Parameter estimation for stochastic diffusion process with drift proportional to Weibull density function
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In the present paper we propose a new stochastic diffusion process with drift proportional to the Weibull density function defined as

with parameters γ > 0 and σ > 0, where B is a standard Brownian motion and t = ε is a time near to zero. First we interested to probabilistic solution of this process as the explicit expression of this process. By using the maximum likelihood method and by considering a discrete sampling of the sample of the new process we estimate the parameters γ and σ.

Introduction

In the present paper we propose a new stochastic Weibull process X = {X t , t > 0} given by the following linear stochastic differential equation

X ε = x > 0; dX t = γ t
(1t γ+1 )t γ X t dt + σX t dB t , t > 0 where µ(t, X t ; γ) = γ t (1t γ+1 )X tt γ X t and g(X t ; σ) = σX t . We denote by B a standard Brownian motion and γ and σ are an unknown parameters. An interesting problem is to estimate the parameters γ and σ are time independent reel parameters to be estimate when one observes the whole trajectory of X.

The estimation for diffusion processes by discrete observation has been studied by several authors ( see for example [START_REF] Rao | Asymptotic theory for non-linear least square estimator for diffusion processes[END_REF], [START_REF] Rao | Statistical inference from sampled data for stochastic processes[END_REF], [START_REF] Dacunha | Estimation of the Coefficients of a Diffusion from Discrete Observations[END_REF], [START_REF] Florens | Estimation of the diffusion coefficient from the crossings[END_REF], [START_REF] Yoshida | Estimation of diffusion processes from discrete observations[END_REF])and its references. Prakasa Rao [START_REF] Rao | Statistical inference from sampled data for stochastic processes[END_REF] treats this problem and shows that the least square estimator is asymptotically normal and efficient under the assumption h √ N -→ 0, the condition for "rapidly increasing experimental design" [START_REF] Rao | Statistical inference from sampled data for stochastic processes[END_REF].

The organization of our paper is as follows. Section 2 contains the presentation of the basic tools that we will need throughout the paper: basic properties of of standard Brownian motion and It's formula . The aim of section 3 is twofold. Firstly, we prove the close formula of SDE under the conditions (1) -(3). Secondly, we invesigate the mean of X t an explicit solution of SDE and we prove that the drift is proportionnel to Weibul density. The section 4 is devoted to estimate a parameters by using Maximum likelihood. In the last section we present a numerical test.

Given the general one-dimensional time-homogeneous SDE

X ε = x > 0; dX t = µ(X t ; γ)dt + g(X t ; σ)dB t , t > 0. (1.1)
where µ(t, X t ; γ) = γ t (1t γ+1 )X tt γ X t and g(X t ; σ) = σX t . The following conditions are assumed in this article :

(1) There is a constant L > 0 such that

|µ(t, x; γ)| + |g(x; σ)| ≤ L(1 + |x|) (2) There is a constant L > 0 such that |µ(t, x; γ) -µ(t, y; γ)| + |g(x; σ) -g(y; σ)| ≤ L|x -y| (3) For each q > 0, sup t E(|X t | q ) < ∞.

Preliminaries

In this section we start by recalling the definition of Brownian motion, which is a funda-mental example of a stochastic process. The underlying probability space (Ω, F, P) of Brownian motion can be constructed on the space Ω = C 0 (R + ) of continuous real-valued functions on R + started at 0. For more complete presentation on the subject, see [START_REF] Lamberton | Introduction au Calcul Stochastique Appliqu la Finance[END_REF], [START_REF] Karatzas | Brownian Motion and Stochastic Calculus, 2nd edition[END_REF]. (c) For any finite sequence of times

t 0 < t 1 < • • • < t n the increments B t 1 -B t 0 , B t 2 -B t 1 , • • • B tn -B t n-1 are independent. (d) for any given times 0 ≤ s < t, B t -B s has the Gaussien distribution N (0, t-s)
with mean zero and variance ts.

We refer to Theorem 10.8 of [START_REF] Lamberton | Introduction au Calcul Stochastique Appliqu la Finance[END_REF] and to Chapter of [START_REF] Lamberton | Introduction au Calcul Stochastique Appliqu la Finance[END_REF] for the proof of the existence of Brownian motion as a stochastic process (B t , t ≥ 0) satisfying the above properties (a) -(d). In the sequel the filtration (F t ) t≥0 will be generated by the Brownian paths up to time t, in other words we write

F t = σ(B s : 0 ≤ s ≤ t), t ≥ 0.
we give a basic properties of Brownian motion and extentions ([?]):

• The crucial fact about Brownian motion, which we need is (dB) 2 = dt;

• For every 0 ≤ s ≤ t, B t -B s is independent of {B u , u ≤ s} and has a N (0, ts);

• Brownian motion (B t ) is a process Markov property;

• (-B t ) t≥0 is a Brownian motion;

• X t = X 0 + µt + σB t is a Brownian motion with drift with mean equal to X 0 + µt;

• X t = X 0 exp(µt + σB t ) is a Geometric Brownian motion with mean equal to X 0 exp(µt + σ 2 /2).

We introduce the following two version of It's formula

Theorem 2.2. ( Itô's formula v.1) Let f ∈ C 2 (R). Then for a < t, f (B t ) -f (B a ) = t a f ′ (B s ) ds + 1 2 t a f ′′ (B s ) ds (2.1) Theorem 2.3. ( Itô's formula v.2) Let = f (t, x) be a continuous in [a, b] × R with f t , f x , and f xx continuos (a, b) × R. Then for a < t < b, f (t, B t ) -f (a, B a ) = t a f x (s, B s ) dB s + t a f t (s, B s ) + 1 2 f xx (s, B s ) ds. (2.2)
3 Closed formula and mean of X t

By curiosity, we focus on the explicit formula for the SDE to find the mean and variance of X t . By using the It's formula to Y t = ln(X t ) we obtain

dY t = γ t (1 -t γ+1 ) -t γ - σ 2 2 dt + σdB t , Y ε = ln x. (3.1) 
By integrating between ε and t it follows

Y t = ln x + γ ln t ε -(t γ+1 -ε γ+1 ) - σ 2 2 (t -ε) + σ(B t -B ε ). (3.2)
Then the explicit solution of SDE is given by

X t = x t ε γ exp -(t γ+1 -ε γ+1 ) - σ 2 2 (t -ε) + σ(B t -B ε ) , ∀t > 0. (3.3)
We intersted now to mean of X t . By using the conditional expectation or the Geomtric Brownian we prove that the trend of the process X t is given by

E(X t ) = x t ε γ exp ε γ+1 -t γ+1 , (3.4) 
then it follows that the trend of X t is proportional to Weibul density.

Maximum likelihood estimators for the parameters of SDE

A formal statement of the parameter estimation problem to be addressed is as follows. Given the general one-dimensional time-homogeneous SDE

X ε = x > 0; dX t = µ(X t ; γ)dt + g(X t ; σ)dB t , t > 0. (4.1)
where µ(t, X t ; γ) = γ t (1t γ+1 )X tt γ X t and g(X t ; σ) = σX t . The task is to estimate the parameters θ = (γ, σ 2 ) of this SDE from a sample of N + 1 observations X 1 , X 2 , • • • , X N of the stochastic process at known times t 1 , • • • , t N . In the statement of equation (4.1), dB is the differential of the Brownian motion and the instantaneous drift µ(t, x; γ) and instantaneous diffusion g(x; σ). Assuming that P(X t 1 = x) = p = 0, for the sake of simplicity, let us assume that p = 1.

The ML estimate of θ is generated by minimising the negative log-likelihood function of the observed sample, namely

LL(X 1 , X 2 , • • • , X n ; θ) = log f 1 (X 1 |θ) - N k=2 log f (X k+1 |X k ; θ) (4.2)
with respect to the parameters θ = (γ, σ 2 ). In this expression, f 1 (X 1 |θ) is the density of the initial state and f (X

k+1 |X k ; θ) ≡ f ((X k+1 , t k+1 )|(X k , t k ); θ)
is the value of the transitional PDF at (X k+1 , t k+1 ) for a process starting at (X k , t k ) and evolving to (X k+1 , t k+1 ) in accordance with equation (4.1). Note that the Markovian property of equation ( 4.1) ensures that the transitional density of X k+1 at time t k+1 depends on X k alone. ML estimation relies on the fact that the transitional PDF, f (x, t), is the solution of the Fokker-Planck equation

∂f ∂t = ∂ ∂x 1 2 ∂ (g(x; σ)f ) ∂x -µ(x; γ)f (4.3) 
satisfying a suitable initial condition and boundary conditions. Suppose, furthermore, that the state space of the problem is [a, b] and the process starts at x = X k at time t k . In the absence of measurement error, the initial condition is

f (x, t k ) = δ(x -X k ) (4.4)
where δ is the Dirac delta function, and the boundary conditions required to conserve unit density within this interval are lim

x-→a + 1 2 ∂ (g(x; σ)f ) ∂x -µ(x; γ)f = 0, lim x-→b - 1 2 ∂ (g(x; σ)f ) ∂x -µ(x; γ)f = 0.
By using Itô formula to Y t = ln(X t ) we have the linear diffusion

dY t = γ t (1 -t γ+1 ) -t γ - σ 2 2 dt + σdB t , (4.5) 
By integrating between t k and t k+1 , the exact discret model correspond to (4.14) is given by ln(X k+1 ) = ln(X k )+γ ln

t k+1 t k -(t γ+1 k+1 -t γ+1 k )- σ 2 2 (t k+1 -t k )+σ(B t k+1 -B t k ), (4.6) 
From the above, the variance and esperance of ln(X k+1 ) is given by

E(ln(X k+1 )|X k ) = ln(X k ) + γ ln t k+1 t k -(t γ+1 k+1 -t γ+1 k ) - σ 2 2 (t k+1 -t k ), V (ln(X k+1 )|X k ) = σ 2 (t k+1 -t k ),
then the transitional probability density function (PDF) for SDE has the following closed form expression:

X k+1 |X k ∼ N ln(X k ) + γ ln t k+1 t k -(t γ+1 k+1 -t γ+1 k ) - σ 2 2 (t k+1 -t k ), σ 2 (t k+1 -t k )
(4.7) Now, the classical approach to the ML method requires the computation of the first-order partial derivatives of the log-likelihood function with respect to each of its parameters, equating them equal to zero and then solving the resulting system of equations. So, the first-order partial derivatives are obtained as follows:

∂LL ∂γ = 1 2σ 2 N k=2 (σ 2 + 2A k (X k , t k )) ln( t k t k-1 ) -(γ + 1)(t γ k -t γ k-1 ) = 0, (4.8) ∂LL ∂σ 2 = - n -1 2σ 2 + 1 8σ 4 N k=2 (σ 2 + 2A k (X k , t k )) 2 - 1 4σ 2 N k=2 (σ 2 + 2A k (X k , t k )) = 0 (4.9) with A k (X k , t k ) = ln( X k X k-1 ) -γ ln( t k t k-1 ) + t γ+1 k -t γ+1 k-1 .
From the equation (4.9) we obtain

4(N -1)σ 2 -(N -1)σ 4 = 4 N k=2 Â2 k (X k , t k ) (4.10)
By using the positivity of σ2 we have the following expression of estimator σ2 ) -(γ + 1)(t γ kt γ k-1 ) = 0 (4.12)

σ2 = 4 - 4 N -1 N k=2 Â2 k (X k , t k )
where Âk (X k , t k ) = ln( X k X k-1 )γ ln( t k t k-1 ) + t γ+1 k t γ+1 k-1 . It is assumed that the observation from the realization consists of X t k , t 1 = ε, t k = kh with h > 0, k = 2, 3, • • • , N . We define the new estimator of 
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Proof. By using integrating the following equation between t k-1 = (k -1)h and t k = kh:

By summing between k = 2 and N and using E(B t k -B t k-1 ) 2 = h. Then we prove a result.

Numerical test

We present numerical results in the software R for the following SDE:

with: and we generate sampled data X t k with γ = 1, σ = 0.2 and time step ∆ = 10 -3 as following:

• Simulation <-SNSDE(drift=mu,diffus=g,N=1000,Dt=0.001,x0=10)

• MyData <-SimulationX

• mux <-expression( gama * x./t -(gama + 1) * t (gama+1) * x )

• gx <-expression( sigma * x )

• Model <-FDE(data=MyData,drift=mux,diffus=gx,start = list(gama=1,sigma=0.2),"euler") By using the command in the R software " confint(Model,level= 0.9)", we obtain the following table. It shows the confidence interval for the estimated variables γ and σ.