diy ¢ ing semi-analytical approaches, we refer the reader, for in
sidering a compressible liquid while incompressibility-hy stance, to [2] for the case without capillarity effects, and
pothesis is generally used for FSI problems including capto [5] for the case with capillarity effects. Concerning the
illarity phenomena, and (iii) constructing a reduced-orde computational methods based on variational formulations,

model for the computational coupled problem. finite element discretization, and reduced-order models de
voted to the sloshing problems of incompressible liquids
Keywords Linear vibration- Viscoelastic structure without capillarity effects and in elastic structures, eéer
Surface tension Sloshing- Contact angle condition the reader to [7,21-23,37,39,47,48]. _
Reduced-order-model For computational methods concerning the sloshing prob-

lems of incompressible liquids with capillarity effectgigid
structures, see [15,18,19,37,57]. In this framework, ike d
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The sloshing problems of compressible liquids with cap-dissipative, which occupies a domdihy,. The boundary of
illarity effects in rigid structures has been analyzed bynFi (27 is written asof2;, = Iy U I’z U I'. The partl’y of
[24—26], in which the classical capillarity equation isigev  the internal fluid-structure interface is assumed to be-diss
ited, and in which a new equation is established in a morgative and is modeled by a wall acoustic local impedance,
complete framework for which the compressibility must bewhile I';, is defined as the remaining part. It is assumed that
taken into account for establishing a more coherent theory.’ N I'; = () (this means that the wall acoustic impedance
Nevertheless, it should be noted that in such analysis, th@oes not intersect the free surfat®. The boundary” is
internal gravity waves are not taken into account. For the inthe free surface for which the geometry corresponds to a
teraction between internal gravity waves and compressibilstable static equilibrium of the compressible liquid sutsmi
ity, without capillarity effects, we refer the reader to23, ted to external static forces (such as microgravity or dyavi
34]. forces) and surface tension (capillarity). The boundary of

The linear vibration of structures containing compress+2g is written asdf2s = I'r U I'y U I'z U I'. The bound-
ible liquids without surface tension and without sloshiffig e ary of bounded surfacE is the curve denoted by, which is
fects have extensively been analyzed in the framework cdlso the boundary df, , = ' Uz (thatisto sayy = 01, ,
computational formulations and reduced-order models (se@nd also;y = d1;). The bounded domain whose boundary
forinstance, [28,37,40-42,59]). For nonlinear sloshirapp is I" U I is empty or is filled by a gas whose effects are
lems of incompressible liquids in rigid structures, we refe neglected for sake of brevity (this is the domain ab&e
thereaderto[10, 12, 30]. General computational methads fdn Figure 1). The external unit normal &2 is denoted as
nonlinear fluid-structure interaction problems can be tbun n® while the one taf2;, is denoted as. The external unit

in [6,4,52-55]. normal toy belonging to the tangent plane to surfaces
denoted aw .
This paper is devoted to linear sloshing problems of com-
pressible liquids with capillarity effects in general \igtas- We are interested in studying the linear vibration around

tic structures, and neglecting the effects of internal igyay the stable static equilibrium considered as the natural con
waves. As example of application, this type of phenomen#guration. This means that the prestresses are not taken int
is of prime importance for the dynamic stability analysis ofaccount. In addition, the elastogravity operator intraatlio
geostationary satellites containing tanks partiallyditveith ~ [37,47]is not considered here. These two effects can easily
liquid propellants in microgravity environment. The bound P€ added in the boundary value problem introduced here-
ary value problem is presented in introducing a new term ifnafter as an additional stiffness operator. The liquidss a

the local equations related to the condition of contactenglSumed to be homogeneous, and it is assumed that there is
in the presence of an elastic wall. The variational formula'0 interaction between compressibility and internal gavi
tion allowing for the justification of the presence of such anaves [34]. The fluid-structure system is submitted to given
additional term is introduced. A reduced-order model thafOrces (assumed to be in equilibrium), which are applied to
guaranties a fast convergence adapted to compressible [ifile sStructure that is assumed to be in a free-free condition.
uids is developed. The physical space is referred to a cartesian reference sys-

Consequently, the novel features of the paper are thi€m and a generic point denoted ky= (m}a@vxi%)- The
following: for the linear vibration of a deformable struc- classical convention is used for summations over repeated
ture containing a liquid with capillarity phenomena (segia  Latin indices, butnot over Greek indices. Letd® = a;b;
tension) and sloshing effects, (i) introducing a new approl? Whicha = (ai, az, az) andb = (bs, b2, b3). For any func-
priate boundary condition for the contact angle conditiorf!on f(x), f.;(x) denotes the partial de”Vat"@f(X)/anj
compatible with a deformable structure considered here a¥ith respect toz;. The gradient operatov f is the vec-
viscoelastic, (i) considering a compressible liquid vehiit- t0f2(f,1, f2, f3) and the 3D-Laplacian operator is such that
compressibility hypothesis is generally used when slaghin Vo=t
capillarity phenomena and deformation of the structure are The linear vibration of the fluid-structure system is for-

simultaneously taken into account, and (iii) constructing . . .
: mulated in the frequency domain for which the angular fre-
reduced-order model for the computational coupled prob- . . : .
quency (in rad/s) is denoted hy, and the pure imaginary
lem . :
complex number by. Let u(x,w) = (u1(X,w), u2(X,w),
uz(X,w)) be the displacement field of the structusg(w)
2 Fluid-structure system, notations and hypotheses be the strain tensor, ang; (w) be the stress tensor, ata given
pointx (in the sequelx is removed frong;; (w) ando;; (w)).
We consider the fluid-structure system whose configuratio@oncerning the internal compressible liquid (acoustidjlui
is defined in Figure 1, constituted of a linear damped strucf2;,, let p(x,w) be the pressure field, and letx, w) be the
ture (25 containing an inviscid compressible liquid, weakly normal displacement of the free surfaCalongn at pointx.
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Fig. 1 Static equilibrium configuration of a fluid-structure systéor
a compressible liquid with surface tension and sloshingcisf

3 Boundary value problemin (p, n, u)

The fluid-structure system is submitted to a surface force

field G(w) applied on the structure, to a body force field

b(w) applied in the structure. We are interested in studying
the linear vibrations of the fluid-structure system around a
stable static equilibrium, which is considered as a natural

state at rest (the external structural forces are assuntsal to

in equilibrium). The boundary value problem is expressed

in terms of structural displacement fialgiinternal pressure
field p and the normal displacemenbf the free surface. For
all realw and for givenG(w) andb(w) the problem consists
in findingu(w), p(w) andn(w), such that

2
1 .
— WV = V=0 in 2, (1)
PoCo Po Po
. Jp 2
(1+IWT>%:W polU-N on FL, (2)
: 0 :
(1+|w7)a—ﬁ’:w2p0u~n—|wp0% on Iz, 3)
0
A+iwr) L =w2py on I, (4)

on

11
p=pong-n—o{(57+ )n+Vint on I', (5)
1

R3
0
Q_Z:C"n+ju on ~, (6)
—w?psu—divo(u)=b in g, (7)
oun®=G on Iy, (8)

o(uyn®dr,, =pndl,, + o, (J'n)dpy onl,,. (9

— Eg. (1) is the internal inviscid compressible liquid equa-

tion, with an additional small damping term, which cor-
responds to the classical Helmholtz equation with a dis-
sipative term, in whiclp, is the constant mass density
of the homogeneous liquid at equilibriua, the corre-
sponding constant speed of sound, and the constant co-
efficient 7 characterizes the dissipation in the internal
liquid (as a function of the dynamic, kinematic, and sec-
ond viscosities).

Eq. (2) is the fluid-structure coupling condition of the in-
ternal inviscid compressible liquid (weakly dissipative)
with the structure interfacgy,.

Eq. (3) is the fluid-structure coupling condition on the
internal fluid-structure interfacgy in which Z(x, w) is

a local wall acoustic impedance that must satisfy appro-
priate conditions in order to ensure that the problem is
correctly stated.

Eq. (4) represents the kinematic equation for the free sur-
facer.

Eq. (5) corresponds to the free-surface constitutive equa-
tion of surfacel”, in whichg,. is the surface tension co-
efficient, g is the gravitational acceleration vectdt;
andR, are the principal curvature radii, and wh&rg.,
denotes the surface Laplacian related to surfadeee
[24,33,36-38,44]). If the surface tension effects are ne-
glected, then Eq. (5) yields the classical sloshing free-
surface boundary condition.

— Eq. (6), the first term in the right-hand side corresponds

to the classical contact angle conditionpim whichc,,

is the contact angle coefficient (see [9,11,25,33,37,45,
50]), which is only valid for fixed rigid structure. In this
new boundary condition proposed, there is an additional
term that allows the structure deformation to be taken
into account. In this term7 is a differential operator on
manifold I ,, (i) defined on a set of sufficiently differ-
entiableR3-valued functions that are the traces B,

of functions on(2g, (ii) with values in a set oR-valued
functions that are defined on A particular case for dif-
ferential operatoy7 is the one givenin [37] (Section 4.3,
page 80):

d(u-n%)

u=FEu-n’—
j al/L

; (10)

in which E is a real coefficient and whete;, is exter-
nal unit normal toy belonging to the tangent plane to
surfacel; ,. If u = 0 (for a fixed rigid structure), then
the classical boundary condition enis obtained. Ifu

is spanned by a rigid body motion of the structuseé-
grees of freedom), then the boundary condition is written
asJu= FEu-n®.

— Eq. (7) is the dynamic equation in the frequency domain

for the structure, in whichg is the structural mass den-
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sity, and whergdivo}; = 0;; ;. The tensow;;(u) cor- 4 Computational fluid-structure model

responds to the constitutive equation for viscoelastic ma-

terials, defined by Let P(w), H(w), andU(w) be the complex vectors corre-
sponding to the spatial discretization of fiefds, w), n(x, w),

0ij(U) = aijrn (W) exn(U) +iwbijrn(w) exn(u), (11)  andu(x,w). The discretization of the variational formula-

_ _ tion of the boundary value problem {p, 7, u) yields:
in which tensors; ;s (w) andb; ;s (w) are fourth-order

real tensors depending onandw, which verify even - for by Egs. (1) to (4),

property with respect ta, symmetry and positiveness AWV P 20 1TH 200 T (W) — 0. (16
properties, and an algebraically relationship due to thé (@)[P(w)+w” [Con]” H (w) w7 [Cpu] U w) .+ (16)
causality property and deduced from the use of the Hilb&f which the complex symmetric matrixd (w)] = —w? [M]+
transform (also called the Kramers and Kroning relations o[ D] + [K] + iw [AZ (w)].

ship), and wherey;, (u) is the strain tensor defined b
P) kn(U) Y forby Egs. (5) and (6),

exn(U) = %(Uk,h +unk) - (12)  [CpyP(w) + ([Ky] + [K ) H (W) + [Cou]U(w) = 0. (17)

. for by Egs. (7) to (9),
— Eq. (8) corresponds to the boundary condition/gnon
which a given surface force field is applied. [Cpu] P(w) + [Cou] " H (w) + [A% (w)]U (w) = F¥(w), (18)
- Eq. (9) is a new boundary condition @p,,, which takes ;. which [A5 (w)] = —w? [M5] +iw[DS (w)] + [KS (w)] is
into account the condition of contact angle in a presencg complex symmetric matrix.
of an elastic wall. The first term of the right-hand sides
corresponds to the usual fluid-structure coupling condiThe matrices introduced in Eqs. (16) to (18) are defined in
tion of the internal inviscid compressible liquid (weakly gection 5.
dissipative) with the structure. Let us explain the sec-

ond term in the right-hand side of this equation in which; .5n pe proved that, for alb > 0, the problem defined by
dI, , isthe surface measure éf, suchthat/,, dI;,  Egs. (16)to (18) has a unique solutigR(w), H (w), U(w)).
=|I, | (area of surfacé’ ,). Letx — f(X) be any real

function defined orf} , such that its trace o is inte-

grable ony with respect to the curvilinear measukgon 5 Matrices of the discretized problem

~ such thatfW dy = || (length of curvey). Then,dy., _ _ _ _
is a real measure off , such that/,.  f(x) dy,(x) = In this segt!on, we give the expressions of the real or the
: Lz complex bilinear forms whose discretization allows the cor
[, f(x)dv(x) (this means that the support of measure . :
dv is ~). We have now to explain the meaning of therespondmg real or complex matrices to be constructed. For
Hoy 157 P g such a construction, we consider the figlelsy, u) and(dp,

; L . .
term_ (") dpu-, which is Qeﬂned o _by algebral_c om, du) as real (and not complex as it is the case throughout
duality of the term7u defined oy and introduced in the paper)

Eq. (6). We introduce the two following duality brack-

ets, Matricesrelated to the equationsfor the compressibleliquid
7 /(j Vi d (13) (weakly dissipative) in p.
<Ju,n>, = u , . . _ i e
174 ~ e . Symmetric real matriXK] is positive semidefinite with a
kernel of dimensioni, and corresponds to
1
<u,Jn >>d“’y:/ (\7/77)'Ud,u’y- (14) p_onL Vp - Vipdx.
Iz . Symmetric real matrixD] = 7 [K] is positive semidefinite
The term(J'n) dy is then defined by with a kernel of dimension.
, . Symmetric real matrix) ] is positive definite, and corre-
LU, Jn >, =<Jun>,, . (15) spondstopiz [ popdx.
OCO L

Some details concerning the construction of the dissipativ. Symmetric complex matrik4%(w)] comes from
termintroduced in Eq. (1), the local wall acoustic impedanc fpzﬁp dp dxin which Z(x,w) is a complex-valued func-
introduced in Eqg. (3), and the constitutive equation for thetion.

viscoelastic material introduced by Eq. (12), can be found

in [42].
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Matrices related to the equations for the liquid free surface
inn.

. Symmetric real matrixk,] is positive definite, and corre-
sponds tqq [ g-nndondl.

. Symmetric real matrixk.] is positive definite, and corre-
sponds tw, [V, - V,.ondl" o, [(7z + gz )0 o dl —

o[, enndndy.

Matrices related to the equations for the viscoelastic struc-
tureinu.

. Symmetric real matrik)/ <] is positive definite, and corre-
sponds tonS psU - dU dX.

. Symmetric real matri¥D®(w)] is positive semidefinite
with a kernel of dimension 6, and corresponds to

S bigin (W) exn (u) £33 (o) dx.

. Symmetric real matriYK*(w)] is positive semidefinite
with a kernel of dimension 6, and corresponds to

fns aijrn(w) exn(U) €55 (0U) dX.

Matrices related to the coupling terms.

. Rectangular real matri)C,,] corresponds to

_fFLZ pn-dudl,,

. Rectangular real matriC,,,| correspondste- [, pdndr.

. Rectangular real matri)C',,y] corresponds to
—op [ (Tu)dndy.

\ector of external forces.

. Complex vectorr* (w) of external forces correspond to
[, G-oudl's + [, b-dudx.

6 Reduced-order computational model

6.1 Decomposition of the admissible space of the
discretized coupled problem

acoustic impedance) occupying doméip, with the bound-
ary conditiondp/on = 0 on 92\ I" (fixed wall,i.e. u = 0)
andp = 0 on I". We then obtained the discretized equation,

(20)
with P = 0 for the DOF related td" . (21)

. Cr is the admissible space of the discretized problem in

H, related to the inviscid incompressible liquid, with slesh
ing and capillarity effects without the additional disdipa
term and without wall acoustic impedandes( removing
the terms—w? [M], iw [D] andiw [A% (w)] in the expres-
sion of[A(w)] introduced in Eq. (16)), and with the bound-
ary conditiordp/on = 0ondN2\I" (fixed wall,i.e.u = 0).

We then obtained the following two discretized equations in
(P, H) deduced from Egs. (16) and (17), for whiéhmust

be eliminated to obtain the equation/h,

[K]P—w?[M]P=0,

[K] P+ w?[Cpy]"H =0, (22)

[Con P + ([Kg] + [K))H = 0. (23)

Since the kernel ofK] is equal tol, the elimination ofP
yields,

Kyl H—w?[Mr]H =0. (24)

(L) H =0, (25)

inwhich[L] is a real row matrix, and whef& ;.| and[M ],
under the constrainfd.] H = 0, are positive-definite sym-
metric matrices that are constructed as a function of matri-
ces[K], [Cpy], [K,] and[K.]. For practical construction of
these matrices, we refer the reader to Section 4.6 of Chapter
4 in Ref. [37].

. Cy is the admissible space of the discretized problem in
U (see Eq. (18)), related to the viscoelastic structQge

(at zero frequency, without dissipative term, and without
given forces), coupled with the inviscid incompressibig i
uid (without the additional dissipative term and withoutiwa
acoustic impedance) occupying doméip, with the bound-

ary conditionp = 0 on I". We then obtained the following
discretized equations if?, U') deduced from Egs. (16) and

The first step of the construction consists in establishing &18), for which P must be eliminated to obtain the equation

decomposition of the admissible spaCe y,; of the dis-

cretized problem defined by Egs. (16) to (18). This decom-
position is illustrated in Figure 2. It can be shown that this
admissible space can be decomposed in the following diregiith p — ( for the DOF related td",

sum,
Cpau=Cp®Chx®Cy, (19)

in which

inU,

K]P+w? [Cu]" U =0, (26)
(27)

[Copu] P+ [K5(0)] U — w? [M®]U = 0. (28)

The elimination ofP yields

[K5(0)]U —w® ([M®] + [Ma) U =0, (29)

. Cp is the admissible space of the discretized problem inn which [M4] is a positive symmetric matrix (called the
P (see Eg. (16)), related to the inviscid compressible ligadded mass matrix) whose construction is given in Secti2.2 8.
uid (without the additional dissipative term and withoutiwa of Chapter 8 in Ref. [42].
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Fig. 2 Decomposition of the admissible space in direct sum forttoosng the bases of the reduced-order model

6.2 Construction of the vector bases for the projection of are constructed in solving the generalized eigenvalue-prob

the discretized coupled problem

(i) Vector basis of C'p for theinternal inviscid compressible
liquid with a zero-pressure free surface condition.

This vector basis is constituted of tlaeoustic modes of

lem, deduced from Eq. (29),
[K5(0)]U = Ag ([M®] 4+ [Ma)U =0. (34)

Let[/] = [U; ...Un] be the rectangular real matrix whose
Ng columns are constituted of the eigenvectors associated

liquid occupying domain?;,, and are constructed in solv- with the Ng first smallest positive eigenvalues including the
ing the generalized eigenvalue problem with constrairgs, d zero eigenvalue with multiplicityy corresponding to thé

duced from Egs. (20) and (21),
(30)
(31)

[K]P=AL[M]P,
with P = 0 for the DOF related td" .

rigid body modes.

Remark on the decomposition. Let us recall that in the dy-
namic substructuring technique for two coupled substruc-
tures through a coupling interface (such as the Craig and

Let [P]I =[P1... Pn,] b_e thzre;:t:;ngu_lar real matrix who_se Bampton method), the elastic modes used for each substruc-
Ny, columns are constituted of the eigenvectors assomate[glre are the modes with fixed coupling interface (zero dis-

with the Ny, first smallest strictly positive eigenvalues.

(if) Vector basis of C'y for theinternal inviscid incompress-
ibleliquid with sloshing and capillarity effects.

This vector basis is constituted of ttsioshing modes of

placement). These two bases are completed by the boundary
functions (lifting operator), and are introduced in theigar
tional formulation of the coupled problem in order to derive
the reduced-order model. In the presented formulation, the
role of the boundary functions is played by the vector ba-

liquid occupying domain’2,,, and are constructed in solv- sjs of spaceC’; for which a non zero pressure is derived
ing the generalized eigenvalue problem with constrairets, d 5, surfacer” (as it can be seen in Eq. (5)), and used in the
duced from Egs. (24) and (25), variational formulation of the coupled problem.

(Ko H = A\r [My] H . (32)
[L]H =0, (33)

Let[H] = [H; ... Hyn, ] be the rectangular real matrix whose _ .
N columns are constituted of the eigenvectors associatethe reduced-order model of orde¥, Nr, Ns) is obtained
with the N first smallest strictly positive eigenvalues. by projecting Egs. (16) to (18) as follows

6.3 Reduced-order computational model

(iii) Vector basis of Cy; for the elastic structure with added ~ P(w) = [P]gp(w), (35)
mass induced by the internal inviscid incompressible liquid
with a zero-pressure free surface condition. H(w) = [H]qy W), (36)
This vector basis is constituted of tlekastic modes with
added mass effects of structure occupying domaif?s, and U(w) = [U] gy (w), (37)
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