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ABSTRACT

In this paper, we propose to consider the estimation of a refer-
ence shape from a set of different segmentation results using
both active contours and information theory. The reference
shape is defined as the minimum of a criterion that benefits
from both the mutual information and the joint entropy of the
input segmentations and called a mutual shape. This energy
criterion is here justified using similarities between informa-
tion theory quantities and area measures, and presented in
a continuous variational framework. This framework brings
out some interesting evaluation measures such as the speci-
ficity and sensitivity. In order to solve this shape optimization
problem, shape derivatives are computed for each term of the
criterion and interpreted as an evolution equation of an active
contour. Some synthetical examples allow us to cast the light
on the difference between our mutual shape and an average
shape. Our framework has been considered for the estimation
of a mutual shape for the evaluation of cardiac segmentation
methods in MRI.

Index Terms— Active contours, segmentation evalua-
tion, shape gradient, average shape, cardiac MRI.

1. INTRODUCTION

Notions of shape averaging and shape statistics become par-
ticularly important when dealing with applications such as
shape classification, registration, segmentation using shape
prior or even segmentation evaluation. Indeed, in medical
imaging, a ground truth is generaly not available to compare
segmentation methods of anatomical structures. As far as the
theoretical part is concerned, the shape averaging problem
is closely related to shape optimization problems [1] and to
the introduction of a shape metric. For example, such shape
optimization algorithms have already been proposed in order
to compute average shapes [2, 3] or more recently median
shapes [4] by minimizing different shape metrics such as the
Hausdorff distance [2] or the symmetric area difference be-

tween shapes [3]. Another different technique for combin-
ing multiple segmentations or shapes is the STAPLE (Simul-
taneous Truth and Performance Level Estimation) algorithm
proposed by Warfield et al. [5, 6]. Their algorithm consists
in one instance of the Expectation Maximisation (EM) algo-
rithm where the true segmentation is estimated by maximiz-
ing the likelihood of the complete data. Their pixel-wise ap-
proach leads to the estimation of a reference shape simulta-
neously with the sensitivity and specificity of each input seg-
mentation. In this paper, we propose to introduce such a sta-
tistical modeling within a variational framework. Moreover,
we take advantage of the analogies between information the-
ory and area measures in order to estimate what we call a
“mutual shape”. We propose to maximize the mutual infor-
mation between the n input segmentations while minimizing
their joint entropy. Such a statistical criterion can be inter-
preted as a robust measure of the symmetric area difference.
The statistical model brings out both the sensitivity and speci-
ficity parameters and these parameters are estimated jointly
with the reference mutual shape as in the STAPLE algorithm.
However, the energy criterion is different from STAPLE and
is justified using information theory quantities. Moreover, the
advantage of our formalism is to exhibit both the domain and
the associated contour. Compared with the STAPLE algo-
rithm, such a continuous formalism may also be interesting in
order to add some geometrical or photometric priors directly
in the criterion to minimize. The mathematical framework is
presented in section 2. In section 3, the proposed algorithm is
tested on both synthetic and medical cardiac MR images.

2. MUTUAL SHAPE DEFINITION

2.1. Problem statement and statistical models

Let us denote Ω the image domain and consider {Ω1,Ω2, ...,Ωn}
a family of n shapes corresponding to n different segmenta-
tions of the same unknown shape denoted by µ. Each shape
can be represented through a random binary label Di(X)
whose observations are such that di(x) = 1 if x ∈ Ωi and



di(x) = 0 if x 6∈ Ωi. From all these segmented shapes, our
goal is to compute a reference shape in order to mutualize
the information of the n segmented shapes. Let us denote
by T (X) the binary random variable associated with the un-
known reference shape µ (with µ̄ the complementary region
of µ) such that T (x) = 1 if x ∈ µ and T (x) = 0 if x ∈ µ̄.
The notation t represents a realization of T (X) and |Ω| the
size of the image domain Ω.

In order to estimate a reference shape, we exploit the
analogies between information measures (mutual informa-
tion, joint entropy) and area measures. In [7, 8], it is shown
that the joint entropy H(., .) and the mutual information
I(., .) can be interpreted in terms of area measures as follows:

H(Di, T ) = mes(D̃i ∪ T̃ ), I(Di, T ) = mes(D̃i ∩ T̃ ), (1)

with X̃ the abstract set associated with the random variable
X and mes a signed measure defined on an algebra of sets.
Let us first remind that an average shape [3] can be estimated
using active contours by minimizing the sum of the union of
the shapes Ωi while maximizing the sum of the intersection
according to µ. By analogy with this criterion, the sum of
the joint entropies (union of sets) will be minimized while
the sum of the mutual information quantities (intersection of
sets) will be maximized. In order to minimize a single crite-
rion, we use the classic relation between mutual information
and conditional entropy: I(Di, T ) = H(Di) − H(Di/T ).
Since H(Di/T ) ≥ 0 and H(Di) is independent of T , we
will rather minimize H(Di/T ). Due to all these considera-
tions and properties, we propose to minimize the following
criterion according to T :

E(T ) =

n∑
i=1

(H(Di, T ) +H(Di/T )) . (2)

In the sequel, the sum of joint entropies is denoted by
JH(T ) =

∑n
i=1 H(Di, T ) and the sum of conditional en-

tropies (coming from the mutual information) by MI(T ) =∑n
i=1 H(Di/T ). Note that this criterion is implicitly based

on the assumption that random variables Di are considered
as being independent.

2.2. Continuous framework

In order to take advantage of the previous statistical criterion
(2) within a continuous shape optimization framework, we
propose to express the joint and conditional probability den-
sity functions according to the reference shape µ. Let us first
express the conditional entropy :

H(Di/T ) = −
∑

t∈{0,1}

p(t)
∑

di∈{0,1}

p(di/t) log(p(di/t)), (3)

with p(T = t) = p(t) and p(Di = di/T = t) = p(di/t).
The conditional probability p(di = 1/t = 1) corresponds to

the sensitivity parameter pi (true positive fraction):

pi(µ) = p(di = 1/t = 1) =
1

|µ|

∫
µ

di(x)dx. (4)

The conditional probability p(di = 0/t = 0) corresponds to
the specificity parameter qi (true negative fraction):

qi(µ) = p(di = 0/t = 0) =
1

|µ|

∫
µ

(1− di(x))dx. (5)

The random variable T takes the value 1 with a probability
p(t = 1) = |µ|/|Ω| and 0 with a probability p(t = 0) =
|µ|/|Ω|. The MI criterion can be expressed as follows:

MI(µ) = −
n∑

i=1

|µ|
|Ω|

((1− pi) log (1− pi) + pi log pi) (6)

+
|µ|
|Ω|

(qi log qi + (1− qi) log (1− qi)) .

The parameters pi and qi depend explicitly on µ, which must
be taken into account in the optimization process.

Let us now express, according to µ and in a continuous
setting JH(T ). The following expression of the joint entropy
is considered:

H(Di, T ) = −
∑

t∈{0,1}

∑
di∈{0,1}

p(di, t) log (p(di, t)) , (7)

with p(Di = di, T = t) = p(di, t).
The following estimates for the joint probabilities are then
used (a = 0 or a = 1):

p(di = a, t = 1) =
1

|Ω|

∫
µ

((1− a)(1− di(x)) + adi(x)) dx, (8)

p(di = a, t = 0) =
1

|Ω|

∫
µ

((1− a)(1− di(x)) + adi(x)) dx. (9)

The criterion JH(µ) can then be written as follows:

JH(µ) = − 1

|Ω|

n∑
i=1

[ ∫
µ

((1− di) log (Ai) + di log (Bi)) dx

+

∫
µ

((1− di) log (Ai(µ)) + di log (Bi(µ))) dx
]
+ C, (10)

with Ai(µ) =
∫
µ
(1 − di(x)) dx, Ai(µ) =

∫
µ
(1 − di(x)) dx,

Bi(µ) =
∫
µ
di(x) dx and Bi(µ) =

∫
µ
di(x)dx. The term C

is equal to n log(Ω) and is independent from µ.
The global criterion (2) is then expressed according to µ

using the expression of JH(µ) given in (10) and the expres-
sion of MI(µ) given in (6). We also add a regularization term
denoted by R(∂µ) in order to smooth the boundary:

E(µ) = JH(µ) +MI(µ) + λR(∂µ), (11)

with λ a positive parameter and R(∂µ) =
∫
∂µ

ds.
In this form, the minimization of such a criterion can be con-
sidered using active contours and shape gradients.



2.3. Optimization using shape gradients

In order to compute a local minimum of the criterion (11), we
propose to take advantage of the framework developed in [9]
which is based on the shape optimization tools proposed in [1,
Chap.8]. The main idea is to deform an initial curve (or sur-
face) towards the boundaries of the object. After derivation,
we find the following evolution equation:(

∂Γ

∂τ

)
= (vJH + vMI + λκ)N (12)

where κ is the curvature of the contour balanced with the
regularisation parameter λ. The velocities vMI and vJH are
given by the following equations:

vMI =
1

|Ω|

n∑
i=1

[
(1−di(x)) log

(
qi

1− pi

)
+di(x) log

(
1− qi
pi

)]

vJH =
1

|Ω|

n∑
i=1

[
di(x) log

(
Bi(µ)

Bi(µ)

)
+(1−di(x)) log

(
Ai(µ)

Ai(µ)

)]
where Ai and Bi have been introduced in equation (10).

3. MUTUAL SHAPE ESTIMATION

This evolution equation has been tested on both synthetic and
medical images.

3.1. Synthetic images

We propose a test sequence consisting of different segmen-
tations of a lozenge (Fig.1). The first entry (m1) is the true
segmentation mask, the other entries (m2,m3,m4,m5) rep-
resent the segmentation of 1/4 of the true lozenge (Fig.1(b)).

(a) Lozenge (b) m1, m2, m3, m4, m5

Fig. 1. The test image (a) and (b) the different segmentation entries.

When computing the average of the different characteris-
tic functions, we remark (Fig.2(b)) that some masks share an
intersection. Indeed the values of the average image belong to
the interval [0, 0.6]. This average image IA is then binarized
in (Fig.2(b)) with the threshold 0.5. This gives us a simple
majority voting procedure.

(a) (b)
Fig. 2. The average image IA (a) and the corresponding binarized
average image IAT (b) of the masks in Fig.1(b).

We then use the evolution equations of the mutual shape
(12). The initial contour is chosen as a circle including the
lozenge (Fig.3(a)). The mutual shape algorithm is able to re-
cover the whole lozenge as shown in Fig.3(d). When using
the mutual shape, the result is then different from the average
shape given in Fig.2(b) which corresponds to a line.

(a) It. 0 (b) It. 80 (c) It. 140 (d) Mutual shape

Fig. 3. Evolution using the mutual shape (λ = 10). In (a), the
initial contour is in white (circle) and the other white lines represent
the different segmentation entries. (Iterations are denoted by It.)

An outlier (m6 given Fig.4(a)) was introduced in the ini-
tial sequence of masks in order to test the robustness of the
mutual shape estimation. Indeed, our goal is to test if the
mutual shape is different from a simple union of the differ-
ent masks. In Fig.4, the different steps of the evolution of
the contour are displayed. The final contour (Fig.4(d)) fits the
lozenge and excludes the outlier from the final contour.

(a)m6 (b) It. 0 (c) It. 100 (d) Mutual shape

Fig. 4. Introduction of an outlier (m6) (a) in the initial sequence of
masks (Fig.1(b)) and estimation of the mutual shape with λ = 10.
Iteration 100 is provided in (c).

When the active contour evolves using the evolution equa-
tion (12), the parameters pi and qi are estimated jointly with
the mutual shape as proposed in STAPLE [5]. The evolution
of these parameters is given in Table 1 for the initial contour,
iteration 100 and the final contour. According to the final val-
ues reported in Table 1, we can conclude that the best segmen-
tation corresponds to the shape m1 with p1 = 1 and q1 = 1
and that the shape m6 is an outlier since p6 = 0. The other
segmentations correspond to one quarter of the lozenge which
leads to a sensitivity parameter around 0.25.

It. m1 m2 m3 m4 m5 m6

It. 0 pi 0.35 0.09 0.09 0.08 0.09 0.15
(Fig. 4.b) qi 1 1 1 1 1 1

It. 100 pi 0.60 0.15 0.15 0.13 0.16 0.27
(Fig. 4.c) qi 1 1 1 1 1 1

Final pi 1 0.24 0.26 0.22 0.27 0
(Fig. 4.d) qi 1 1 1 1 1 0.93

Table 1. Joint evolution of the contour and of the values pi and qi
for masks 1 to 6.



3.2. Cardiac MR images

The estimation of such a mutual shape is tested for the un-
supervised evaluation of segmentation methods of the left
ventricular cavity from cardiac cine-MRI. It takes place in
a larger project on cardiac images segmentation evaluation
developed in [10, 11, 12]1. Two examples on two different
MRI slices of the 2009 MICCAI challenge database (from
the sequences SC-HYP-08 and SC-HYP-37) [13]. The slices
are chosen due to the presence of outlier segmentations. The
different segmentation entries are selected inside a database
that contains the results obtained by different research teams
[14, 15, 16, 17, 18, 19] for some parameters which are not
necesseraly the optimal ones. The corresponding contours
of the different entries are given respectively in Fig.5 for the
first slice (denoted by slice 1) and in Fig.7 for the second slice
(denoted by slice 2). For the slice 2, the endocardium is not
well delimited due to the presence of the aortic root which
leads to two outlier segmentations.

m1 m2 m3

m4 m5

Fig. 5. The different segmentation methods m1 to m5 (slice 1).

(a) Initial contour (b) Mutual shape (c) Expert contour
Fig. 6. Estimation of the mutual shape (b) using the masks m1 to
m5 (Fig.5) from the initial contour (a) (slice 1).

i m1 m2 m3 m4 m5

pi 1 0.440 0.998 0.913 0.982
qi 0.910 0.870 0.971 1 1

Table 2. Sensitivity and specificity parameters pi and qi for the
segmentations m1 to m5 displayed in Fig.5 (slice 1).

In Fig.6 and Fig.8, we give the corresponding estimated
mutual shape in (b). The estimated mutual shape is computed
using the 5 segmentation entries and the evolution equation
(12) with the initial contour given in (a) and λ = 100. The ex-
pert contour is also shown in (c) for each slice. For the slice 1,

1French project MediEval from GDR 2647 Stic-Santé (CNRS-INSERM)

the mutual contour is close to the expert one (Dice coefficient
of 0.96). For the slice 2, the endocardium is not well delimited
which leads to two outlier segmentations. In this case, we find
a lower Dice coefficient of 0.84. This example shows that our
method is robust to outlier segmentations but not surprisingly
the estimated mutual shape is dependent on the accuracy of
the segmentation entries. During the curve evolution, the pa-
rameters pi and qi are estimated jointly with the mutual shape
and allow to perform a classification of the performance level
of each segmentation (see Tables 2 and 3). Since the best
segmentation corresponds to pi = 1 and qi = 1, we can con-
clude that the obtained classification is visually coherent to its
corresponding sequence of masks.

m1 m2 m3

m4 m5

Fig. 7. The different segmentation methods m1 to m5 (slice 2).

(a) Initial contour (b) Mutual shape (c) Expert contour
Fig. 8. Estimation of the mutual shape (b) using the masks m1 to
m5 (Fig.7) from the initial contour (a) (slice 2).

m1 m2 m3 m4 m5

pi 0.998 0.992 0.843 0.995 0
qi 0.844 0.956 0.983 0.945 0.801

Table 3. Sensitivity and specificity parameters pi and qi for the
segmentations m1 to m5 displayed in Fig.7 (slice 2).

4. CONCLUSION
In this paper, we propose to define and estimate what we call a
mutual shape. Some experimental results are provided show-
ing the applicability of this framework for segmentation eval-
uation without a reference shape. Our work in progress con-
cerns the comparison of our method to STAPLE algorithm
using the statistical validation proposed in [20] and extended
validation tests on a larger database of cardiac cine-MR im-
ages.
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