Francesco Amoroso 
email: francesco.amoroso@unicaen.fr
  
AND Martín Sombra 
email: sombra@ub.edu
  
Umberto Zannier 
email: u.zannier@sns.it
  
  
  
  
  
UNLIKELY INTERSECTIONS AND MULTIPLE ROOTS OF SPARSE POLYNOMIALS

Keywords: . 2010 Mathematics Subject Classification. Primary 11C08; Secondary 11G50 Sparse polynomial, multiple roots, unlikely intersections

We present a structure theorem for the multiple non-cyclotomic irreducible factors appearing in the family of all univariate polynomials with a given set of coefficients and varying exponents. Roughly speaking, this result shows that the multiple non-cyclotomic irreducible factors of a sparse polynomial, are also sparse.

To prove this, we give a variant of a theorem of Bombieri and Zannier on the intersection of a fixed subvariety of codimension 2 of the multiplicative group with all the torsion curves, with bounds having an explicit dependence on the height of the subvariety. We also use this latter result to give some evidence on a conjecture of Bolognesi and Pirola.

Introduction

This text is motivated by the following question: let f ∈ Q[t ±1 ] be a sparse Laurent polynomial, that is, a polynomial of high degree but relatively few nonzero terms. When does f have a multiple root in Q × ?

In more precise terms, we consider sparse Laurent polynomials given by the restriction of a fixed regular function on G N m , namely a multivariate Laurent polynomial, to a varying 1-parameter subgroup. Let N ≥ 1 and γ = (γ 0 , γ 1 , . . . , γ N ) ∈ Q N +1 . For a = (a 1 , . . . , a N ) ∈ Z N set

f a = γ 0 + γ 1 t a 1 + • • • + γ N t a N ∈ Q[t ±1 ].
This Laurent polynomial the restriction of the affine multivariate polynomial

L = γ 0 + γ 1 x 1 + • • • + γ N x N ∈ Q[x 1 , . . . , x N ]
to the subgroup of the multiplicative group G N m = (Q × ) N parameterized by the monomial map t → (t a 1 , . . . , t a N ).

The occurrence of many Laurent polynomials of the form f a with a multiple root certainly happens in the following situation. Let 1 ≤ k ≤ N -1 be an integer, b 1 , . . . , b N ∈ Z N -k and y = (y 1 , . . . , y N -k ) be a group of N -k variables. Consider the Laurent polynomial (1.1)

F = γ 0 + γ 1 y b 1 + • • • + γ N y b N ∈ Q[y ±1 1 , . . . , y ±1 N -k ] with y b i = y b i,1 1 • • • y b i,N -k N -k .
Suppose that F has a multiple nontrivial factor P . Let θ ∈ Z N -k such that P (t θ 1 , . . . , t θ N ) is not a monomial. Then, for a i = b i , θ , we have f a = F (t θ 1 , . . . , t θ N ) and every root of P (t θ 1 , . . . , t θ N ) is a multiple root of f a .

Indeed, our main result (Theorem 1.1) shows that there is a finite family of multivariate Laurent polynomials as in (1.1) such that all multiple non-cyclotomic roots occurring in the family of polynomials f a , a ∈ Z N , come by restricting the multiple factors in this finite family to a 1-parameter subgroup, as explained above. In particular, the multiple non-cyclotomic irreducible factors of the f a 's are also sparse, in the sense that they are the restriction of a fixed Laurent polynomial to a varying 1-parameter subgroup of G N m . The following is a precise statement of this result. For a ∈ Z N , we denote by |a| the maximum of the absolute values of the coordinates of this vector. We also denote by µ ∞ the subgroup of Q × of roots of unity.

Theorem 1.1. Let N ≥ 1 and γ = (γ 0 , γ 1 , . . . , γ N ) ∈ Q N +1 . There exists an effectively computable constant C depending only on N and γ such that the following holds.

Let a = (a 1 , . . . , a N ) ∈ Z N such that the Laurent polynomial

f a = γ 0 + γ 1 t a 1 + • • • + γ N t a N ∈ Q[t ±1 ]
is nonzero and has a multiple root ξ ∈ Q × \ µ ∞ . Then there exist 1 ≤ k ≤ N -1 and b 1 , . . . , b N , θ ∈ Z N -k such that

(1) |b i | ≤ C, i = 1, . . . , N , and |θ| ≤ C|a|;

(2) the matrix B = (b i,j ) i,j ∈ Z N ×(N -k) is primitive, in the sense that it can be completed to a matrix in SL N (Z), and a = B • θ;

(3) the Laurent polynomial

F = γ 0 + γ 1 y b 1 + • • • + γ N y b N ∈ Q[y ±1
1 , . . . , y ±1 N -k ] has a multiple factor P such that ξ is a root of P (t θ 1 , . . . , t θ N ).

The situation is different for multiple cyclotomic roots. The following example shows that the hypothesis that the root ξ is not cyclotomic is necessary for the conclusion of this result to hold.

Example 1.2. Let a = (a 1 , a 2 , a 3 ) ∈ Z 3 coprime with 0 < a 1 < a 2 , a 3 = a 1 + a 2 and a 3 0. Consider the polynomial

f a = 1 -t a 1 -t a 2 + t a 1 +a 2 ∈ Q[t ±1 ],
which has ξ = 1 as a double root.

In the notation in Theorem 1.1, we have N = 3 and k = 1, 2. The case k = 2 is easily discarded since then, by the conditions in (2), the polynomial F coincides with f , and so its degree cannot be bounded above independently of a.

Hence we only have to consider the case

k = 1. Let b 1 , b 2 , b 3 , θ ∈ Z 2 with b i bounded above and such that (1.2) b 1 , θ = a 1 , b 2 , θ = a 2 , b 3 , θ = a 1 + a 2 . Write F = 1 -y b 1 -y b 2 + y b 3 ∈ Q[y ±1 1 , y ±1 2 ]
. By (1.2), we have that θ 1 and θ 2 are coprime and b

3 -b 1 -b 2 = λ(θ 2 , -θ 1 ) with λ ∈ Z. Since b i 's are bounded above, b 3 = b 1 + b 2 and so F = 1 -y b 1 -y b 2 + y b 1 +b 2 = (1 -y b 1 )(1 -y b 2 ).
By the conditions in (2), b 1 and b 2 are linearly independent, and so F has no multiple factor. Hence, the presence of the double root ξ = 1 cannot be explained in this example as coming from a multiple factor of a multivariate Laurent polynomial of low degree restricted to a 1-parameter subgroup.

Theorem 1.1 restricts the possible exponents a ∈ Z N whose associate polynomial has a multiple non-cyclotomic root, to a finite union of proper linear subspaces of Z N .

Corollary 1.3. Let N ≥ 1 and γ = (γ 0 , γ 1 , . . . , γ N ) ∈ Q N +1
. Then the set of vectors a = (a 1 , . . . , a N ) ∈ Z N such that the Laurent polynomial

γ 0 + γ 1 t a 1 + • • • + γ N t a N ∈ Q[t ±1 ]
is nonzero and has a multiple non-cyclotomic root, is contained in a finite union of proper linear subspaces of Z N .

To prove Theorem 1.1, we give a version of a theorem of Bombieri and Zannier on the intersection of a subvariety of codimension 2 of the multiplicative group with all the torsion curves, with bounds having an explicit dependence on the height of the subvariety (Theorem 2.3). This allows us to prove a general result concerning the greatest common divisor of two sparse polynomials with coefficients of low height (Theorem 2.6). These two theorems are presented in § 2 and proved in § 3 and § 4, respectively. Theorem 1.1 is an easy consequence of the latter result, as shown in § 5. Theorem 2.6 is also used in § 6 to prove Theorem 6.1, giving some evidence on a conjecture of Bolognesi and Pirola [START_REF] Bolognesi | Osculating spaces and Diophantine equations (with an appendix by Pietro Corvaja and Umberto Zannier)[END_REF].
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Intersections of subvarieties with torsion curves and gcd of sparse polynomials of low height

We first recall some definitions and basic facts. Boldface letters denote finite sets or sequences of objects, whose the type and number should be clear from the context: for instance, x might denote the group of variables (x 1 , . . . , x n ), so that Q

[x ±1 ] denotes the ring of Laurent polynomials Q[x ±1 1 , . . . , x ±1 n ]. Given a vector a = (a 1 , . . . , a N ) ∈ Z N we set |a| = max j |a j |.
Given a group homomorphism ϕ :

G n m → G N m , there exist unique vectors b 1 , . . . , b N ∈ Z n such that ϕ(x) = (x b 1 , . . . , x b N ) for all x ∈ G n m .
We define the size of ϕ as size(ϕ) = max

j |b j |
We also denote by

ϕ # : Q[y ±1 1 , . . . , y ±1 N ] -→ Q[x ±1 1 , . . . , x ±1 n ], y i -→ x b i the associated morphism of algebras. If ψ : G N m → G M m is a further homomorphism, then (ψ • ϕ) # = ϕ # • ψ # . Let D ≥ 1 and f 1 , f 2 ∈ Z[t]
polynomials of degree ≤ D with fixed coefficients and fixed number of nonzero terms. Filaseta, Granville and Schinzel have shown that, if either f 1 or f 2 do not vanish at any root of unity, then the greatest common divisor gcd(f 1 , f 2 ) can be computed in time polynomial in log(D) [START_REF] Filaseta | Irreducibility and greatest common divisor algorithms for sparse polynomials, Number theory and polynomials[END_REF]. More recently, Amoroso, Leroux and Sombra gave an improved version of this result [START_REF] Amoroso | Overdetermined systems of sparse polynomial equations[END_REF]. The following is its precise statement.

Theorem 2.1 ([ALS15], Theorem 4.3).

There is an algorithm that, given a number field K and polynomials f 1 , f 2 ∈ K[t], computes a polynomial p ∈ K[t] dividing gcd(f 1 , f 2 ) and such that gcd(f 1 , f 2 )/p is a product of cyclotomic polynomials.

If both f 1 and f 2 have degree bounded by D, height bounded by h 0 and number of nonzero coefficients bounded by N , this computation is done with O K,N,h 0 (log(D)) bit operations.

In more detail, write

f i = γ i,0 + γ i,1 t a 1 + • • • + γ i,N t a N ∈ K[t], i = 1, 2,
with a j ∈ Z and γ i,j ∈ K. Denote by ϕ : G m → G N m the homomorphism given by ϕ(t) = (t a 1 , . . . , t a N ) and set

L i = γ i,0 + γ i,1 x 1 + • • • + γ i,N x N , i = 1, 2, so that f i = ϕ # (F i ).
Then, the algorithm underlying Theorem 2.1 computes an integer 0 ≤ k ≤ N -1 and two homomorphisms ψ :

G N -k m → G N m and ϕ 1 : G m → G N -k m with ψ injective, such that ψ • ϕ 1 = ϕ and p = ϕ # 1 (gcd(ψ # (L 1 ), ψ # (L 2 ))
). Moreover, the size of ψ and ϕ 1 is respectively bounded by B and BD, where B is a constant depending only on K, N and h 0 .

This algorithm relies heavily on a former conjecture of Schinzel on the intersection of a subvariety of the multiplicative group with 1-parameter subgroups. This conjecture was proved by Bombieri and Zannier in [START_REF] Schinzel | Polynomials with special regard to reducibility[END_REF]Appendix]. For the reader's convenience, we recall an improved version of this result.

Theorem 2.2 ([BMZ07], Theorem 4.1). Let N ≥ 1 and P, Q ∈ Q[x 1 , . . . , x N ] coprime polynomials. Then there exists an effectively computable constant B depending only on P and Q with the following property.

Let a j ∈ Z, j = 1, . . . , N , ζ j ∈ µ ∞ and ξ ∈ C × with

P (ζ 1 ξ a 1 , ..., ζ N ξ a N ) = Q(ζ 1 ξ a 1 , ..., ζ N ξ a N ) = 0.
Then there exist b j ∈ Z, j = 1, . . . , N , with 0 < max j |b j | ≤ B and

N j=1 (ζ j ξ a j ) b j = 1.
In particular, if ξ / ∈ µ ∞ , then N j=1 a j b j = 0. We are interested in extension of Theorem 2.1 to polynomials f 1 , f 2 having low, but unbounded, height. To this end, we need first a version of Theorem 2.2 with explicit dependence on the height of the input polynomials P and Q.

As already remarked by Schinzel, the constant B in this theorem cannot depend only on N , on the field of definition and on the degrees of P and Q. For instance, for the data

N = 2, P (x, y) = x -2, Q(x, y) = y -2 a and (ζ 1 ξ a 1 , ζ 2 ξ a 2 ) = (2, 2 a ), one has B(P, Q) ≥ a.
The following result gives, under some restrictive hypothesis, the dependence of the constant B on the height of the input polynomials. Recall that a coset of G N m is a translate of a subtorus, and that a torsion coset is a translate of a subtorus by a torsion point. A torsion curve (respectively, a torsion hypersurface) is a torsion coset of dimension 1 (respectively, of codimension 1). Following [START_REF] Bombieri | Algebraic points on subvarieties of G n m[END_REF]), given a subvariety X of G N m , we denote by X o the complement in X of the union of all cosets of positive dimension contained in X .

We consider the standard compactification of the multiplicative group given by the inclusion ι :

G N m -→ P N , (x 1 , . . . , x N ) -→ (1 : x 1 : • • • : x N ).
We define the degree of an irreducible subvariety X of G N m , denoted by deg(X ), as the degree of the Zariski closure ι(X ) ⊂ P N , and the height of a point ξ ∈ G N m , denoted by h(ξ), as the Weil height of the projective point ι(ξ) ∈ P N .

Theorem 2.3. Let X ⊂ G N m be a subvariety defined over a number field of degree δ by polynomials of degree bounded by d 0 and height bounded by h 0 . Let 0 < ε < 1. Then there exists an effectively computable constant B depending only on N , d 0 , δ and ε, with the following property.

Let W be an irreducible component of X of codimension at least 2, T a torsion curve and x ∈ W o ∩ T a non-torsion point. Then either

deg(T ) 1-ε N -1 ≤ B • (1 + h 0 )
or there exists a torsion hypersurface T with x ∈ T and deg(T ) ≤ B.

Remark 2.4. We might restate Theorem 2.3 in a slightly different way in the case when the torsion curve T is a subtorus. Let ϕ : G m → G N m be an injective homomorphism and keep X , W and ε as in the statement of the theorem.

Let ξ ∈ Q × \ µ ∞ such that ϕ(ξ) ∈ W o .
In this situation, Theorem 2.3 can be reformulated to the statement that, if size(ϕ)

1-ε N -1 > B • (1 + h 0 )
, then x is contained in a subtorus T of codimension 1 and degree bounded by B.

Indeed, Theorem 2.3 applied to the subtorus T = im(ϕ), shows that ϕ(ξ) ∈ T for a torsion hypersurface T of degree bounded by B. This torsion hypersurface is defined by the single equation

x b = ω for some b ∈ Z N with |b| ≤ B and ω ∈ µ ∞ . Write ϕ(t) = (t a 1 , . . . , t a N ) with a i ∈ Z. Then ξ a 1 b 1 +•••+a N b N = ω.
Since ξ is not torsion, j a j b j = 0 and ω = 1. Hence, T is a subtorus and im(ϕ) ⊆ T .

The following variant of Schinzel's example shows that the hypothesis that x ∈ X o is necessary for the conclusion of Theorem 2.3 to hold.

Example 2.5. Let 1 ≤ a ≤ b and consider the irreducible subvariety

X = {(2, 2 a )} × G m ⊂ G 3 m . With notation as in Theorem 2.3, we have N = 3, d 0 = 1 and h 0 ≈ a. Since X is a coset of positive dimension, X o = ∅. Let T ⊂ G 3
m be the subtorus parameterized by t → (t, t a , t b ) and pick the point x = (2, 2 a , 2 b ) ∈ X ∩ T . It is easy to verify that, for any fixed 0 < ε < 1 and B > 0, if a and b/a are sufficiently large, then neither deg(T )

1-ε 2 ≤ B • (1 + h 0 ) nor x ∈ T for any torsion hypersurface of degree bounded by B.
Theorem 2.3 allows us to prove the desired extension of Theorem 2.1 to polynomials of low height. The following statement gives the quantitative aspects of this result.

Theorem 2.6. Let K be a number field of degree δ. For a family of elements γ i,j ∈ K, i = 1, . . . , s, j = 1, . . . , N , and a sequence of N ≥ 1 coprime integers a 1 , . . . , a N , we consider the system of Laurent polynomials

f i = γ i,0 + γ i,1 t a 1 + • • • + γ i,N t a N , i = 1, . . . , s.
We assume f 1 , . . . , f s not all zeros. Set

L i = γ i,0 + γ i,1 x 1 + • • • + γ i,N x N , i = 1, . . . , s,
and let ϕ : G m → G N m be the homomorphism given by ϕ(t) = (t a 1 , . . . , t a N ). Put D = |a| and h 0 = max i,j h(γ i,j ).

Then there exists an effectively computable constant B depending only on N and δ, with the following property. If

(2.1) D 1 2(N -1) > B • (1 + h 0 ),
then there exist 0 ≤ k ≤ N -1 and homomorphisms

ψ : G N -k m → G N m and ϕ 1 : G m → G N -k m such that
(1) ψ is injective and ψ • ϕ 1 = ϕ;

(2) size(ψ) ≤ B and size(ϕ 1 ) ≤ B D;

(3) Set G = gcd(ψ # (L 1 ), . . . ψ # (L s )) and g = ϕ # 1 (G). Then g | gcd(f 1 , . . . , f s ). Moreover, if ξ is a root of gcd(f 1 , . . . , f s )/g, then either ξ ∈ µ ∞
or there exists a nonempty proper subset Λ ⊂ {1, . . . , N } such that γ i,0 + j∈Λ γ i,j ξ a j = 0, i = 1, . . . , s.

Similarly as for Theorem 2.1, the datum k, ψ and ϕ 1 can be effectively computed. In the present situation, this is done by the procedure described in § 4, and this computation costs O δ,N,s (log(D)) bit operations.

Proof of Theorem 2.3

All irreducible components of X are defined over a number field of degree bounded by C by polynomials of degree bounded by C and height bounded by Ch 0 , for a constant C depending only on N , d 0 and δ. Using this, we reduce without loss of generality to the case when X is an irreducible subvariety of codimension at least 2.

We follow closely the proof of [BMZ07, Theorem 4.1]. Since we assume that x ∈ X o ∩ T , the first reduction of the proof in loc. cit. is unnecessary in our present situation. Write

T = {(ζ 1 t a 1 , . . . , ζ N t a N ) | t ∈ G m } ⊆ G N m with a 1 , . . . , a N ∈ Z coprime and ζ 1 , . . . , ζ N ∈ µ ∞ . Thus deg(T ) = |a|. As in loc. cit.
we construct, using geometry of numbers, a 2-dimensional torsion coset T 2 containing T and such that

(3.1) deg(T 2 ) ≤ B 1 |a| N -2 N -1
for a constant B 1 depending only on N . The proof goes on by distinguishing two cases. Suppose first that the point

x is an isolated component of X ∩ T 2 . Since x ∈ X ∩ T , we can write x = (ζ 1 ξ a 1 , . . . , ζ N ξ a N ) with Q × \ µ ∞ . Let K be a field of definition of X and set E = K(ζ 1 , . . . , ζ N ),
which is a field of definition for both X and T . Put

D = [E(x) : E].
Using Bézout theorem and (3.1), we deduce that this degree satisfies the bound

(3.2) D ≤ deg(X ∩ T 2 ) ≤ B 1 |a| N -2 N -1 deg(X ).
Moreover, since a 1 , . . . , a N are coprime, [E(ξ

) : E] = D. Let 0 < ε < 1. We have that E(ξ) is an extension of degree ≤ [K : Q]D of the cyclotomic extension Q(ζ 1 , . . . , ζ N )
. By the relative Dobrowolski lower bound of [START_REF] Amoroso | A relative Dobrowolski lower bound over abelian extensions[END_REF], the height of ξ is bounded from below by

(3.3) h(ξ) ≥ B 2 D -1-ε ,
where B 2 is an effective constant that depends only on ε and

[K : Q].
By [Sch00, Appendix, Theorem 1], since the point x lies in X o ∩ T , its height is bounded above by a constant depending only on X . Indeed, a close inspection of the proof of this result shows that

(3.4) h(x) ≤ B 3 • (1 + h 0 ).
for an effectively computable B 3 that depends only on δ and N . Alternatively, this can be obtained by applying Habegger's effective version of the bounded height theorem [Hab12, Theorem 11] with the choice of parameters r = 2 and s = n -1 with respect to the notation therein, together with the arithmetic Bézout theorem in [KPS01, Corollary 2.11]. Thus

(3.5) |a| h(ξ) ≤ N i=1 h(ζ i ξ a i ) ≤ N h(x).
Combining (3.2), (3.3), (3.4) and (3.5), we get

deg(T ) = |a| ≤ B -1 2 B 1 |a| N -2 N -1 deg(X ) 1+ε N B 3 • (1 + h 0 ).
From here, we deduce that deg(T )

1-ε N -1 ≤ B • (1 + h 0 ).
with ε = (N -2)ε and where B is any constant ≥ B 4 = B -1 2 (B 1 deg(X )) 1+ε N B 3 , which shows the result in this case. Now suppose that x lies in an irreducible component of positive dimension of X ∩T 2 . Denote by Y this irreducible component, which is thus a X -anomalous subvariety. Let Y max be a a maximal X -anomalous subvariety containing Y. From the Bombieri-Masser-Zannier uniform structure theorem [BMZ07, Theorem 1.4], this subvariety Y max is contained in a coset gH whose degree is bounded in terms of X . Indeed, by the inequality (3.4) in [START_REF] Bombieri | Anomalous subvarieties -structure theorems and applications[END_REF], this degree is bounded by a constant B 5 depending only on δ and deg(X ). As explained in loc. cit., this constant is also effectively computable.

The intersection T 2 ∩gH is a union of cosets associated to the same subtorus. Denote by K the unique coset in this intersection that contains Y. Its dimension is either 1 or 2. The case dim(K) = 1 is not possible since, otherwise, Y = K is a coset, which is forbidden by the hypothesis that x ∈ X o . Hence dim(K) = 2, which means that some irreducible component of T 2 lies in gH. Take a torsion point g 0 lying in this irreducible component. Then g 0 ∈ gH and gH = g 0 H is a torsion coset of degree bounded by B 5 . We can find a further constant B 6 depending only on δ and deg(X ) such that there exists a torsion hypersurface T with g 0 H ⊆ T and deg(T ) ≤ B 6 . We then choose B = max(B 4 , B 6 ), concluding the proof.

Proof of Theorem 2.6

We follow the proof of [ALS15, Theorem 4.3], replacing the use of Theorem 2.2 by Theorem 2.3. We first need to prove some auxiliary lemmas.

Lemma 4.1. Let ϕ : G m → G N
m be a homomorphism of size D and T ⊆ G N m a subtorus of codimension 1. We can test if im(ϕ) ⊆ T and, if this is the case, we can compute two homomorphisms ψ :

G N -1 m → G N m and ϕ : G m → G N -1 m such that
(1) ψ is injective and ψ • ϕ = ϕ;

(2) size( ψ) = O(1) and size( ϕ) = O(D).

This computation can be done with O(log(D)) bit operations. All the implicit constants depend only on N and deg(T ).

Proof. Let x b = 1 be an equation for T and write ϕ(x) = (x a 1 , . . . , x a N ) with a 1 , . . . , a N ∈ Z coprime. Then im(ϕ) ⊆ T if and only if j a j b j = 0. Let us assume that this is the case. We choose an automorphism τ of G N m such that τ (T ) is defined by the equation

x N = 1. Let ι : G N -1 m → G N m be the standard inclusion identi- fying G N -1 m
with the hyperplane of equation x N = 1, and consider the projection onto the first N -1 coordinates

π : G N m → G N -1 m , π(x 1 , . . . , x N ) = (x 1 , . . . , x N -1 , 1).
We then set

ψ = τ -1 • ι and ϕ = π • τ • ϕ.
We leave to the reader the verification on the correctness and the complexity of this algorithm, see [ALS15, Lemma 4.1] for further details.

We now describe the algorithm underlying Theorem 2.6. 

G m → G N -k m . 1: Set k ← 0, ψ ← Id G N m and ϕ 1 ← ϕ; 2: while k < N do 3:
let B the constant in Theorem 2.3 for the subvariety ψ -1 (X ) ⊂ G N -k m and the choice ε = 1 2 ;

4:

set Φ ← {{x b = 1} | b ∈ Z N primitive such that |b| ≤ B}; 5: while Φ = ∅ do 6: choose T ∈ Φ; 7: if im(ϕ 1 ) ⊆ T then 8:
compute as in Lemma 4.1 homomorphisms ψ : end while 14: end while Lemma 4.2. Let X ⊂ G N m be a subvariety defined over a number field of degree δ by polynomials of degree bounded by d 0 . Let also ϕ : G m → G N m be a homomorphism of size D. Algorithm 4.1 computes an integer k with 0 ≤ k < N -1 and two homomorphisms ψ :

G N -k-1 m → G N -k m and ϕ : G m → G N -k-1 m such that ϕ 1 = ψ • ϕ; 9: set ψ ← ψ • ψ, ϕ 1 ← ϕ, k ← k + 1, Φ ← ∅;
G N -k m → G N m and ϕ 1 : G m → G N -k m such that
(1) ψ is injective and ψ • ϕ 1 = ϕ;

(2) size(ψ) = O(1) and size(ϕ 1 ) = O(D).

This computation is done with O(log D) bit operations. All the implicit constants in the O-notation depend only on N , d 0 and δ.

Proof. We show by induction on k that the homomorphisms ψ and ϕ 1 constructed by the algorithm at the level k satisfy both (1) and (2). This is certainly true at the level k = 0. Indeed at this level ψ = Id G N m and ϕ 1 = ϕ. Let k be an integer with 1 ≤ k < N and assume that at the level k -1 the homomorphisms ψ and ϕ 1 satisfy (1) and (2). By Lemma 4.1, the homomorphisms ψ and ϕ at line 8 satisfy ψ • ϕ = ϕ 1 . Hence the updated values of ψ and ϕ 1 , that is ψ • ψ and ϕ, satisfy

(ψ • ψ) • ϕ = ψ • ϕ 1 = ϕ.
Moreover, since ψ and ψ are injective, by induction and by Lemma 4.1(1), ψ • ψ is also injective.

Let B be as in line 3 of the algorithm 4.1, that is, the constant in Theorem 2.3 for the subvariety ψ -1 (X ) and the choice ε = 1 2 . Since size(ψ) = O(1) and X is linear, ψ -1 (X ) is defined over a number field of degree O(1) by polynomials of degree O(1) and height O(h 0 ), with implicit constants depending only on N and δ. In particular, B = O(1). The same is therefore true for the degree of the subtorus T at line 6. By Lemma 4.1(2), the homomorphisms ψ and ϕ at line 8 have size O(1) and O(D) respectively. Thus ψ • ψ and ϕ have also size O(1) and O(D), respectively.

We left to the reader the verification on the complexity of the algorithm.

We are now able to conclude the proof of Theorem 2.6. Let K and f 1 , . . . , f s be as in that theorem. Thus K is a number field of degree δ and

f i = γ i,0 + γ i,1 t a 1 + • • • + γ i,N t a N , i = 1, . . . , s,
are Laurent polynomials, not all zeros, with a 1 , . . . , a N coprime. Set D = |a| and assume max i,j h(γ i,j ) ≤ h 0 . We consider the homomorphism ϕ : G m → G N m given by ϕ(t) = (t a 1 , . . . , t a N ). Since a 1 , . . . , a N are coprime, deg(im(ϕ)) = D. We let

L i = γ i,0 + γ i,1 x 1 + • • • + γ i,N x n , i = 1, . . . , s.
Thus

f i = ϕ # (L i ).
We apply Algorithm 4.1 to the linear subvariety X defined in G N m by the system of equations L 1 = . . . = L s = 0.

From now on, we denote by k ∈ {0, . . . , N -1}, ψ :

G N -k m → G N m and ϕ 1 : G m → G N -k m
the output of Algorithm 4.1 applied to this subvariety. Put for short

F i = ψ # (L i ). By Lemma 4.2, ϕ # 1 (F i ) = f i . Since f 1 , .
. . , f s are not all zeros, the same holds for F 1 , . . . , F s . Now set G = gcd(F 1 , . . . , F s ) and g = ϕ # 1 (G). Then g| gcd(f 1 , . . . , f s ), as in Theorem 2.6(3).

Let B be a constant depending only on N and δ such that

(4.1) D 1 2(N -1) > B • (1 + h 0 ),
as in the statement of Theorem 2.6, to be fixed later on.

Let Ω be the set of points ξ ∈ C × which are either a root of unity or a common root of the system of polynomials γ i,0 + j∈Λ γ i,j t a j , i = 1, . . . , s, for a nonempty proper subset Λ ⊂ {1, . . . , N }.

Let ξ ∈ Ω be a common zero of f 1 , . . . , f s and W a component of ψ -1 (X ) such that ϕ 1 (ξ) ∈ W.

We first remark that ϕ 1 (ξ) ∈ W o . If it is not, the point y = ϕ 1 (ξ) is in a coset gH ⊆ W ⊆ ψ -1 (X ) of positive dimension. By Lemma 4.2(2), the point x = ϕ(ξ) = ψ(y) is contained in the coset ψ(gH) ⊆ X , which is also of positive dimension since ψ is injective.

The cosets included in a linear variety X have been explicitly classified in [START_REF] Schmidt | Heights of points on subvarieties of G n m , Number theory[END_REF]page 161]. By this result, there exists a nonempty proper subset Λ ⊂ {1, . . . , N } such that γ i,0 + j∈Λ γ i,j x j = 0, i = 1, . . . , s. Hence ξ is a common root of γ i,0 + j∈Λ γ i,j t a j , i = 1, . . . , s, but this is not possible because ξ / ∈ Ω. Thus ξ is not a root of unity and ϕ 1 (ξ) ∈ W o . We apply Theorem 2.3 in the simplified form of Remark 2.4, choosing N ← N -k, X ← ψ -1 (X ), ε ← 1/2 and ϕ ← ϕ 1 . Let B be as in line 3 of the algorithm 4.1. As already remarked in the proof of Lemma 4.2, ψ -1 (X ) is defined over a number field of degree O(1) by polynomials of degree O(1) and height O(h 0 ), with implicit constants depending only on N and δ. In particular, B = O(1). By the quoted Remark 2.4, one of the following assertions holds:

(1) there exists a subtorus T of codimension 1 and degree bounded by B such that im(ϕ 1 ) ⊆ T ;

(2) deg(im(ϕ 1 ))

1 2(N -k-1) = O(1 + h 0 );
(3) W has codimension 1.

By construction, (1) is not possible because T ∈ Φ. Let us assume that (2) holds. By Lemma 4.2,

D = deg(im(ϕ)) = deg(im(ψ • ϕ 1 )) = O(deg(im(ϕ 1 ))). Thus D 1 2(N -1) ≤ D 1 2(N -k-1) = O(deg(im(ϕ 1 )) 1 2(N -k-1) ) = O(1 + h 0 ).
Choosing the constant B sufficiently large, this contradicts the inequality (4.1). Thus (3) must hold and W has codimension 1. This discussion implies that the ideal

(F 1 , . . . , F s ) ⊂ K[y ±1 1 , . . . , y ±1 N -k ] becomes prin- cipal when restricted to a suitable neighborhood U ⊂ G N -k m of ψ -1 (X )\ϕ 1 (Ω). Hence, (F 1 , . . . , F s ) = (G)
for some Laurent polynomial G on that neighborhood. We deduce that ϕ -1 1 (U ) is a neighborhood of the set of common zeros ξ ∈ Ω of f 1 , . . . , f s and (f 1 , . . . , f s ) = (g) on ϕ -1 1 (U ). This completes the proof of the theorem.

Remark 4.3. For the study of multiple roots of sparse polynomials and, in particular, to prove Theorem 2.6, it is not enough to dispose of a version of Theorem 2.2 with an explicit dependence of its constant B on the height of the input polynomials. We really need the dichotomy that appears in Theorem 2.3, with a bound for the degree of T independent of the height of the equations defining X , whenever the degree of the torsion curve T is large enough.

In any case, it is possible to adapt the proof of [BMZ07, Theorem 4.1] to prove such an effective version of Theorem 2.2.

Proof of Theorem

1.1 Let N ≥ 1 and γ = (γ 0 , γ 1 , . . . , γ N ) ∈ Q N +1 . Consider the number field K = Q(γ)
and the affine polynomial

L = γ 0 + γ 1 x 1 + • • • + γ N x N ∈ K[x 1 , . . . , x N ].
Set δ = [K : Q] and h 0 = max j h(γ j ).

Let a = (a 1 , . . . , a N ) ∈ Z N such that the univariate Laurent polynomial

f = L(t a 1 , . . . , t a N ) = γ 0 + γ 1 t a 1 + • • • + γ N t a N
is nonzero and has a multiple root at a point ξ ∈ Q \ µ ∞ . Set a 0 = 0 and assume for the moment that (5.1) ξ is not a multiple root of j∈Λ γ j t a j for every nonempty Λ {0, . . . , N }.

We remark that (a 1 , . . . , a N ) = (0, . . . , 0), since otherwise f is a nonzero constant and cannot vanish at ξ. Set d = gcd(a 1 , . . . , a N ) and put a j = a j /d, j = 1, . . . , N . We apply Theorem 2.6 to the polynomials

f 1 = γ 0 + γ 1 t a 1 + • • • + γ N t a N and f 2 = tf 1 = γ 1 a 1 t a 1 + • • • + γ N a N t a N ,
and the homomorphism ϕ : G m → G N m defined by ϕ(t) = (t a 1 , . . . , t a N ). Thus f = f 1 (t d ) and, in the notation of Theorem 2.6, D = |a |, L 1 = γ 0 + γ 1 x 1 + • • • + γ N x N and L 2 = γ 1 a 1 x 1 + • • • + γ N a N x N . We have h(f i ) ≤ h 0 + log(D).
Let B = B (N, δ) be the constant which appears in Theorem 2.6. If the inequality (2.1) is not satisfied, we have

D 1 2(N -1) ≤ B • (1 + h 0 + log(D)),
which shows that D ≤ C 1 for some positive constant C 1 = C 1 (N, δ, h 0 ). In this case, we choose k = N -1, b j = a j , j = 1, . . . , N , θ 1 = d and C ≥ C 1 . Assertions (1), (2) and (3) of Theorem 1.1 are then clearly verified. We now assume that the inequality (2.1) is satisfied. Theorem 2.6 then gives a nonnegative integer k ≤ N and two morphisms ψ :

G N -k m → G N m and ϕ 1 : G m → G N -k m
satisfying the conditions (1), (2) and (3) of that theorem. Write ψ(y) = (y b 1 , . . . ,

y b N ) and ϕ 1 (t) = (t θ 1 , . . . , t θ N -k ) with b 1 , . . . , b N ∈ Z N -k of size ≤ B and θ 1 , . . . , θ N -k ∈ Z of size ≤ B D. By (1), the N × (N -k) matrix B = (b j,i ) is primitive and a = B • θ .
We set

F 1 = ψ # (L 1 ) = γ 0 + γ 1 y b 1 + • • • + γ N y b N , F 2 = ψ # (L 2 ) = γ 1 a 1 y b 1 + • • • + γ N a N y b N ,
and we consider the differential operator

∆ = θ 1 y 1 ∂ ∂y 1 + • • • + θ N -k y N -k ∂ ∂y N -k . Let b ∈ Z N -k .
The monomial y b is an eigenvector of ∆ with eigenvalue the scalar product b, θ . Hence

∆F 1 = N i=1 γ i b i , θ y b i = F 2 .
Set G = gcd(F 1 , F 2 ). By hypothesis, ξ d is a common non-cyclotomic root of f 1 and f 2 and, by the additional assumption (5.1), ξ d is not a multiple root of j∈Λ γ j t a j for any nonempty proper subset Λ of {0, . . . , N }. By Theorem 2.6(3), there exists an irreducible factor P of G such that π = ϕ # 1 (P ) ∈ K[t] vanishes at ξ d . We want to show that P is a multiple factor of G. Since P | F 1 and P | F 2 ∆F 1 , by standard arguments either P 2 | F 1 as we want, or ∆P = λP for a constant λ. Let us assume that this last assertion holds. Write

P = b∈Z N -k c b y b and set supp(P ) = {b ∈ Z N -k | c b = 0}
for the support of P . The differential equation ∆P = λP then says that the scalar product b, θ is constant over supp(P ), which in turns implies that π is a monomial. But then π cannot vanish at ξ d because the latter is nonzero, which is a contradiction.

Thus P is a multiple factor of F 1 . Set θ i = dθ i , so that P (t θ 1 , . . . , t θ N ) is a multiple factor of f which vanishes at the point ξ, as required. Remark that k ≥ 1. Indeed the matrix B is primitive and the polynomial L 1 does not have multiple factors, since it is linear. Theorem 1.1 thus follows, under the additional hypothesis (5.1), by choosing C = max{C 1 , B }.

We now explain how to remove the extra assumption (5.1). Let as assume that (5.1) does not hold. We decompose {0, . . . , N } as a maximal union of u ≥ 2 nonempty disjoint subsets Λ 1 , . . . , Λ u in such a way that ξ is a multiple root of j∈Λ i γ j t a j for i = 1, . . . , u. To simplify the notation, we assume u = 2 and Λ 1 = {0, . . . , M } with 0 ≤ M ≤ N -1. Thus ξ is a multiple root of both (5.2)

γ 0 + M j=1 γ j t a j and N j=M +1 γ j t a j .
Moreover, ξ is not a multiple root of j∈∆ γ j t a j for any nonempty ∆ which is a proper subset of {0, . . . , M } or of {M + 1, . . . , N }. We write

γ 0 + γ 1 t a 1 + • • • + γ N t a N = (γ 0 + γ 1 t a 1 + • • • + γ M t a M ) + t a M +1 (γ M +1 + γ M +2 t a M +2 -a M +1 + • • • + γ N t a N -a M +1 ).
We remark that a 1 , . . . , a M , a M +2 -a M +1 , . . . , a N -a M +1 are not all zeros, since otherwise the polynomials (5.2) are monomials vanishing at ξ, and hence they are both zero, which in turns implies that f is also zero, contrary to the assumption of Theorem 1.1. Set d = gcd(a 1 , . . . , a M , a M +2 -a M +1 , . . . , a N -a M +1 ) and put a j = a j /d, for j = 1, . . . , M, (a j -a M +1 )/d, for j = M + 3, . . . , N.

Thus a 1 , . . . , a M , a M +2 , . . . , a N are coprime, pairwise distinct, nonzero integers. We apply Theorem 2.6 to the homomorphism ϕ : G m → G N -1 m defined by ϕ(t) = (t a 1 , . . . , t a M , t a M +2 , . . . , t a N ) , and for the four polynomials

f 1 = γ 0 + M j=1 γ j t a j , f 2 = γ M +1 + N j=M +2 γ j t a j , f 3 = tf 1 , f 4 = tf 2 . Thus f = f 1 (t d ) + t a M +1 f 2 (t d ) and D = |a |.
We argue as in the first part of the proof. We remark that h(f i ) ≤ h 0 + log(2D). Let B = B (N, δ) be the constant that appears in Theorem 2.6.

If the inequality (2.1) is not satisfied, then

D ≤ C 1 = C 1 (N, δ, h 0 ). In this case, we choose k = N -2, θ 1 = d, θ 2 = a M +1 and b j =     
(a j , 0) for j = 1, . . . , M, (0, 1)

for j = M + 1, (a j , 1) for j = M + 2, . . . , N.

Thus, in the notation of Theorem 1.1(3),

F = f 1 (y 1 ) + y a M +1 2 f 2 (y 1 ) ∈ Q[y ±1 1 , y ±1 2 ].
Since ξ is a multiple root of both f 1 (t d ) and f 2 (t d ), the polynomials f 1 (y 1 ) and f 2 (y 1 ) have a common multiple factor, say P (y 1 ), which vanishes at ξ d . Thus P (y 1 ) is a multiple factor of F and P (t d ) vanishes at ξ, as required.

It remains to consider the case when the inequality (2.1) is satisfied. Theorem 2.6 then gives a nonnegative integer k

≤ N -1, vectors b 1 , . . . , b M , b M +2 , . . . , b N ∈ Z N -1-k of size ≤ B and θ 1 , . . . , θ N -1-k ∈ Z of size ≤ B D such that the (N - 1) × (N -1 -k) matrix (b j,i ) j,i has maximal rank N -1 -k and a j = N -1-k i=1 b j,i θ i for j = 1, .
. . , M and j = M + 2, . . . , N . We set y = (y 1 , . . . , y N -1 ) and

F 1 = γ 0 + M j=1 γ j y b j , F 2 = γ M +1 + N j=M +2 γ j y b j , F 3 = M j=1 γ j a j y b j , F 4 = N j=M +2
γ j a j y b j , and consider the differential operator

∆ = θ 1 y 1 ∂ ∂y 1 + • • • + θ N -1k y N -1-k ∂ ∂y N -1-k .
As in the first part of the proof, we have that

∆F 1 = F 3 and ∆F 2 = F 4 . Set G = gcd(F 1 , F 2 , F 3 , F 4 ) and write f i = α∈S f i,α t α , i = 1, . . . , 4, with S = 4 i=1 supp(f i ) = {0, a 1 , . . . , a M , a M +2 , . . . , a N }.
By hypothesis, ξ d is a common non-cyclotomic root of f 1 , f 2 , f 3 and f 4 . We want to deduce from Theorem 2.6(3) that ϕ # 1 (G) vanishes at ξ d . This certainly happens unless there exists a nonempty proper subset Γ of S such that ξ d is a common root of α∈Γ f i,α t α , i = 1, . . . , 4. Assume by contradiction that this is the case. Then ξ d is a multiple root of α∈Γ f i,α t α , i = 1, 2. We recall that supp(f 1 ) = {0, a 1 , . . . , a M }, supp(f 2 ) = {0, a M +2 , . . . , a N }.

Since ξ is not a multiple root of j∈∆ γ j t a j for any nonempty ∆ which is a proper subset of {0, . . . , M } or of {M + 1, . . . , N }, we have

Γ ∩ supp(f 1 ) = ∅ or Γ ∩ supp(f 1 ) = supp(f 1 ) and Γ ∩ supp(f 2 ) = ∅ or Γ ∩ supp(f 2 ) = supp(f 2 ). Since supp(f 1 ) ∩ supp(f 2 ) = ∅,
we deduce that Γ = supp(f 1 ) ∪ supp(f 2 ), which contradict the previous assumption. Thus, by Theorem 2.6(3), ϕ # 1 (G) vanishes at ξ d . Let P be an irreducible factor of G such that π = ϕ # 1 (P ) ∈ K[t] vanishes at ξ d . As in the first part of the proof, P is a multiple factor of both F 1 and F 2 and thus of the polynomial

F = γ 0 + γ 1 y b 1 + • • • + γ N y b N = F 1 (y 1 , . . . , y N -1 ) + y a M +1 N F 2 (y 1 , . . . , y N -1 ) with y = (y 1 , . . . , y N ). Set θ i = dθ i for i = 1, . . . , N -1 -k, θ N -k = a M +1 and b j =      (b j,1 , . . . , b j,N -1-k , 0) for j = 1, . . . , M, (0, . . . , 0, 1) for j = M + 1, (b j,1 , . . . , b j,N -1-k , 1) for j = M + 2, . . . , N.
Then the N × (N -k) matrix B = (b j,i ) j,i has maximal rank and a = B • θ, so that P (t θ 1 , . . . , t θ N -1 ) is a multiple factor of f which vanishes at the point ξ. Theorem 1.1 then follows by choosing C = max{C 1 , B }.

On a conjecture of Bolognesi and Pirola

Let ϕ : G m → G N m be a homomorphism given by ϕ(t) = (t a 1 , . . . , t a N ) for a sequence of integers a 1 , . . . , a N such that 0 < a 1 < • • • < a N , and consider the curve U = im(ϕ). It is easy to verify that the linear subspace X ⊂ C N -1 defined by the condition

rank       a 1 a 2 1 • • • a N -2 1 x 1 -1 a 2 a 2 2 • • • a N -2 2 x 2 -1 . . . . . . • • • . . . . . . a N a 2 N • • • a N -2 N x N -1       < N -1
has codimension 2, and that the restriction of its defining equations to (t a 1 , . . . , t a N ) vanish to order N -1 at t = 1. Thus, X is the osculating (N -2)-linear dimensional space of U at the point (1, . . . , 1) ∈ G N m . It is convenient to homogenize by letting a 0 = 0 and considering the (N + 1) × N matrix given by A(a, (x 0 : . . . :

x N )) =       1 a 0 a 2 0 • • • a N -2 0 x 0 1 a 1 a 2 1 • • • a N -2 1 x 1 . . . . . . . . . • • • . . . . . . 1 a N a 2 N • • • a N -2 N x N       .
Then we identify X with the linear subspace of P N defined by condition rank(A(a, (x 0 : . . . : x N ))) < N.

For simplicity, we assume that a 1 , . . . , a N are coprime. Then L intersects U in a second point different from the osculating one if and only if there exists ξ = 1 such that rank(A(a, (1 : ξ a 1 : . . . : ξ a N ))) < N . In [START_REF] Bolognesi | Osculating spaces and Diophantine equations (with an appendix by Pietro Corvaja and Umberto Zannier)[END_REF], Bolognesi and Pirola conjecture that this can never happen. It easily seen that, to prove their conjecture, we may assume that ξ is not torsion.

In the case N = 2 the conjecture is trivial. Bolognesi and Pirola proved the conjecture for N = 3. In [START_REF] Corvaja | On the rank of certain matrices[END_REF], Corvaja and Zannier proved a weak form of the conjecture for N = 4, namely that the set of exceptional pairs (a, ξ) such that the matrix A(a, (1 : ξ a 1 : . . . : ξ a N )) has rank < N is finite.

As a second application of Theorem 2.6, we prove the following result.

Theorem 6.1. There is a constant C depending only on N such that the following holds.

Let a 1 , . . . , a N be integers such that 0 = a 0 < a 1 < a 2 < • • • < a N =: D and ξ ∈ Q × \ µ ∞ . If the matrix A(a, (1 : ξ a 1 : . . . : ξ a N )) has rank < N , then there exist (2) the matrix B = (b i,j ) i,j ∈ Z N ×(N -k) is primitive and a = B • θ;

1 ≤ k ≤ N -
( Proof. The proof is very similar to that of Theorem 1.1. Let 0 = a 0 < a 1 < a 2 < • • • < a N =: D and ξ ∈ Q × \ µ ∞ such that the matrix A(a, (1 : ξ a 1 : . . . : ξ a N )) has rank < N . For each subset Λ ⊂ {0, . . . , N }, we put v Λ,j = ξ a j if j ∈ Λ and v Λ,j = 0 otherwise. Then we assume that (6.1) for all nonempty Λ {0, . . . , N }, rank(A(a, (v Λ,0 : v Λ,1 : . . .

: v Λ,N ))) = N.
This extra assumption may be removed, proceeding as in the last part of the proof of Theorem 1.1. Let d = gcd(a 1 , . . . , a N ) and put a i = a i /d, i = 1, . . . , N . As in the proof of Theorem 1.1, we may assume, by replacing a by a , that d = 1.

As already remarked, the linear space X defined by rank(A(a, (x 0 : x 1 : . . . : x N ))) < N is defined by two linear equations, say

L i = γ i,0 x 0 + γ i,1 x 1 + • • • + γ i,N x n , i = 1, 2,
with coefficients γ i,j bounded by N !D N 2 . We apply Theorem 2.6, choosing K 0 = Q, s = 2 and ϕ(t) = (t a 1 , . . . , t a N ). Thus

f i = γ i,0 + γ i,1 t a 1 + • • • + γ i,N t a N , i = 1, 2.
These two polynomials are not both zeros, since otherwise rank(A(a, (1 : t a 1 : . . . : t a N ))) < N identically, which is not possible by the assumption 0 < a 1 < a 2 < • • • < a N . Let B = B (N, 1) be the constant which appears in Theorem 2.6. If the inequality (2.1) of that theorem is not satisfied, we have that 

Algorithm 4. 1

 1 Input: a subvariety X ⊂ G N m defined over a number field K and a homomorphism ϕ : G m → G N m . Output: an integer k with 0 ≤ k ≤ N -1 and two homomorphisms ψ : G N -k m → G N m and ϕ 1 :

  1 and vectors b 1 , . . . , b N , θ ∈ Z N -k such that (1) |b i | ≤ C, i = 1, . . . , N , and |θ| ≤ CD;

  3) the subvariety of G N -k m defined byV = {y ∈ G N -k m | rank(A(a, (1 : y b 1 : . . . : y b N ))) < N }has a component of codimension 1 containing the point (ξ θ 1 , . . . , ξ θ N -k ).

  -1) ≤ B • (1 + N 2 log D + N log N ),which shows that D ≤ C 1 for some positive constant C 1 = C 1 (N ). In this case we simply choose k = N -1, b i = a i for i = 1, . . . , N and θ 1 = 1. Assertions (1), (2) and (3) of Theorem 6.1 are clearly verified for C ≥ C 1 .
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Thus we may assume that the inequality (2.1) is satisfied. Theorem 2.6 then gives a nonnegative integer k < N and two homomorphisms ψ :

By Theorem 2.6(1), the matrix B = (b i,j ) i,j is primitive and a = B • θ.

By the assumption (6.1), ξ is not a common root of j∈Λ γ i,j t a j , i = 1, 2, for any nonempty Λ {0, . . . , N }. Thus, by Theorem 2.6(3), the greatest common divisor of F 1 (y b 1 , . . . , y b N ) and F 2 (y b 1 , . . . , y b N ) must vanish at (ξ θ 1 , . . . , ξ θ N -k ). This means that V has a component of codimension 1 through the point (ξ θ 1 , . . . , ξ θ N -k ), as required. Since X is a linear space of codimension 2 and B is primitive, we must have k ≥ 1. Theorem 6.1 follows by choosing C = max{C 1 , B }. Remark 6.2. An immediate consequence of Theorem 6.1(1,2) is that the vectors a such that the matrix A(a, (1 : ξ a 1 : . . . :

lie on a finite union of proper vector subspaces of Q N , which is effectively computable for every given N . Moreover, the condition (3) can be translated in terms of resultants, and can be checked by the search of integral points θ = (θ 1 , . . . , θ N -k ) ∈ Z N -k on a finite family of varieties, depending only on N . More precisely, fix k ∈ {1, . . . , N -1} and fix one of the finitely many N × (N -k) primitive matrix B = (b i,j ) i,j with entries of size bounded by C(N ).

of F 1 and F 2 with respect to, say, y N -k and let W be the variety defined by the vanishing of the coefficients of R, viewed as a polynomial in the variables y 1 , . . . , y N -k-1 . Then V has a component of codimension 1 if and only if θ ∈ W and a = B • θ.