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Abstract

Woven composite materials are receiving particular attention in a wide range of specialized

aeronautical applications. Reliable numerical prediction tools based on computational modeling

are required to quantitatively characterize the role of the microstructure and damage mechanisms at

the mesoscale. In this paper, such a computational strategy is illustrated on a generic SiC/SiC plain

weave composite with chemical vapor infiltrated matrix. Matrix and tows damage mechanisms are

respectively introduced through the use of an anisotropic damage model, and an homogenized

model based on a micromechanical model on the fiber scale. The latter is presented in this paper

for the first time. Particular attention is paid to the generation of accurate hexahedral meshes,

compatible at the tow-tow and tow-matrix interfaces. The mesh quality is analyzed using an

error estimator variable based on the strain energy density. Damage predictions obtained using

tetrahedral and hexahedral meshes are compared for basic loading cases, illustrating the need for

using high quality meshes in the growing community of woven composites computational modeling.
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1. Introduction1

Composite materials manufactured using textile architectures are receiving a growing interest2

in the field of advanced structural applications [1]. One of the reasons is related to the fact that3

the microstructure of fiber preforms can be tailored to satisfy the specific needs for mechanical4

performance. Other advantages include the ease of handling for automation, the ability to gener-5

ate complex shapes, and the reduction of delaminations effects thanks to the architecture of the6

fabrics. However, their mechanical in-plane properties, stiffness as well as strength, are lower than7

those of UniDirectional (UD) composites. The reason for this drawback is the generally higher8

fiber undulation, which is due to the textile fiber architecture and to the fabrication process.9

Three-dimensional multiscale modeling of the mechanical behaviour of woven composite materials10

poses a challenge to the development of reliable finite element models able to predict the macro-11

scopic structural response of the mechanical part [2, 3]. At the macroscale level, which is the scale12

where the whole mechanical part is considered, the fabric is considered as an anisotropic continuous13

material exhibiting mechanical properties inherited from its meso- and microscale [2, 4]. At the14

2



mesoscopic level, which is the scale of a yarn, the influence of the woven architecture on stress1

distribution and mechanical properties is considered. Patterns for woven fabrics are defined by2

the smallest Representative Volume Element (RVE), if it exists, which describes the interlacing3

of the warp and weft yarns. Fabrics in the dry form are then consolidated with resin via Resin4

Transfer Molding (RTM), or other processes. Among them, the Chemical Vapor Infiltration (CVI)5

technique has been studied since the 1960s, and has become quite important commercially for6

high temperature structural applications [5]. CVI is a slow process, and the obtained composite7

materials possess some residual porosity and density gradients. Despite these drawbacks, the CVI8

presents a few advantages. For instance, the low temperature of the process (900− 1100◦C) min-9

imizes fiber damage, and since densification is conducted under essentially no external pressure,10

fiber arrangement is undisturbed during the process.11

Over the years different tools for the geometric modeling of the preform have been combined with12

finite elements strategies to obtain an appropriate mechanical characterization of the mesoscale.13

A short overview of the most important contributions in the field of Ceramic Matrix Composites14

(CMC), elaborated using CVI, is provided herein. TexGen [6] and WiseTex [7, 8] represent the15

current state-of-the-art in generalized textile modelers. Even though their primary application is16

in the design and manufacture of fiber-reinforced polymer matrix composites, Nemeth et al. [9]17

compared the two finite element softwares to gain an understanding of their current capability and18

to assess the potential suitability of these software programs to efficiently generate finite element19

models of a broad family of woven architectures of CMC. This was done for both idealized weaves20

(without defects) as well as weaves with various introduced defects. Tetrahedral meshes were used.21

Both TexGen and WiseTex were useful for generating solid models of the tow geometry. However,22

it was concluded that none of the programs at their current state of development was able to pro-23

vide a complete generalized capability to model a CMC. Moreover, there was a lack of consistency24

in generating well-conditioned finite element meshes of the tows and matrix since interpenetrations25

between the meshes were generated. A solution often adopted, mainly in the modeling of polymer26

matrix composites, is to insert a thin matrix layer between all yarns [8, 10, 11, 12], in order to create27

independent yarn surfaces. These surfaces and the enclosed can be easily meshed using automated28

meshing tools. However, the thin matrix layers cause either bad quality elements or a very fine29

mesh size within the layers, and a reduction of the fiber volume fraction that does not correspond30
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to reality. FE meshes without these artificial matrix layers have been created up to now only for1

some specific idealized geometries Woo-CS-1997,Kuhn-JCM-1999. A very flexible method to mesh2

complex geometries and more and more adopted to avoid problems of interpenetration, especially3

in case of complex preforms, is the voxel method [13]. The main advantage of this method lies in4

its simplicity since the meshing can be carried out in few operations whatever is the complexity of5

the geometry. However, it can provide an extremely rough and mesh-dependent representation of6

local stress and strain fields, especially at material interfaces, leading to bad predictions of damage7

mechanisms.8

A procedure worth being mentioned to develop automated finite element model generation of 2D9

textile CMC with progressive damage/failure models has been proposed by the Charalambides10

group at the University of Maryland Baltimore County. Of particular interest is the work of Rao11

et al. [14] who showed results from extensive simulations regarding elastic and matrix cracking12

properties for plain weave, 4 Harness-Satin (HS), 5HS, and 8HS architectures. A full 3D finite13

element model of the RVE, roughly represented, was developed containing the individual tows and14

matrix. The layered matrix model was developed to study the fiber tow architecture and matrix15

material deposition via the CVI technique. An interesting feature is the modeling of the large16

scale void (as a central hole) that served as a region of stress concentration such that damage was17

always predicted to initiate at this location. A localization procedure from the micromechanical18

models allowed for determination of stresses within individual constituents and respective damage19

evolution through loss of effective stiffness. It was concluded that a good approximation of the20

overall response of the material could be obtained, however, their specificities could not be taken21

into account.22

Another contribution is the one of Couégnat et al. [15] who proposed a multiscale model for the23

mechanical characterization of woven ceramic composite materials based on a physical description24

of the reinforcement, the properties of the constituents and their damage mechanics for the deriva-25

tion of the effective macroscopic constitutive behavior. At the mesoscale, the geometry of the26

woven reinforcement is modeled from the yarns interleaving sequence and their geometrical prop-27

erties. Then, the total bending energy of the textile reinforcement is minimized to calculate its28

internal geometry in a relaxed state. The matrix is made of a thin layer deposited almost uniformly29

around the yarns. Boolean operations, performed directly on the FE mesh of the representative30
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unit cell, are used to generate the final entities, thus avoiding interpenetration between the parts.1

Afterward, the damage identified experimentally [16] was duplicated in the finite element mesh by2

creating cracks at the different scales to identify the damage effect tensor. Couégnat’s model prob-3

ably represents the most accurate approach currently available. However, an idealized geometry of4

the textile is adopted at the mesoscale, e.g. uniform cross section of the yarns. Moreover, a layer5

of matrix is introduced between the yarns in contact to simplify the meshing process and avoid6

interpenetration. Additional interesting contributions can be found in [9].7

The purpose of this paper is to present a strategy for the mesoscale modeling of woven ceramic8

composites with chemical vapor infiltrated matrix. The attention is restricted to the presentation9

of the numerical tools developed and the illustration of the procedure. This is done considering an10

idealized two-dimensional RVE of plain weave textile architecture. The key points of the strategy11

are overviewed in section 2, in particular the steps concerning the geometrical construction of the12

RVE, and the subsequent generation of the finite element model. The damage models adopted13

in the RVE are presented in section 3. Then, numerical results concerning an idealized RVE of14

a SiC/SiC plain weave textile architecture subjected to uniaxial tension are shown in section 4.15

Finally, conclusions are drawn and future possible developments are proposed in section 5.16

2. Geometrical modeling on the mesoscale17

The proposed procedure is composed of two main parts. The first part concerns the geometrical18

modeling of the RVE of a CVI textile structure, and it was developed within the CATIA V519

framework. The second part concerns the finite element model and analysis of the RVE, and it20

was performed using Abaqus/Standard 6.10. A summary of the different steps of the procedure is21

provided below.22

2.1. Representative Volume Element (RVE)23

The first step concerns the geometrical model of the textile reinforcement. Some of the meso-24

scopic models proposed in the literature have been reviewed in the previous section. A modeling25

strategy of particular interest is the one proposed by Hivet and Boisse [17] who developed a consis-26

tent 3D geometrical model of 2D fabric elementary cells for appropriate finite element simulations27

of the forming process prior to matrix impregnation. They performed experimental observations28

using different optical processes to determine real yarn geometry in different cases of yarn structure29
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and weaving. One particularity of this model is that it ensures a realistic contact surface between1

yarns without interpenetration for all types of weaving. Another particularity of the model is that2

the section shape varies along the trajectory, so that the influence of contact between yarns on their3

cross section shape can be taken into account. Moreover, their geometrical model is built using the4

CAD software CATIA V5. The advantage of using CATIA V5 is that any kind of geometry can be5

generated and improved. Their strategy was adopted in the present procedure to create the fabric6

elementary cell.7

Then, the matrix has to be introduced on the fabric. Two assumptions are made. First, it8

is assumed that the geometry of the reinforcement does not change after the matrix infiltration.9

Second, the matrix has a constant thickness all over the reinforcement. These hypothesis are10

clear limitations of the current model, but more realistic hypothesis could be made11

(see e.g. [18]) and more involved technics could be used (see e.g. [19]) while still using12

most of the strategy presented here. Nevertheless, this idealized model for the RVE was13

conceived to (i) validate the procedure and (ii) to test the developed numerical tools. Based on14

these assumptions, the matrix layer is created by just adding an extra thickness to each yarn. Then,15

a boolean operation is performed, i.e. remove operation, between the yarn and the generated entity16

to remove the first one from the second one. This procedure is carried on for every pair yarn/matrix17

layer in the model. However, this procedure generates interpenetrations between each matrix layer18

and the yarns of the RVE lying on the perpendicular direction since the yarns are in contact.19

Then, boolean operations similar to the previous ones are performed between the interfering parts20

to avoid interpenetrations, see Figure 1.21

2.2. Finite Element Discretization22

In the second step of the procedure the parts generated in CATIA V5 are imported in Abaqus23

Standard 6.10 using the “.CatPart” format. Particular attention is paid to the generation of ac-24

curate hexahedral conforming meshes between the interacting parts of the RVE. Compatibility25

is extremely important because it allows to (i) avoid interpenetrations and (ii) to impose more26

accurate interactions between the different parts of the RVE. The idea is to mesh each part inde-27

pendently because it makes easier the generation of appropriate hexahedral meshes. The meshing28

procedure is carried out as following: first, each part is partitioned using planes conceived with the29

aim of generating subdomains that are easier to mesh using Abaqus’ tools. This planes allow the30
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user to drive the mesher in such a way that hexahedral meshes can be easily generated. The planes1

of partition used for the matrix layers and the yarns are shown, respectively, in Figure 2(a) and2

Figure 2(b). Then, different meshing techniques available in Abaqus can be used on each subdo-3

main. A structured mesh technique or a sweep meshing technique is combined with an advancing4

front algorithm [20] on each subdomain of the matrix layers, see Figure 2(a). As far as the yarns5

are concerned, a regular hexahedral mesh is obtained using the sweep meshing technique combined6

with an advancing front algorithm on each subdomain, see Figure 2(b).7

Each mesh is generated in such a way that periodic boundary conditions can be easily applied using8

multi-point constraint equations. This means that nodes lying on opposite boundary surfaces of9

the RVE share approximately the same position. Then, a Python script [21] was developed to10

impose in-plane periodic boundary conditions on the sides of the RVE. This is done using multi-11

point constraint equations that impose a relative displacement to each pair of nodes sharing the12

same position on opposite surfaces. All the regions of the RVE in contact have been seeded using13

the same number of elements and equivalent topology. Another python script was developed to14

impose perfect compatibility between the nodes in the areas of contact between two parts. The15

idea is the following: a master and a slave surface are defined for each pair of surfaces in contact.16

Then, each node lying on the slave surface is moved to satisfy compatibility with the closest node17

on the master surface. This procedure is applied to all the interacting regions in the RVE. Then,18

all the discretized matrix layers are merged using available Abaqus tools to have a better repre-19

sentation of the complete matrix of the RVE. Thus, a single instance is generated for the matrix.20

The yarns are instead kept as independent parts, thus being able to interact with the other parts21

of the RVE using, for instance, tie constraints or cohesive laws, i.e. cohesive elements or cohesive22

surface interactions [20]. The mesh quality of the RVE is estimated using an error estimator out-23

put variable based on the strain energy density. It was selected between the set of error indicator24

output variables provided by Abaqus/Standard for the whole element [20]. These error indicator25

output variables are computed through the patch recovery technique of Zienkiewicz and Zhu [22].26

The finite element model of the RVE of a plain textile architecture obtained using the proposed27

procedure is shown in Figure 3.28
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3. Material modeling on the mesoscale1

3.1. Phenomenology and modeling choices2

A short description of the damage mechanisms and associated model is reported herein. Dam-3

age in 2D woven SiC/SiC consists essentially in the formation of transverse cracks in the matrix4

and associated interface cracking resulting from deviation of the cracks by the tows and the fibers5

within the tows (also referred to as debonding). Three main steps can be distinguished during6

matrix cracking [23, 24]. First, cracks initiate at the inter-yarn macropores where stress concen-7

trations exist. Then, cracks form in the transverse yarns and in the interply matrix. Finally,8

transverse microcracks initiate in the longitudinal tows. Ultimate failure is dictated by the fibers,9

which can break statically, or in static or cyclic fatigue, depending on the loading [25, 26]. In the10

proposed damage model intra-yarn transversal cracking is taken into account by using a damage11

model similar to the one proposed at LMT-Cachan for laminated composites [27, 28]. Cracks in12

the longitudinal yarns and associated fiber-matrix debonding are introduced through the use of a13

model with inelastic deformation, homogenized from the reference fiber scale framework based on14

shear lag and Weibull theories [29, 30, 31]. This homogenization process links the damage variables15

used on the mesoscale to micromechanical variables such as crack density and crack openings [32].16

Fiber breaking is not considered.17

Note that another potentially important aspect of woven CMCs mechanics is the18

process-induced residual stresses[33, 34]. However, we do not expect them to be sig-19

nificant in SiC/SiC composites as the ones studied in this paper, and did not consider20

them. That could be improved in the future.21

The material model presented in the next sections is the direct mathematical expres-22

sion of this damage scenario; if other hypothesis would be made, the corresponding23

part of the model could be modified while keeping the other unchanged. Actually,24

this is one of the main interest of our multi-scale approach where every mechanism is25

modeled separately: the strategy can be used along side experimental studies to test26

out different hypothesis in terms of failure mechanisms. Similarly, if a new material is27

processed with e.g. the same yarns but different matrix, only the corresponding part28

of the model must be modified, thus reducing the additional development cost.29

Even though models based on a single RVE are inherently limited in predicting material failure,30
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it is reasonable to consider that damage is relatively homogeneous in the structure until initiation1

of a macroscopic crack (we are here referring to structure scale homogeneity, not mi-2

crostructure, or RVE, scale homogeneity). This is especially true for CMCs, where there3

are many toughening mechanisms that prevent damage localization. Similar models have been4

shown to be extremely reliable to predict material failure [35, 36]. Moreover, it is a mandatory5

step toward modeling of more localized phenomena based on multi-RVE cells [38].6

7

3.2. Inter-yarn matrix8

3.2.1. Elasticity9

The matrix is initially isotropic, with Young modulus Em & Poisson ratio νm. Therefore, its

elastic behavior is characterized by the following free enthalpy potential:

2ρmφm0
(
σ
)

= σ : Em0
−1 : σ (1)

with Êm0
−1

=



1
Em

−νm
Em

−νm
Em 0 0 0

1
Em

−νm
Em 0 0 0

1
Em 0 0 0

1+νm

Em 0 0

1+νm

Em 0

sym 1+νm

Em


where ̂ denotes the classical engineering, or Voigt, notations[39].10

3.2.2. Matrix cracking11

The damage model used for the matrix is built within Ladevèze’s anisotropic and unilateral12

damage theory, introduced in [40], and revised in [41]. Several models have been derived from this13

theory, for multiple materials including SiC/SiC composites [42], C/C composites [43], concrete14

[44], etc. The present model is actually a simplified version of the macroscopic damage model15

already proposed for CMCs [45, 46, 47], including only the matrix damage. It allows to represent16

anisotropic damage which direction is not known a priori. For the sake of simplicity, it is presented17

here without unilateral effects (see [47, 48] for more details on that aspect).18
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Thus, the matrix behavior is characterized by the following free enthalpy potential:1

2ρmφm
(
σ, Sm

)
= σ : Sm : σ (2)

where Sm is the damage variable–an internal variable in the classical thermodynamic terminology2

[39, 49]. One initially has Sm (t = 0) = Em0
−1.3

The damage is directly oriented by the local mechanical load, through the use of the following4

thermodynamic force:5

Y m = 〈σ〉+ ⊗ 〈σ〉+ (3)

where 〈σ〉+ is the classical part of the stress in the classical sense [39].6

A scalar thermodynamic force is now defined:7

zm =

√
Tr

(
Y m2

)
(4)

and the damage evolution law finally writes:8

˙Sm = ˙αm
∂zm

∂Y m
=

˙αm

zm
Y m (5)

where αm is an hardening-like variable, given by:9 
αm =

1

Em
〈
√
z − σm0

σm1 − σm0
〉2+

˙αm ≥ 0

(6)

where σm0 & σm1 are two material parameters, characterizing the initial & saturation stress levels.10

Details on the numerical implementation of such anisotropic damage models can be found in11

[48]. Briefly, the local behavior is solved using a fixed point method, where Aitken’s12

relaxation is used to accelerate convergence. Contrary to most materials models,13

here the state law is non linear–actually, multi-linear–due to the traction-compression14

splitting. It is solved using a BFGS quasi-Newton method.15
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3.3. Yarns1

Because of the frictional sliding at the fiber-matrix interfaces, the internal energy of the loaded2

yarn is not entirely recoverable through a purely elastic unloading (i.e. an hypothetical unloading3

where all dissipative phenomena such as the sliding of fibers within the matrix would be forbidden)4

and is actually composed of the recoverable, or free, energy, and the stored energy [32]:5

ρyey,i = ρyψy,e + ρyψy,s (7)

As a consequence, the total strain will be composed of a recoverable and a residual part:6

εy,t = εy,e + εy,r (8)

Instead of a formulation based on energy potentials (which are functions of strain and additional7

internal variables), we prefer a formulation based on enthalpy potentials, i.e. written in stress. As8

a consequence, the recoverable strain, which accounts for elastic deformation of fibers and matrix9

as well as longitudinal cracking of the matrix, will derive from the free enthalpy potential, while the10

residual strain, which accounts for fibers sliding within the matrix induced by transversal cracking11

of the matrix, will derive from the stored enthalpy potential.12

We will always refer to the following material orientation: 1 is the fiber direction; 2 is the in-plane13

transverse direction; and 3 is the out-of-plane transverse direction. The tensors will always be14

expressed in this particular basis.15
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3.3.1. Elasticity1

The yarn’s elastic behavior is characterized by the following free enthalpy potential:

2ρyφy,e0

(
σ
)

= σ : Ey0
−1

: σ (9)

with Êy0
−1

=



1
Ey

1

−νy12
Ey

1

−νy13
Ey

1
0 0 0

1
Ey

2

−νy23
Ey

2
0 0 0

1
Ey

3
0 0 0

1
2Gy

12
0 0

1
2Gy

13
0

sym 1
2Gy

23


so that the elastic state law writes:2

εy,e
(
σ
)

=
∂ρyφy,e0

∂σ

(
σ
)

= Ey0
−1

: σ (10)

In a first step, the components of Ey0 are computed from the classical rules of mixture:3



Ey1 = EfV f + EmV m

1
Ey

2
= 1

Ey
3

= V f

Ef + Vm

Em

1
νy12

= 1
νy13

= V f

νf
+ Vm

νm

νy23 = νfV f + νmV m

1
Gy

12
= 1

Gy
13

= V f

Gf + Vm

Gm

Gy23 = GfV f +GmV m

(11)

where V f/m, Ef/m, νf/m & Gf/m are the volume fraction, Young modulus, Poisson coefficient and4

shear modulus of the undamaged fiber/matrix (Gf/m = Ef/m/2
(
1 + νf/m

)
).5

3.3.2. Matrix longitudinal cracking6

In order to represent the damage induced by the longitudinal cracks, we introduce the damage

variable dy2. Thus, the yarn’s damaged behavior is characterized by the following free enthalpy

12



potential:

2ρyφy,e
(
σ, dy2

)
= σ : Ey−1 (dy2) : σ (12)

with Êy
−1

(dy2) =



1
Ey

1

−νy12
Ey

1

−νy13
Ey

1
0 0 0

1
Ey

2 (1−dy2)
−νy23
Ey

2
0 0 0

1
Ey

3
0 0 0

1
2Gy

12(1−d
y
2)

0 0

1
2Gy

13
0

sym 1
2Gy

23(1−d
y
2)


The state law simply derives from this potential:1

εy,e
(
σ, dy2

)
=
∂ρyφe

∂σ

(
σ, dy2

)
= Ey−1 (dy2) : σ (13)

The evolution of the damage variable dy2 is driven by the associated thermodynamic force, which2

also derives from this potential:3

Y y
2

(
σ, dy2

)
=
∂ρyφy,e

∂dy2

(
σ, dy2

)
=

σ222

2Ey2 (1− dy2)
2 +

σ212

4Gy12 (1− dy2)
2 +

σ223

4Gy23 (1− dy2)
2 (14)

In a first step, we use the following damage evolution law:4 
dy2 (Y y

2 ) =

(
〈
√
Y y
2 −

√
Y y
0√

Y y
1 −

√
Y y
0

〉10

)2

with Y y
0/1 =

σy0/1
2

2Ey2

ḋy2 ≥ 0

(15)

where 〈〉10 denotes the unit part (i.e. the function returning the value itself if it is between5

0 and 1, 0 if it is below 0, and 1 if it is above 1), and σ0/1 the initiation/saturation stress.6

Note that the model described here follows the hypothesis that yarns longitudinal7

cracks are oriented by the microstructure. It would be totally straigthforward to8

make a different hypothesis, and use instead a model similar to the one used for9

the inter-yarn matrix, i.e. where the damage is directed by the load. Actually, in10

[48], we introduced damage laws where damage evolution is directed by both the11

13



microstructure and the load, the relative influence of each being a model parameter.1

3.3.3. Matrix transverse cracking and associated fiber-matrix debonding2

Micro-macro relationships. Instead of expressing the stored enthalpy potential, we prefer deriving3

the evolution law of the residual strain directly from micromechanical considerations, by following4

the approach introduced in [32] and extended in [50]. Let us first consider the 1.5D problem of5

a single fiber within a cracked matrix, where stress fields are described using the classical shear6

lag framework [30, 31, 51]. The overall response of the system is given in Figure 4, as well as the7

stress fields within the fiber ans matrix at a given state (A). A reel unloading would bring the8

system back to the state (C), involving some sliding at the fiber-matrix interface. It is interesting9

to define a purely elastic unloading, where sliding at the fiber-matrix interface would be forbidden.10

This would bring the system back to the hypothetical state (A′), where only auto-equilibrated11

stresses remain. Stress fields in such state are also given Figure 4. We can now clearly define the12

total strain εy,t = ε(A), the residual strain εy,r = ε(A
′) and the recoverable or purely elastic strain13

εy,e = ε(A) − ε(A′). In the shear lag approximation, one has:14

εy,e =
σ

Ey1
(16)

where Ē = EfV f +EmV m (see Equation (11)). It is important to notice that this is actually the15

elastic law of the undamaged material: in such a simple approximation, the cracks induce residual16

strains but no stiffness reduction. It is not the case for more complex approximations of the stress17

fields [32].18

In order to express the residual strain, let is write it:19

εy,r =
uy,r

ly
(17)

where uy,r is the residual displacement associated to a single crack and ly the average distance be-20

tween the cracks within the yarn. The evolution of uy,r depends on loading history. However, if we21

consider only full loading-unloading cycles, only one additional variable is required to characterize22

the loading history, namely the maximum applied stress. Thus, in the shear lag approximation,23

14



one has:1 

u̇y,r =



rfEm2V m2σσ̇

Ey1
2
EfV f 2τ

on (OA)

−
rfEm2V m2

(
σ − σ(A)

)
σ̇

2Ey1
2
EfV f 2τ

on (AC)

rfEm2V m2σσ̇

2Ey1
2
EfV f 2τ

on (CA)

uy,r ≥ 0

(18)

where rf is the fiber radius. As for the evolution of ly, using classical Weibull theory, one has:2


ly = L0 ln (2)

(σ0
σ

)m
l̇y ≤ 0

(19)

where L0, σ0 & m are the classical Weibull coefficients.3

Back to yarn model. In a first step, we take:4

εy,r = εy,r
(
n1

tn1
)

(20)

where n1 is the fiber direction, and the evolution of εy,r is given by Equations (17), (18) & (19), in5

which we take:6

σ = σ :
(
n1

tn1
)

(21)

4. Illustration7

The proposed procedure was illustrated on a generic RVE of a plain weave textile architecture8

subjected to uniaxial tension in the x-direction, see Figure 3. The material properties and the9

damage thresholds assumed for the yarns and the matrix are based on the study carried on by10

Lissart and Lamon [52] who investigated the mechanical properties and statistical parameters of11

SiC/SiC unidirectional composites fabricated using CVI. They are presented Table 1. The unit12

cell edge length is 5.84 mm, and the cross section width and maximum thickness are, respectively,13

2.68 mm and 0.29 mm. The thickness of the sheets of matrix is 20 µm. In-plane periodic boundary14

conditions were assigned on the sides of the RVE (as explained in section 2) and tie-constraints15

were imposed between the interacting parts.16
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Different three-dimensional isoparametric finite elements of Abaqus were compared and evaluated1

in their suitability to describe the damage initiation and evolution. The attention was restricted2

to linear finite elements since they are, in general, preferred to quadratic ones when contact inter-3

actions are considered [20]. Moreover, they are less computationally expensive. Neither reduced4

nor selective integration techniques were used. The first mesh was generated using 8-node lin-5

ear hexahedral elements (C3D8 [20]). The mesh quality of the RVE was evaluated using Abaqus6

error estimator output variable based on the strain energy density. A converged solution in the7

stress-strain curve, leading to reasonable error estimations close to the free edges of the RVE, was8

achieved using a mesh of approximately 90000 elements (≈ 390000 degrees of freedom). It is worth9

noting that the mesh density assumed here is much finer than the mesh density commonly used in10

the literature for similar analyses [9]. The stress-strain curve obtained is shown in Figure 5. This11

curve was calculated as follows: the stresses are calculated as the ratio between the sum of the12

nodal longitudinal forces and the cross-sectional area of the yarns, whereas the deformations is the13

ratio between the difference of the imposed displacements on opposite cross sections of the RVE14

and their distance. The error estimations obtained in the yarns at the beginning of the non-linear15

mechanical behavior, i.e. σ11 ≈ 60 MPa, for compatible hexahedral meshes are shown in Figure16

6(a). The most important error is encountered close to the macroporosity where it is on average17

of 35% over a distance of about 5% the in-plane cell dimension. This is due to the singular stress18

field at the free edges of the macroporosity. On the other regions the error is always less than 10%.19

Similar results were obtained using 8-node linear hexahedral incompatible mode elements (C3D8I20

[20]). However, C3D8I elements are preferred to C3D8 elements in presence of complex states of21

bending. Compatible tetrahedral meshes were also considered using 4-node linear tetrahedral ele-22

ments (C3D4 [20]). The final mesh had approximately the same number of nodes generated using23

hexahedral compatible meshes. The stress-strain curve obtained overlaps the one obtained using24

C3D8 elements, see Figure 5. However, the estimates of the solution error in the strain energy25

density are much bigger compared to the ones obtained using C3D8 elements, see Figure 6(b). In26

most of the regions the error is between 40% and 80%. The error close to the macroporosity is on27

average of 110% over a distance of about 5% the in-plane cell dimension.28

Both hexahedral and tetrahedral meshes provide a sequence of damage mechanisms similar to the29

expected ones for woven CMC subjected to uniaxial tension [24]. First, cracks initiate at the inter-30
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yarn macropore where stress concentrations exist. Inter-yarn matrix damage distribution on the1

RVE obtained at the end of the analysis using hexahedral compatible meshes is shown in Figure 7.2

As expected, matrix damage is mainly concentrated close to the macropore. Then, cracks form in3

the transverse yarns. Intra-yarn transversal cracking distribution on the RVE obtained at the end4

of the analysis using hexahedral compatible meshes is shown in Figure 8. As a consequence of the5

matrix damage distribution, intra-yarn damage is also mainly concentrated close to the macrop-6

ore. Finally, transverse microcracks initiate in the longitudinal tows. Distributions concerning the7

intra-yarn longitudinal cracking on the RVE obtained at the end of the analysis using hexahedral8

and tetrahedral meshes are shown, respectively, in Figure 9(a) and 9(b). Intra-yarn longitudi-9

nal cracking is lower than intra-yarn transversal cracking close to the macropore confirming the10

expected sequence of damage mechanisms. It is important to remark that similar damage distri-11

butions are obtained using hexahedral and tetrahedral meshes, even though the error estimations12

concerning the strain energy density are quite different. This is because only the in-plane stress13

fields are taken into account in the adopted damage models, and not the transverse ones which14

have a major impact on the solution errors of the strain energy density distributions. This is due15

to the difficulties commonly encountered in the modeling of the transverse stress fields close to free16

edges. It can be stated that important errors on the evaluation of the strain energy density may17

have major effects in the prediction of the damage mechanisms if cohesive interactions between the18

parts are introduced a cause of the direct influence of the transverse stress fields.19

It is important to recall that these preliminary results are obtained using (i) an idealized, one20

single layer geometry of the RVE and (ii) tie-constraints between the parts in contact instead of21

more realistic interactions, e.g. cohesive zones. Another aspect that is worth to clarify is that the22

values of the damage variables obtained using hexahedral meshes can provide negative values once23

extrapolated from the integration points to the nodes. This is because the extrapolation is done24

using the shape functions of the isoparametric linear hexahedron. In fact, these functions vary lin-25

early on quadrilateral coordinate lines, but are not linear polynomials as in the case of tetrahedron,26

see Figure 9. However, the damage values provided at the integration points are correct, then the27

problem concerns only the visualization module of Abaqus/CAE .28
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Matrix Fibers

Elasticity Damage Geometry Elasticity

Em (GPa) νm () σm0 (MPa) σm1 (MPa) rf (µm) Ef (GPa) νf ()

400 0.2 25 100 7 200 0.2

Fiber-Matrix interface Yarns

Damage Geometry Damage

τ (GPa) V f (%) V m (%) σy0 (MPa) σy1 (MPa)

100 30 60 50 200

Table 1: Numerical values for the mechanical model’s parameters, corresponding to a generic SiC/SiC composite
[24, 52]

5. Conclusion1

The strategy presented in this paper is conceived with the aim of avoiding some of the numerical2

problems commonly encountered using most of the methodologies proposed in the literature for3

the mesoscale modeling of ceramic woven composites. For instance, yarn-yarn and yarn-matrix4

interactions are numerically corrects by imposing conforming meshes between the interacting parts5

of the RVE. Moreover, conforming meshes are generated using both tetrahedral and hexahedral6

elements. As a consequence, there is no need to introduce an additional layer of matrix between the7

yarns in contact to generate a mesh without interpenetration, as commonly done in the literature.8

Thus, the procedure generates a computational geometrical model of the RVE suitable for future9

inter-yarn damage analyses, e.g. delamination, requiring an appropriate evaluation of the energy10

dissipation at the contact interfaces. By using classical error estimators, we found that tetrahedral11

elements could induce up to 110% error close to stress concentration areas, while with hexahedral12

elements the error was bounded to 35%. This is of particular interest since most of the meshing13

strategies proposed in the literature are based on tetrahedrons. In terms of mechanical modeling,14

similar distributions of the damage variables were obtained, even though the error estimations15

concerning the strain energy density were quite different. This is because only the in-plane stress16

field is taken into account in the adopted damage models, and not the transverse one which has17

a major impact on the solution errors of the strain energy density distributions. This is due to18

the difficulties commonly encountered in the modeling of the transverse stress field close to free19

edges. This also means that important errors on the evaluation of the strain energy density would20

have major effects in the prediction of the damage mechanisms if cohesive interactions between the21

parts are introduced. This is a cause of the direct influence of the transverse stress field.22
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We can conclude that the model presented here, though in early stage of development, is already1

able to reproduce most of the main features of CMCs behavior law. However, an appropriate2

validation with experimental data available in the literature could not be done at this state of3

the work. This is because an idealized RVE of a plain weave textile architecture was adopted4

to facilitate the presentation of the method and to provide guidelines for further developments.5

Future research will concern the geometrical and mechanical characterization of real RVEs of woven6

ceramic composites having different preforms, e.g. satin and interlock, and conceived for industrial7

applications. RVEs of multilayer woven architectures will be also developed, and the effects of8

nesting in the prediction and propagation of damage will be analyzed. Great attention will be paid9

to the development and identification of appropriate cohesive interactions between the parts.10
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[43] X. Aubard, C. Cluzel, L. Guitard, P. Ladevèze, Modelling of the mechanical behavior of 4D carbon/carbon

composite materials, Composites Science and Technology 58 (1998) 701–708.

21

http://dx.doi.org/10.1016/j.compscitech.2010.04.013
http://dx.doi.org/10.1016/0266-3538(92)90097-M
http://dx.doi.org/10.1016/j.jmps.2012.03.002
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.11.001


[44] R. Desmorat, F. Gatuingt, F. Ragueneau, Nonlocal anisotropic damage model and related computational as-

pects for quasi-brittle materials, Engineering Fracture Mechanics 74 (10) (2007) 1539–1560. doi:10.1016/j.

engfracmech.2006.09.012.
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Figure 1: Layer of matrix after the use of boolean operators

(a) Partition planes on the matrix layers (b) Partition planes on the yarns

Figure 2: Partition planes created on the different parts of the RVE for plain textile architecture

Figure 3: Finite element model of the RVE of a plain textile architecture elaborated using CVI
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Figure 4: Decomposition of the internal energy into recoverable and stored parts, leading to the decomposition of
the total strain into recoverable and residual parts
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Figure 5: Stress-strain curve obtained using different finite elements
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(a) Hexahedral compatible meshes

(b) Tetrahedral compatible meshes

Figure 6: Strain energy density error distribution on the yarns of the RVE
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Figure 7: Inter-yarn matrix damage distribution on the RVE obtained using hexahedral compatible meshes (αm, see
Section 3) (note that αm must be multiplied by Em, here 400 GPa, or 4 105 MPa, to be in the range [0; 1], hence
the magnitude of 10−5)

Figure 8: Intra-yarn transversal cracking distribution on the RVE obtained using hexahedral compatible meshes (dy2 ,
see Section 3)
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(a) Hexahedral compatible meshes

(b) Tetrahedral compatible meshes

Figure 9: Intra-yarn longitudinal cracking distribution on the RVE (ly, see Section 3, in mm)
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