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Abstract

The ionization potential of an ion embedded in a plasma is lowered due to

the whole charged particles (ions and electrons) interacting with that ion. It is

the so called plasma effect. The numerical plasma model developed years ago,

based on classical molecular dynamics, capable to describe a neutral plasma at

equilibrium involving ions of various charge states of the same atom together with

electrons, is used to investigate the ionization potential depression (IPD). The study

of the IPD is illustrated and discussed for aluminum plasmas at mid and solid

density and electron temperatures varying from 50eV to 190eV. The method relies

on a sampling of the total potential energy of the electron located at an ion being

ionized. The potential energy of such electron results from the whole interacting

charged particles interacting with it.

1 Introduction

The radiative properties of an atom or an ion surrounded by a plasma are modified

through various mechanisms. For instance the line shapes of radiations emitted by

bound-bound transitions are broadened and therefore carry informations useful for

plasma diagnostics. Depending on plasma conditions the electrons supposedly occupy-

ing the upper quantum levels of radiators no longer exist as they belong to the plasma

free electron population. All the charges present in the radiator environment, electrons

and ions, contribute to the lowering of the energy required to free an electron in the fun-

damental state. This mechanism is known as ionization potential depression (IPD). The

knowledge of IPD is useful as it affects both the radiative properties of the various ionic

states and their populations. Its evaluation deals with highly complex n-body coupled

systems, involving particles with different dynamics and attractive ion-electron forces.

A few recent experiments [1,2] leading to IPD measurements in situ renew interest for

this issue. On the other hand some approximate models allow to discuss experiments
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as they provide a scaling for the IPD. This interest has motivated the development

of an alternative approach. The present work on IPD is carried out using a classical

molecular dynamics (MD) code, the BINGO-TCP code [3], developed recently to sim-

ulate neutral multi-component (various charge state ions and electrons) plasma. Our

simulations involve a mechanism of collisional ionization/recombination necessary to

simulate stationary plasmas with a definite temperature and equilibrated populations

of ions of various charge states. The code, particularly robust and versatile, has to be

understood as an efficient tool able to provide, although approximate, reference data

available by sampling, once a stationary state of the plasma has been reached. All the

advantages of classical MD techniques benefit to the present approach which relies on

a reduced set of postulates regarding mainly an ion-electron potential depending on the

ion charge state and an ionization-recombination protocol which controls the plasma

ion charge distribution in the plasma and the trapping of electrons in the ion wells. The

study focuses on aluminum plasmas for two ionic densities and several temperatures in

order to explore the IPD for different plasma coupling conditions.

2 Model summaries

2.1 Theoretical models

The IPD has been formulated in the sixties following two slightly distinct ways. First

Stewart and Pyatt [4] propose a model formulated using the finite-temperature Thomas-

Fermi potential for the average electrostatic potential near nuclei of the plasma parti-

cles. The bound electrons are considered as part of the unperturbed ion, the plasma

free electrons are described by Fermi-Dirac statistics and ions by Maxwell-Boltzmann

statistics. Note that in this model, the bound electrons do not contribute to the reduction

of the ionization energy. The reduction of the ionization energy is given by:
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where Z is the charge state of the atom (or ion) after the ionization occurrence, i.e.

Z = 1 for neutrals, λD is a generalized Debye length and r0 the average inter-ionic

distance for the average ion charge Z. ni is the corresponding ion density and ne the

electron density. In the high density or low temperature limit, the IPD becomes:

∆USP (Z) =
3Ze2

2r0
(3)

Second, Ecker-Kröll [5] formulated a generalized Saha equation as a function of the

chemical potential of the plasma. This model assumes two functional forms for the

IPD depending on the particle (ions plus electrons) density:

∆UEK(Z) = Ze2

{

1/λD
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(4)
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where

ncr =
3
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(5)

is the critical density which includes both ion and free electron densities, ZN being

the nuclear charge and T the plasma temperature. The constant C is determined by

imposing the continuity of the IPD at the critical density:

C =

(

r0

(1 + Z)1/3λD

)

ncr

. (6)

Recent experimental results [1] have shown discrepancies with the SP model which

is the most widely used among the IPD models and, shown good agreement with the

EK model in which C has been set to 1 according to experimental considerations. In

contrast, other experimental results [2] obtained independently have corroborated the

SP model. In the following, we will compare our simulation results with both models

SP and EK with C = 1.

2.2 Molecular dynamics, potentials and ionization/recombination

protocol

The BINGO-TCP code is based on standard MD techniques. The particle motions

in the simulation box is ruled by a Verlet velocity algorithm associated with periodic

boundary conditions. The whole interactions between charges contribute to the motion

of electrons and ions. The time step is necessarily chosen for an accurate description of

electron motion. The total charge in the box is zero. The Born-Oppenheimer approx-

imation is useless and collectives behaviors naturally appear. The BINGO-TCP code

involves two major features intended to achieve simulations of plasmas close to real,

with ion charge distributions adjusting with temperature and density conditions.

First, a regularized electron/ion potential, i.e., finite at short distances, depending

on the ion charge Zi is set up as:

Vie(r) = −Zie
2e−r/λ(1− e−r/δ(Zi))/r (7)

where the regularization distance δ(Zi) is function of the ionization energy Ei of an

ion of charge Zi. In other words an electron located at an ion (r = 0) occupies the

fundamental state of the ion whose charge is Zi with a core charge Zi + 1.

δ(Zi) = Zie
2/Ei (8)

Ion-ion and electron-electron potentials are taken to be Coulomb potentials

Vii,ee = Z2
i,ee

2e−r/λ/r (9)

The screening factor present in these potentials e−r/λ where λ is half the simulation

box size, helps to smooth the small fluctuations of forces arising with the periodic

boundary conditions. It doesn’t affect the mechanisms controlling the particle motion

in the simulation box.
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Second, the collisional ionization/recombination process implemented in the code

has two fundamental functions. In the one hand, it allows the evolution of the charge

state population towards a stationary state depending on temperature, density and com-

position of the plasma. In the second hand, it favors the setting up of a population

of electrons temporary trapped in the ion wells. Briefly, the local conditions for the

ionization of an ion of charge Zi are controlled by the total energy E and the location,

inside a shell around the ion, of the two nearest neighbor electrons of that ion. If E > 0,

Zi is replaced by Zi + 1 and an electron appears at the same location as the ion being

ionized. This electron-ion pair stands for the fundamental state of Zi. The effective

ionization, i.e., the heating of the supplementary electron is a long term process result-

ing from the multiple interactions in the simulation box. An analog process occurs for

the collisional recombination of an electron when E < 0. The sign of the total energy

of individual electrons provides a simple way to separate the electron population into

trapped (negative energy) and free (positive energy) electrons. Electron temperature

and density are obtained on the basis of the free electron population.

The present work exploits the instantaneous setting of one supplementary electron

at an ion starting an ionization process. The ionization protocol guarantees that there

is no other electron at short distance from the ion undergoing an ionization. The mag-

nitude of the supplementary electron potential energy represents the opposite amount

of kinetic energy required by the electron to join the free electron population. Such

events are rather seldom but sufficient to perform a statistical study of these energies

for each kind of ion. Their average for each ionic charge state is interpreted as the

corresponding IPD.

3 Results

The study of the IPD is illustrated and discussed for aluminum plasmas at two different

densities (ρ = 0.34 g/cm3 and ρ = 2.7 g/cm3) and plasma temperatures varying from

50 eV to 190 eV. TCP-MD simulations have been performed with 80 atoms of alu-

minum. We started the simulations with an electronic density corresponding to a mean

charge Z = 8. After an equilibration step controlled by imposing the temperature, we

ensure that an equilibrium state has been reached by checking the stationarity of the

total energy and charge distributions.

The analysis of the electron energy distribution function permits to infer the elec-

tronic density and consequently the mean charge value Z. Considering that the distri-

bution function of negative energies is associated with trapped electrons and knowing

the total number of electrons in the simulation box, this function allows us to estimate

the density of free electrons in our simulations. The variation of the mean charge value

as a function of the temperature has been plotted in fig. 1 and compared with the FLY-

CHK code [6] results. It can be observed that, except at the highest temperature, the

mean charge value obtained by TCP-MD simulation is smaller than the one obtained by

FLYCHK. Nevertheless, the agreement is good with an overall difference of less than

6.5 %. At the solid density, it has been found that the mean ionization of the simulated

plasmas was larger than that inferred by FLYCHK and that the overall difference was

about 20 %.
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Figure 1: Mean charge value versus temperature at ρ = 0.34 g/cm3.

By sampling the total potential energies of the electrons located at ions being ion-

ized while they are in the same ionization stage (cf. fig. 2(a)), we have access to their

corresponding average ionization energy. The difference with the ionization energy of

the isolated ions can be interpreted as the corresponding IPD. The IPD of the different

ion stages present in the simulated plasma has been measured for all the five cases of

temperature at ρ = 0.34 g/cm3, the results are plotted in fig. 2(b). It can be noticed

that the statistics on the ionization events did not permit to measure the IPD for Z
lower than 8. The IPD decreases as the temperature increases. The SP model presents

a similar behavior but not the modified EK one which depends on the temperature only

through the value of Z.
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Figure 2: (a) Distribution of the total potential energy of an electron located at different

charge state ions at 100 eV and ρ = 0.34 g/cm3. (b) Evolution of the IPD with the

temperature at ρ = 0.34 g/cm3.
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Figure 3 and 4 show the comparisons of the TCP-MD results with the SP and

EK models at ρ = 0.34 g/cm3 and Ti = Te = 100 eV, and ρ = 2.7 g/cm3 and

Ti = Te = 50 eV, respectively. As expected, the IPD is greater for the highest density

and lowest temperature and it corresponds to a ionization energy 40% lower than the

corresponding energy of the isolated ions. With C = 1 and the chosen conditions, the

modified EK model gives IPD values greater than the SP predictions. For both cases,

the simulated IPDs fall in between the two models. It can be seen in fig. 4 that the

IPD compares well with the SP strong coupling limit. This limit does not depend on

temperature, our calculation being performed at Ti = Te = 50 eV, this result should

be considered cautiously.
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Figure 3: Comparison of the simulation results at 100 eV and ρ = 0.34 g/cm3 with the

SP and EK models. (stars): ionization energy of the isolated ion, (triangles): simulated

ionization energy, (black triangles): simulated ionization potential depression, (dash-

dotted line): modified EK model, (full line): SP strong coupling limit, (dashed line):

SP model.

4 Conclusion

The ionization potential depression in a dense aluminum plasma has been simulated

via a pure classical model based on classical molecular dynamics simulation method

adapted to follow the evolution of plasmas involving ions of various charge states. Due

to the specific implementation of the ionization/recombination model, our classical MD

method gives access to the ionization potential of an ion accounting for the influence

of the free electrons and neighboring ions. By comparison with the ionization potential
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Figure 4: Comparison of the simulation results at 50 eV and ρ = 2.7 g/cm3 with the

SP and EK models. Same code as fig. 3.

of the equivalent isolated ions, the ionization potential depression can be estimated.

Calculations have been performed at two ionic densities, ρ = 0.34 g/cm3 and ρ = 2.7
g/cm3 and for temperatures varying from 50 to 190 eV. First, It has been shown that the

IPD depends on the temperature. Second, the results obtained with our TCP-MD simu-

lation code have been compared with different semiclassical models, the SP model and

the associated strong coupling limit which are widely used in astrophysical and laser

plasma simulations, and the EK model which has been modified accordingly with Ciri-

costa’s experimental results. It has been shown that the simulated IPD falls in between

the SP and EK model results and compares well with the SP strong coupling limit for

the highest density and lowest temperature. These first results are very encouraging.

Owing to the fact that a bad estimation of the IPD in laser plasma simulations have

consequences for the estimation of the ionization degree, the equation of state etc., the

model proposed in this work appears as an important tool to provide data for further

discussion on IPD models. In this context, the present results being obtained for sta-

tionary plasmas at equilibrium, the next step will be to simulate plasmas, with cold ions

in order to compare with Ciricosta’s experimental results.
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