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ABSTRACT

While the registration step is often problematic for super-

resolution, many microscopes and telescopes are now equipped

with a piezoelectric mechanical system which permits to ac-

curately control their motion (down to nanometers). There-

fore one can use such devices to acquire multiple images

of the same scene at various controlled positions. Then a

fast super-resolution algorithm [1] can be used for efficient

super-resolution. However the minimal use of r2 images for a

resolution enhancement factor r is generally not sufficient to

obtain good results. We propose to take several images at po-

sitions randomly distributed close to each reference position.

We study the number of images necessary to control the error

resulting from the super-resolution algorithm by [1] due to

the uncertainty on positions. The main result is a lower bound

on the number of images to respect a given error upper bound

with probability higher than a desired confidence level.

Index Terms— microscopy; super-resolution; confidence

level; error estimate

1. INTRODUCTION

Super-resolution algorithms which combine several low-

resolution (LR) images to compute one high-resolution (HR)

image have been the subject of a large amount of works over

nearly 30 years now, see [2] for a review. Super-resolution

methods are often either computationally expensive to access

good performances in a general setting or fast at the price

of simplifying assumptions (e.g. displacements of images

are exactly known) which may limit their range of appli-

cation. In the present work, we deal with a setting where

such simplifying assumptions can be controlled so that a

fast method [1] can be used for microscopy or astronomy

imaging. While the registration step is often problematic

for super-resolution, we propose to exploit the potential of

a microscope or telescope equipped with a looped piezo-

electric positioning system (precision goes down to 0.1 nm)

combined with a fast super-resolution algorithm to propose

a new cheap, fast and efficient super-resolution technique for

microscopy or astronomy imaging. One can use such de-

vices to acquire multiple images of the same scene at various

controlled positions and assume that the registration problem

is solved, in good approximation at least. The experimental

protocol is much simpler than PALM/STORM [3, 4, 5]. We

will consider pure translations only. Aiming at an integer res-

olution enhancement factor r (×2, ×4...), we also consider

that the r2 possible translations multiple of 1/r low resolu-

tion pixel (1 LR pixel = r HR pixels) in the two horizontal

directions are available. In practice, the positioning system is

not perfect so that a targetted position is only approximately

reached with some little random error. We show that the use

of several acquisitions associated to the same targetted dis-

placement with different positioning errors permits to obtain

good results with controlled accuracy. Our main contribution

is that this claim is supported by bounds and guarantees on

the quality of the super-resolved image. To make sure that

the technique is both fast and efficient, we study the relation

between the number of images taken at each position and

the error resulting from the use of the fast super-resolution

algorithm [1] which assumes that translations are exactly

known. The main result is a lower bound on the number of

images that is necessary to respect a given error bound with

probability higher than some desired confidence level. We

emphasize that only few works, e.g. [6, 7] for iterative meth-

ods, deal with the mathematical analysis of super-resolution

algorithms. The present study is performed in the Fourier

domain so that the precise contribution of each aliasing term

due to only approximately known translations is analyzed

and quantitatively evaluated. The use of Bienaymé-Cebycev

inequality finally yields confidence intervals of practical use.

Section 2 presents the model and recalls about the fast al-

gorithm in [1]. Section 3 presents our main theoretical results

which predict the required number of image acquisitions at

each position to ensure some given confidence level in the re-

constructed image. Section 4 presents numerical results.



2. A FAST AND CONTROLLED

SUPER-RESOLUTION TECHNIQUE

2.1. The super-resolution problem

For a given resolution enhancement factor r, the most com-

mon linear formulation of the general super-resolution prob-

lem in the pixel domain is [1]:

Yk = DkHkFkYHR + nk k = 1, ..,K, (1)

where YHR is the (desired) high resolution image one wants

to estimate from the K low-resolution images {Yk, 1 ≤ k ≤
K} and nk is the noise, generally assumed to be Gaussian

white noise so that E(nkn
t
k) = σ2I . Images YHR, Yk and

nk are rearranged in lexicographic ordered vectors. Each im-

age Yk is a low resolution observation of the same underlying

scene translated by Fk. The blur matrices Hk model the point

spread function (PSF) of the acquisition system and matrix

Dk is the decimation operator by a factor r. If YHR is of size

r2N2 × 1 and Yk of size N ×N , the matrices Fk and Hk are

of size (rN)2 × (rN)2 while Dk is N2 × (rN)2. The least

squares optimization problem can be formulated as:

YHR = argminX

K∑

k=1

‖Yk −DkHkFkX‖22. (2)

Other formulations based on the L1-norm [8] or adding some

regularization have also been proposed. Many methods rely

on iterative optimization methods which are often computa-

tionally expensive and time consuming. As far as applications

to biological (alive) systems are concerned, a fast method is

necessary. In the present setting, displacements are controlled

thanks to a piezoelectric platform at a precision of 0.1 nm in

every direction. As a consequence, the method in [1] appears

as a good choice since it is fast (even though more recent al-

gorithms may yield better empirical results) and above all we

will be able to quantitatively analyze its performances and es-

timate error bounds and confidence level intervals as a func-

tion of the number of available images.

2.2. Super-resolution algorithm

The algorithm in [1] makes usual assumptions. The PSF of

the acquisition system is known and spatially homogeneous

so that ∀k,Hk = H . Decimation is the same for all images so

that ∀k,Dk = D in (1) & (2). Periodic boundary conditions

make Fk and H circulant matrices. We will moreover assume

that the r2 possible translated images at integer multiples of

the high resolution scale are available. As a consequence one

can show following [1] that the intermediate blurred image Z
can be computed as:

Z := HYHR =

r2∑

k=1

F t
kD

tYk (3)

Then the final HR image results from the deconvolution of Z
only, which can be done using any state of the art algorithm.

This algorithm [1] is fast thanks to one idealized assumption:

displacements (matrices Fk) are assumed to be exact integer

multiples of high resolution pixels. This assumption is obvi-

ously only approximately true in practice. In our setting, this

is essentially due to the finite precision of the piezoelectric

positioning system. However, we will stick to this assump-

tion since it makes the algorithm very fast compared to itera-

tive methods in particular. One way to compensate the errors

resulting from the error on translation estimates is to take sev-

eral images for each required position. For a given targetted

position, the positioning system will be reset between each

shooting so that positions are randomly distributed around the

average position (which is assumed to be the right one). This

averaging process is expected to enhance the super-resolution

quality. We aim at quantifying how many images one should

take to enter some given upper error bound of p% (e.g. 10%)

with probability (confidence) higher than Pmin (e.g. 0.90).

3. HOW MANY IMAGES TO ENSURE

CONFIDENCE INTERVALS ?

We consider the relation between the (blurred) HR image Z
defined by (3) and the LR images Yk = Y de in the Fourier

domain to detail the effects of aliasing. Y d is the image of a

scene Y translated by d. Here d = (dx, dy) denotes the tar-

getted displacement vector and de = d + bd the real exper-

imental displacement; bd is the noise (error) on the platform

position. Note that (Fd)tFde 6= IrN . For some integer n,

the interval (−n : n) denotes the set of integers between −n
and n (Matlab notations). When using the DFT, we denote

by k the LR frequencies in DLR = (−N/2 : N/2 − 1)2 and

k′ the HR frequencies in DHR = (−rN/2 : rN/2 − 1)2.

Given some HR frequency k′, we need to deal with corre-

sponding aliased terms in the LR image. The integer vector

γ ∈ (−r : r)2 is such that k̃′ = k′ − γN ∈ DLR. We note

α integer vectors such that k̃′ + αN ∈ DHR. Sums over d

are sums over all the considered displacements and sums over

α are sums over all possible HR frequencies k̃′ +αN (up to

rN/2). The Discrete Fourier Transform (DFT) of image Z
is Ẑ. Back to (3), note that when D is the decimation oper-

ator, Dt is an upsampling operation (inserting zeros between

samples) which produces aliasing. Indeed, if F t
HR is the HR

DFT, for k′ ∈ DHR:

[FHRD
tY de ](k′) = Ŷ de(k̃′ = k′ − γN) (4)

Taking phase shift due to translations of −d associated to F t
k

into account in the DFT of (3) yields:

Ẑ(k′) =
∑

de

Ŷ de(k′ − γN) e
2iπ
rN

d·k′

(5)

Now we explicit how the translated images Ŷ de(k) for k ∈
DLR relate to the high resolution image ŶHR(k

′) for k′ ∈



DHR in the Fourier domain. Since each observation is a dec-

imated version of the blurred translated scene, one has:

Y de = DY de

sh where Y de

sh = HFdeYHR (6)

in the spatial domain. In the Fourier domain:

Ŷ de = FLRDF t
HRŶ

de

sh (7)

and thanks to usual properties of the sum of roots of unity:

Ŷ de(k) =
1

r2

∑

α

Ŷsh(k+αN) fde(k+αN) (8)

where Ysh = HYHR and the translation phase factor fde(k′)
is exp

(
− 2iπ

rN k′ · de

)
, except when k′x or k′y is −rN/2. We

have also used the fact that the homogeneous blur operator

is diagonal in Fourier domain. One can explicitly see in (8)

how the information at high frequencies k+αN from the HR

image is aliased at low frequency k in each LR image Y de .

By separating the desired contributions at k′ = k̃′ + γN and

aliasing terms at k̃′ + αN for α 6= γ, one gets from (5)

and (8):

Ẑ(k′) = Ŷsh(k
′)
gγ,bd

(k′)

r2
(9)

+
1

r2

∑

α 6=γ

Ysh(k̃
′ +αN)gα,bd

(k′)

where gα,bd
(k′) =

∑

d

e−
2iπ
rN

[(α−γ)N ·d+(k̃′+αN)·bd] ,

(except when k′x or k′y is −rN/2). In the ideal case where

bd = 0 so that translations are exact multiples of the HR

pixel scale, one retrieves (3) and Ẑ = Ŷsh = ĤŶHR. Note

that high frequency terms at some k′ are preserved only if

the PSF Ĥ(k′) is not zero. In physical systems, the PSF has

often a compact support so that its Fourier transform is non

zero almost everywhere.

Now we study the errors on Z underlying the super-

resolved image YHR due to inaccuracies of translation esti-

mates. To compensate the inaccuracy of displacements which

translates in gα,bd
terms above, we propose to use multiple

acquisitions at the same targetted position with a different

error bd around the same expected value d. Then we average

nd images per targetted position d so that (3) becomes:

Z =
∑

d

1

nd

nd∑

j=1

(Fd)tDtY de,j (10)

de,j = d+bd,j is the effective experimental translation with

error bd,j . Then (9) yields:

Ẑ(k′) = Ŷsh(k
′)
Gγ(k

′)

r2

+
1

r2

∑

α 6=γ

Ysh(k̃
′ +αN)Gα(k

′)

︸ ︷︷ ︸

B(k′)

(11)

where Gα(k
′) = 1

nd

∑

j gα,bd,j
(k′). The first term will be

called the approximation term, which should be as close as

possible to Ŷsh(k
′). The second term B(k′) will be called the

aliasing term and should be as small as possible compared to

the main approximation term. Our purpose below is to estab-

lish conditions that guarantee such an approximation within

quantitative bounds.

The approximation term is rather easy to control by notic-

ing that

Gγ(k
′) =

∑

d

1

nd

nd∑

j=1

e−
2iπ
rN

k′·bd,j (12)

can be seen as an estimate of the characteristic function of bd.

It appears reasonable to empirically assume that the bd are

uniformly distributed within some uncertainty interval (−ǫ, ǫ)
in LR pixel unit or (−ǫr, ǫr) where ǫr = rǫ in HR pixel unit.

The generalization to distributions with bounded support is

the subject of ongoing work. Therefore we define

A(q, ǫr) =
1

r2
Ebd

[Gγ(k
′)] = Ebd

[
e−iq·bd

]

= sinc(qxǫr)sinc(qxǫr) (13)

where q = 2π
rN k′. Since |A(q, ǫr) − 1| ≤ q2ǫ2r

6 , it is easy

to control that A ≃ 1 in very good approximation for all k′

as soon as π2r2ǫ2/3 ≪ 1. Now we need to control the error

| 1
r2Gγ(k

′)− A(q, ǫr)| to control | 1
r2Gγ(k

′)− 1| in the end.

Using third order approximations of the real and imaginary

parts of 1
r2Gγ(k

′) − A(q, ǫr) one can bound this difference

by quantities which depend only on powers of ‖q‖1ǫr and q ·
bd,j . The variances of powers of q·bd,j can be evaluated and

bounded from above so that we can use Bienaymé-Cebycev

inequality recalled below for i.i.d. random variables xj :

P





∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

xj − E[x]

∣
∣
∣
∣
∣
∣

≥ δ



 ≤ var[x]

nδ2
(14)

By choosing δ = c‖q‖1ǫr where c is some proportionality

parameter, one can show the following important inequality:

P

(∣
∣
∣
∣

1

r2
Gd

γ
(k′)−A(q, ǫr)

∣
∣
∣
∣
≥ m(q, ǫr, c)

)

≤ ‖q‖22
3‖q‖21r2ndc2

(1 + f(ǫr)) (15)

where f(ǫr) remains negligible as soon as ǫr ≪ 0.4 and

m(q, ǫr, c) = c‖q‖1ǫr · s(‖q‖1, ǫr) (16)

s(‖q‖1, ǫr) =

(

2 +
‖q‖31ǫ3r
10c

(

1 +
‖q‖1ǫr

6

))1/2

(17)

Our aim is to guarantee a good approximation up to at

most p%, e.g. 10%, of relative error with probability greater

than Pmin, e.g. 0.9. To this aim we need to estimate for



(a) r = 2, ǫ = 0.01 (b) r = 4, ǫ = 0.001

(c) r = 2, ǫ = 0.01 (d) r = 4, ǫ = 0.001

Fig. 1. Required minimum number nd(k
′) of images per po-

sition for r = 2, ǫ = 0.01 and r = 4, ǫ = 0.001 to ensure

a relative error < 10% with probability ≥ Pmin = 0.90;

N = 32; (a-b) approximation ; (c-d) aliasing term.

each frequency k′ the maximum value cmax(k
′) such that

m(q, ǫr, cmax(k
′)) ≤ p/100 · |A(q, ǫr)|. If we neglect f(ǫr)

in (15), the minimum necessary number nd of images per

position must obey for any k′ ∈ DHR:

nd(k
′) ≥ ‖q‖22

[
3(1− Pmin)r

2cmax(k
′)2‖q‖21

]−1
(18)

Turning to the aliasing term B(k′) in (10), let qα =
2π
rN (k′ +αN). Using similar arguments one can show that:

P



|B(k′)| ≤
∑

α 6=γ

|Ŷα(k
′)|
√
2‖qα‖2ǫr

(

c+
‖qα‖2ǫr

2

)




≥
∏

α 6=γ

(

1− 1

3ndc2

)

(19)

To guarantee an error smaller than p% we need an assumption

on the spectrum of the image. We will use the usual property

of natural images as a worst case with an energy spectrum

∝ 1/‖k′‖2(1+η)
2 where usually |η| ≪ 1. Eventually we nu-

merically estimate cmax(k
′) such that for any c ≤ cmax(k

′):

∑

~α 6=~γ

( ‖q‖22
‖qα‖22

)(1+η)/2 √
2‖qα‖2ǫr

(

c+
‖qα‖2ǫr

2

)

≤ p

100

(20)

Then remains to estimate the minimum nd such that:

nd(k
′) ≥

[

3(1− P
1

r2−1

min )cmax(k
′)2

]−1

(21)

The main results of this work are the two lower bounds

on nd given by (18) and above all (21) which control the

minimum number of images nd such that some relative error

bound of p%, e.g. 10%, can be guaranteed with probability

greater than some confidence level of Pmin, e.g. 0.9. The

related constraints on nd(k
′) can be computed numerically.

ǫ 0.01 0.001 0.0001

r = 2 6 / 151 1 / 2 1 / 1

r = 4 22 / unreach. 21 / 679 1 / 15

r = 6 50 / unreach. 1 / 23004 1 / 189

Table 1. Required minimum number nd of images per posi-

tion to ensure a relative error < 10% with probability > 0.9
on approximation/aliasing term as a function of the uncer-

tainty on the translations expressed in LR pixel unit.

4. NUMERICAL RESULTS

Fig. 1 shows the numerical results from (18) and (21) in

Fourier domain for two resolution enhancement factors r = 2
and r = 4. As expected, the accurate recovery of higher

frequencies calls for more LR images. The results do not

depend on the size N of images. The larger r, the larger the

need for multiple images. The control of aliasing effects is

the most constraining. In our microscopy setting, 1 LR pixel

≃ 100 nm. The random bias on the platform positioning

system is between 0.1 and 1 nm that is ǫ ≃ 0.001 − 0.01
LR pixel. The acquition of 1 LR image usually takes about

0.5 s. For r = 2 and ǫ = 0.001, resp. ǫ = 0.01, an ac-

curacy better than p = 10% on the restored image can be

guaranteed with probability ≥ 0.90 by using at least nd = 2,

resp. nd = 151, images/position. In practice, r2 = 4 dis-

placements are necessary which means an acquisition time

between 4×2×0.5 = 4 s and 4×151×0.5 = 302 s which re-

mains reasonable to observe many biological systems. Tab. 1

gathers the constraints for various values of r and ǫ. For r = 6
and ǫ = 0.01 there is no way to guarantee the quality of recon-

struction (”unreachable” in Tab. 1). However, for sufficiently

accurate positioning with ǫ = 0.0001, 62 × 189 = 6804
images are sufficient (≃ 57 min at 0.5 s/image).

5. CONCLUSION

We propose a controlled and fast super-resolution technique

which takes benefit from (1) the piezoelectric positioning sys-

tems of microscopes (or telescopes) platforms to realize ac-

curate translations, (2) the analysis of the fast algorithm pro-

posed in [1] so that error confidence intervals can be com-

puted as a function of the number of available images. This is

made possible by the algorithm itself and by exploiting the av-

eraging of LR images taken at positions that are randomly dis-

tributed around the same reference position. This technique is

cheap and realistic to enhance the resolution of many devices.

It may be adapted to many applications ranging from biology

to astronomy where the need for guarantees on the restored

information is crucial. The present bounds yield sufficient

conditions but may not be optimally tight. Tighter bounds

would also be more optimistic since less images would be

necessary. This would be useful for applications. This is the

subject of ongoing work.
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