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Luc Hillairet, Victor Kalvin, Alexey Kokotov

December 3, 2013

Abstract. We study the regularized determinant of the Laplacian as a functional on
the space of Mandelstam diagrams (noncompact translation surfaces glued from finite
and semi-infinite cylinders). A Mandelstam diagram can be considered as a compact
Riemann surface equipped with a conformal flat singular metric |ω|2, where ω is a mero-
morphic one-form with simple poles such that all its periods are pure imaginary and all
its residues are real. The main result is an explicit formula for the determinant of the
Laplacian in terms of the basic objects on the underlying Riemann surface (the prime
form, theta-functions, canonical meromorphic bidifferential) and the divisor of the mero-
morphic form ω. As an important intermediate result we prove a decomposition formula
of the type of Burghelea-Friedlander-Kappeler for the determinant of the Laplacian for
flat surfaces with cylindrical ends and conical singularities.

1 Introduction

Formally, a (planar) Mandelstam diagram is a strip Π = {z ∈ C : 0 ≤ ℑz ≤ H} with
finite number of slits parallel to the real line. These slits are either finite segments or
half-lines, the sides of different slits and parts of the boundary of the strip are glued
together according to a certain gluing scheme. This gives a surface made from a finite
number of finite and semi-infinite cylinders. In addition, the diagram could be twisted
via cutting the finite (”interior”) cylinders into two parts by vertical cuts and gluing
these parts back with certain twists; see, e. g., [11], [12] for more details, explanation of
the terminology and proper references to the original physical literature.

One thus obtains a noncompact translation surface M or, more precisely, a flat
surface with trivial holonomy with conical singularities (at the end points of the slits)
and cylindrical ends.

One can also consider M as a compact Riemann surface (i. e. an algebraic curve)
with flat conformal metric |ω|2, where ω is the meromorphic differential on M obtained
from the 1-form dz in a small neighborhood of a nonsingular point of M via parallel
transport. The differential ω has zeros at the end points of the slits and the first order
poles at the points of infinity of cylindrical ends. All the periods of ω are pure imaginary,
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Figure 1: Mandelstam Diagram.

all the residues at the poles of ω are real.
Moving in the opposite direction, one can get a Mandelstam diagram from a Riemann

surface and a meromorphic differential with pure imaginary periods and simple poles
with real residues. More precisely, let X be a compact Riemann surface of genus g
with n ≥ 2 marked points P1, . . . , Pn and let α1, . . . , αn be nonzero real numbers such
that α1 + · · · + αn = 0. Then there exists a unique meromorphic differential ω on X
with simple poles at P1, . . . , Pn such that all the periods of ω all pure imaginary and
Res(ω,Pk) = αk, k = 1, . . . , n. Moreover, to such a pair (X,ω) there corresponds a
Mandelstam diagram (with n semi-infinite cylinders) (see [11]).

The space of Mandelstam diagrams with fixed residues α1, . . . , αn (i. e. with fixed
circumferences, |O1|, . . . , |On| of the cylindrical ends) is coordinatized by the circumfer-
ences, hi, of the interior cylinders; the interaction times τj (see [11] for explanation of
the terminology) – the real parts of the z-coordinates of the zeros of the differential ω
(we assume that the smallest interaction time, τ0, is equal to 0, this can be achieved
using a horizontal shift of the diagram) and the twist angles θk.

Mandelstam diagrams (with fixed residues α1, . . . , αn) give a cell decomposition of
the moduli space Mg,n of compact Riemann surfaces of genus g with n marked points.
The top-dimensional cell is given by the set Sg,n of simple Mandelstam diagrams, for
these diagrams the corresponding meromorphic differential ω has only simple zeros. The
parameters

hi, i = 1, . . . , g; τj , j = 1, . . . 2g + n− 3; θk, k = 1, . . . , 3g + n− 3 (1.1)

give global coordinates on Sg,n, see Fig. 1(taken from [12], p. 93) for the case g = 2, n =
4, three poles with negative residues, one pole with positive residue.

From now on we refer to the coordinates (1.1) as moduli.
The goal of the present paper is to study the regularized determinant of the Laplacian

on a noncompact translation surfaceM as a function of moduli (for simplicity we consider
only the top dimensional cell). The title of the paper is chosen to emphasize the relation
to older paper [6] (see also [35]) where such a determinant was defined in a heuristic
way (unrelated to the spectral theory) and the question of the possibility of a spectral
definition was raised. It should be said that in contrast to [6] we are working here with
scalar Laplacians, the Laplacians acting on spinors will be considered elsewhere.

The scheme of the work can be briefly explained as follows. Assume for simplicity
that a Mandelstam diagram M has two cylindrical ends. Then the Laplacian ∆ on
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M can be considered as a perturbation of the ”free” Laplacian ∆̊ on the flat infinite
cylinder S1( H

2π ) × R obtained from the strip Π via identifying the points x ∈ R with
points x+ iH ∈ R+ iH. Then, following the well-known idea (see, e. g., [29], [15], [2]),
one can introduce the relative operator zeta-function

ζ(s;∆, ∆̊) =
1

Γ(s)

∫ ∞

0
Tr(e−t∆ − e−t∆̊)ts−1 dt (1.2)

and define the relative zeta-regularized determinant of the operator ∆ (having continu-
ous spectrum, possibly with embedded eigenvalues - see an example in Appendix A.2)
via

det(∆, ∆̊) := e−ζ′(0;∆,∆̊) . (1.3)

In case of n ≥ 3 cylindrical ends the definition of det(∆, ∆̊) is similar: as the free
Laplacian ∆̊ one takes the Laplacian on the diagram with n semi-infinite slits starting
at τ0 = 0 (a sphere with n cylindrical ends).

Our main result is an explicit formula for det(∆, ∆̊) in terms of classical objects on
the Riemann surface M (theta-functions, the prime form, the Bergman kernel) and the
divisor of the meromorphic differential ω.

At the first step we establish variational formulas for log det(∆, ∆̊) with respect to
moduli. At the second step we integrate the resulting system of PDE and get an explicit
expression for det(∆, ∆̊) (up to moduli independent constant). The derivation of the
above mentioned variational formulas goes as follows.

First we prove a decomposition formula of the Burghelea-Friedlander-Kappeler type
for det(∆, ∆̊). This formula could not be considered as a completely new one: for smooth
manifolds with cylindrical ends analogous formulas were found in [26] and [31]. We be-
lieve that it would be possible to establish our result just following the way of [26] or [31]
with suitable modifications: presence of conical points and slightly different method of
regularization (in [26] and [31] the authors use the operators of Dirichlet problem in
semi-cylinders as ”free”, whereas we are using here for that purpose the Laplace opera-
tor in the infinite cylinder), should not present a serious additional difficulty. The proofs
from [31] are based on the one hand on results from scattering theory on manifolds with
cylindrical ends that themselves depend on techniques of Melrose [27] and on the other
hand from results of Carron [2].

We have chosen here a slightly different approach that avoids the full machinery
of scattering theory on manifolds with cylindrical ends (see [27, 4, 5]). Following [2],
it is fairly straightforward to get a gluing formula for non-zero values of the spectral
parameter so that the only missing ingredient is a precise description of the resolvent of
the operator ∆ at the bottom of its continuous spectrum (see Theorem 2 below). The
latter can then be obtained using methods of elliptic boundary value problems.

Using the decomposition formula, we reduce the derivation of the variational formulas
for det ∆ to a simpler case of Laplacians (with discrete spectra) on compact conical
surfaces which are flat everywhere except standard fixed ”round” ends. After that,
using a certain version of the classical Hadamard formula for the variation of the Green
function of a plane domain (see Proposition 2), we derive the variational formulas for
the latter simpler case.

The resulting system of PDE for log det∆ (where the so-called Bergman projective
connection is the main ingredient) is a complete analog of the governing equations for
the Bergman tau-functions on the Hurwitz spaces and moduli spaces of holomorphic
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differentials ([23], [21], [22]). Relying on the results obtained in [22, 23], it is not hard
to propose an explicit formula for the solution of this system (its main ingredient, the
Bergman tau-function on the space of meromorphic differentials of the third kind, was
recently introduced by C. Kalla and D. Korotkin in [17]).

The proof of the thus conjectured formula is a direct calculation (similar to that from
[22]). For the sake of simplicity we present this calculation for genus one Mandelstam
diagrams only.

Acknowledgement. The work of AK was supported by NSERC. The work of L.H
is partly supported by the ANR programs METHCHAOS and NOSEVOL. The authors
thank D. Korotkin for extremely useful discussions. We thank also C. Kalla and and
D. Korotkin for communicating the results from [17] long before their publication.

2 Relative determinant and decomposition formula

Consider M as a noncompact flat surface with cylindrical ends and conical points at
the ends of the slits of Π = {z ∈ C : 0 ≤ ℑz ≤ 1}. We shall use x = ℜz as a
(global) coordinate on M. Let P be the set of all conical points on M. Assume that
R > 0 is so large that there are no points in P with coordinate x /∈ (−R,R). Denote
Γ = {p ∈ M : |x| = R} and consider the (positive) selfadjoint Friedrichs extension ∆D

in

of the Dirichlet Laplacian on Min = {p ∈ M : |x| ≤ R} with Dirihlet conditions on Γ.
Then for any f ∈ C∞(Γ) the Dirichlet problem

∆u = 0 on M \ Γ, u = f on Γ

has a unique bounded at infinity solution u such that u = f̃− (∆D
in)

−1∆f̃ on Min, where
f̃ ∈ C∞(Min \ P) is an extension of f . Introduce the Dirichlet-to-Neumann operator

Nf = lim
x→R+

〈

−∂xu(−x), ∂xu(x)
〉

+ lim
x→R−

〈

∂xu(−x),−∂xu(x)
〉

,

where 〈·, ·〉 ∈ L2(Γ−)⊕ L2(Γ+) ≡ L2(Γ) with Γ± = {p ∈ M : x = ±R}. The operator N
is a first order elliptic operator on Γ which has zero as an eigenvalue. The modified zeta
regularized determinant det∗N (i.e. the zeta regularized determinant with zero eigen-
value excluded) is well-defined. By det∆D

in we denote the zeta regularized determinant
of ∆D

in. In this section we prove

Theorem 1. The decomposition formula

det(∆, ∆̊) = C det∗N · det∆D
in (2.1)

is valid, where N, ∆D
in, and C depend on R, however C is moduli (that is hk, θk, τk)

independent.

As it was mentioned in the Introduction this theorem can be considered as a version
of the analogous results from [26] and [31] for smooth manifold with cylindrical ends.
However, we choose here a different less technical approach that avoids the full machinery
of b-calculus [27] heavily used in [26] as well as spectral representations and elements of
the scattering theory on manifolds with cylindrical ends [14, 9, 30] used in [31]; note that
similar spectral representations and results of the scattering theory are also a part of
results [27] used in [26] (for results of the scattering theory on manifolds with cylindrical
ends see also [4, 5, 32]).
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As in [31] our starting point is the Burghelea-Friedlander-Kappeler type decompo-
sition of det(∆ − λ, ∆̊ − λ), obtained in [2] for negative (regular) values of the spectral
parameter λ. (Although only smooth manifolds are considered in [2], it is fairly straight-
forward to see that on Mandelstam diagrams the decomposition remains valid outside of
conical points.) In order to justify the decomposition for det(∆, ∆̊) (i.e. at the bottom
λ = 0 of the continuous spectrum of ∆ and ∆̊), one has to study the behavior of all
ingredients of the decomposition formula as λ→ 0− (i.e. zeta regularized determinants
of Laplacians and Dirichlet-to-Neumann operators) and then pass to the limit. Our
approach relies on precise information on the behavior of the resolvent of the operator
∆ at λ = 0 (see Theorem 2 below) obtained by well-known methods of elliptic boundary
value problems and the Gohberg-Sigal theory of Fredholm holomorphic functions; see
e.g. [25, 19, 20] and [13] (or e.g. [20, Appendix]). As a consequence, we immediately
get precise information on the behavior of the Dirichlet-to-Neumann operator and an
asymptotic of its determinant as λ → 0. The latter one also provides the integrand
in (1.2) with asymptotic as t → +∞. This together with asymptotic of the integrand
as t → 0 (obtained in a standard way) prescribes the behavior of det(∆ − λ, ∆̊ − λ) as
λ→ 0− and completes justification of the decomposition formula for det(∆, ∆̊).

2.1 Resolvent meromorphic continuation and its singular part at zero

In this subsection we operate with Friedrichs extensions ∆ǫ of the Lapacian ∆ in
weighted spaces L2

ǫ (M) with different values of weight parameter ǫ. For this reason
we reserve the notation ∆0 for the (selfadjoint nonnegative) Friedrichs extension of the
Laplacian ∆ in L2(M) initially defined on the set C∞

0 (M \ P) of smooth compactly
supported functions.

Theorem 2. By B
(

L2
ǫ (M), L2

−ǫ(M)
)

, ǫ > 0, we denote the space of bounded operators
acting from smaller L2

ǫ(M) to bigger L2
−ǫ(M) weighted space with the norm ‖u;L2

γ(M)‖ =
‖eγu;L2(M)‖, where the weight eγ ∈ C∞(R) is a positive function such that eγ(x) =
exp(γ|x|) for all sufficiently large values of |x|.

Let ǫ be a sufficiently small positive number. Then the function

µ 7→
(

∆0 − µ2
)−1 − i

2µ

(

·, 1
)

L2(M)
∈ B

(

L2
ǫ(M), L2

−ǫ(M)
)

is holomorphic in the union C
+
ǫ of C+ = {µ ∈ C : ℑµ > 0} with the disc |µ| < ǫ. In

other words, the resolvent (∆0 − µ2)−1 viewed as the holomorphic function

C
+ ∋ µ 7→ (∆0 − µ2)−1 ∈ B

(

L2
ǫ(M), L2

−ǫ(M)
)

has a meromorphic continuation to C
+
ǫ , which is holomorphic in C

+
ǫ \ {0} and has a

simple pole at zero with the rank one operator L2
ǫ(M) ∋ f 7→ i

2(f, 1)L2(M) ∈ L2
−ǫ(M) as

the residue.

The scheme of the proof can be described as follows. We consider the Friedrichs
m-sectorial extension ∆ǫ of the Laplacian ∆ initially defined on C∞

0 (M \ P) and act-
ing in the weighted space L2

ǫ (M). (Here m-sectorial means that the numerical range
{(e2ǫ∆ǫu, u)L2(M) ∈ C : u ∈ Dǫ} and the spectrum of a closed operator ∆ǫ in L2

ǫ(M)
with the domain Dǫ are both in some sector {λ ∈ C : | arg(λ + c)| ≤ ϑ < π/2, c > 0}.)
Then we introduce a certain rank n extension of the operator ∆ǫ −µ2 (n stands for the
number of cylindrical ends on M). The inverse of that extension provides the resolvent
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(∆0−µ2)−1 with the desired meromorphic continuation to C
+
ǫ . The proof of Theorem 2

is preceded by Lemmas 1, 2 and Proposition 1.
In order to introduce ∆ǫ we need to obtain some estimates on the quadratic form

qǫ[u, u] = ‖∇u;L2
ǫ (M)‖2 +

(

(∂xe2ǫ)(∂xu), u
)

L2(M)
, u ∈ C∞

0 (M \ P),

of the Laplacian ∆ in L2
ǫ (M). Denote by H1

ǫ (M) the weighted Sobolev space of functions
v = e−ǫu, u ∈ H1(M), with the norm ‖v;H1

ǫ (M)‖ = ‖eǫv;H1(M)‖; here H1(M) is the
completion of the set C∞

0 (M \ P) in the norm

‖u;H1(M)‖ =
√

‖u;L2(M)‖2 + ‖∇u;L2(M)‖2.

Clearly, |∂xe2ǫ(x)| ≤ Ce2ǫ(x),

|
(

(∂xe2ǫ)(∂xu), u
)

L2(M)
| ≤ C‖∂xu;L2

ǫ (M)‖ · ‖u;L2
ǫ (M)‖

≤ C2δ−1‖u;L2
ǫ (M)‖2 + δ‖∇u;L2

ǫ (M)‖2, δ > 0,

and the norm in H1
ǫ (M) is equivalent to the norm

√

‖u;L2
ǫ (M)‖2 + ‖∇u;L2

ǫ (M)‖2. Thus
for some δ > 0 and γ > 0 we obtain

| arg(qǫ[u, u] + γ‖u;L2
ǫ (M)‖2)| ≤ ϑ < π/2,

δ‖u;H1
ǫ (M)‖2 − γ‖u;L2

ǫ (M)‖2 ≤ ℜqǫ[u, u] ≤ δ−1‖u;H1
ǫ (M)‖2,

which shows that qǫ with domain H1
ǫ (M) is a closed densely defined sectorial form

in L2
ǫ (M). Therefore this form uniquely determines an m-sectorial operator ∆ǫ (the

Friedrichs extension of the Laplacian ∆ : C∞
0 (M \ P) → L2

ǫ(M), see [18, Theorem
VI.2.1]) possessing the properties: i) The domain Dǫ of ∆ǫ is dense in H1

ǫ (M); ii) For
all u ∈ Dǫ and v ∈ H1

ǫ (M) we have (e2ǫ∆ǫu, v)L2(M) = qǫ[u, v]. This extension scheme
also gives the nonnegative selfadjoint Friedrichs extension ∆0 if we formally set ǫ = 0;
the operator ∆ǫ (with ǫ > 0) is non-selfadjoint. Due to conical points on M the second
derivatives of u ∈ Dǫ are not necessarily in L2

ǫ(M), e.g. [20].

Lemma 1. Equip the domain Dǫ of ∆ǫ with the graph norm

‖u;Dǫ‖ =
√

‖u;L2
ǫ (M)‖2 + ‖∆ǫu;L2

ǫ (M)‖2. (2.2)

Then the continuous operator

∆ǫ − µ2 : Dǫ → L2
ǫ (M) (2.3)

is Fredholm (or, equivalently, µ2 is not in the essential spectrum of ∆ǫ) if and only if
for any ξ ∈ R the point µ2 − (ξ+ iǫ)2 is not in the spectrum {0, 4π2ℓ2|Ok|−2 : ℓ ∈ N, 1 ≤
k ≤ n} of the selfadjoint Laplacian on the union of circles O1, . . . , On. The essential
spectrum of ∆ǫ is depicted on Fig. 2.

Proof. See Appendix.
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Figure 2: Essential spectrum σess(∆ǫ) of the operator ∆ǫ for ǫ > 0, where the points
marked as • represent eigenvalues of the selfadjoint Laplacian on the union of circles
O1, . . . , On, and solid lines are parabolas of σess(∆ǫ). Dashed line corresponds to the
boundary |µ| = ǫ of the disc |µ| < ǫ. As ǫ → 0 the parabolas collapse to rays forming
the essential spectrum σess(∆) = [0,∞).

Lemma 2. Take some functions C ∋ µ 7→ ϕk(µ) ∈ C∞(M \ P) satisfying

ϕk(µ; p) =

{

eiµ|x|, p = (x, y) ∈ (−∞,−R− 1)×Ok (resp. p ∈ (R+ 1,∞)×Ok),
0, p ∈ M \ (−∞,−R)×Ok (resp. p ∈ M \ (R,∞)×Ok),

(2.4)
if Ok corresponds to a cylindrical end directed to the left (resp. to the right). Let µ ∈ C

+

and |µ| < ǫ, where ǫ > 0 is sufficiently small. Then for any f ∈ L2
ǫ(M) and some ck ∈ C,

which depend on µ and f , we have

(∆0 − µ2)−1f −
n
∑

k=1

ckϕk(µ) ∈ Dǫ. (2.5)

Proof. See Appendix.

Clearly, (∆ − µ2)ϕk(µ) ∈ C∞
0 (M \ P) ⊂ L2

ǫ(M). Thus Lemma 2.5 implies that the
linear combinations of ϕ1(µ), . . . , ϕn(µ) are asymptotics of (∆0−µ2)−1f as |x| → ∞ with
a remainder in the spaceDǫ of functions exponentially decaying at infinity. We introduce
a rank n extension A(µ) : Dǫ × C

n → L2
ǫ(M) of the m-sectorial operator ∆ǫ − µ2 by

considering the values of ∆−µ2 not only on Dǫ but also on the asymptotics
∑

ckϕk(µ).
The continuous operator A(µ) acts by the formula

Dǫ × C
n ∋ (u, c) 7→ A(µ)(u, c) = (∆ǫ − µ2)u+

n
∑

k=1

ck(∆− µ2)ϕk(µ) ∈ L2
ǫ(M). (2.6)

We shall also use the operator J(µ) mapping Dǫ × C
n into L2

−ǫ(M) in the following
natural way:

Dǫ × C
n ∋ (u, c) 7→ J(µ)(u, c) = u+

∑

ckϕk(µ) ∈ L2
−ǫ(M), |µ| < ǫ.

The functions ϕk(µ), 1 ≤ k ≤ n, are linearly independent and for |µ| < ǫ we have
ϕk(µ) /∈ Dǫ. Hence J(µ) yields an isomorphism between Dǫ × C

n and its range {u +
∑

ckϕk(µ) : u ∈ Dǫ, c ∈ C
n} ⊂ L2

−ǫ(M).
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Below we will rely on some results of the theory of Fredholm holomorphic functions,
see e.g. [13] or[19, Appendix A]. Recall that holomorphic in a domain Ω operator function
µ 7→ F (µ) ∈ B(X,Y), where X and Y are some Banach spaces, is called Fredholm if
the operator F (µ) : X → Y is Fredholm for all µ ∈ Ω and F (µ) is invertible for at
least one value of µ. The spectrum of a Fredholm holomorphic function F (which is
the subset of Ω, where F (µ) is not invertible) consists of isolated eigenvalues of finite
algebraic multiplicity. Let ψ0 be an eigenvector corresponding to an eigenvalue µ0 of
F (i.e. ψ0 ∈ kerF (µ0) \ {0}). The elements ψ1, . . . ψm−1 in X are called generalized
eigenvectors if they satisfy

∑ℓ
j=0

1
j!∂

j
µF (µ0)ψℓ−j = 0, ℓ = 1, . . . ,m − 1. If there are no

generalized eigenvectors and dimkerF (µ0) = 1 , we say that µ0 is a simple eigenvalue
of F . Let µ0 be a simple eigenvalue of a Fredholm holomorphic function F . Then in a
neighborhood of µ0 the inverse F (µ)−1 of the operator F (µ) admits the representation

F (µ)−1 =
ω0(·)ψ0

µ− µ0
+H(µ), (2.7)

where µ 7→ H(µ) ∈ B(X,Y) is holomorphic, ψ0 ∈ kerF (µ0) \{0}, and ω0 ∈ kerF ∗(µ0) is
an eigenvector of the adjoint holomorphic function µ 7→ F ∗(µ) =

(

F (µ)
)∗ ∈ B(Y∗,X∗)

such that the value of the functional ω0(·) on ∂µF (µ0)ψ0 is 1. Note that the converse is
also true, i.e. (2.7) implies that µ0 is a simple eigenvalue of F and ψ0 ∈ kerF (µ0). For
the proof of (2.7) we refer to [13, Theorem 7.1] and [19, Theorem A.10.2].

Proposition 1. Let ǫ > 0 be sufficiently small. Then

1. µ 7→ A(µ) ∈ B
(

Dǫ × C
n, L2

ǫ (M)
)

is a Fredholm holomorphic operator function in
the disc |µ| < ǫ and A(µ) is invertible for all µ ∈ C

+.

2. kerA(0) = {J(0)−1C : C ∈ C} and kerA(0)∗ = {e−2ǫC : C ∈ C}.

3. There are no solutions (v, d) to the equation (∂µA(0))(J(0))−11+Aǫ
0(v, d) = 0, i.e.

there are no generalized eigenvectors and µ = 0 is a simple eigenvalue of A(µ).

4. In the disc |µ| < ǫ we have

A(µ)−1 =
i

2µ
(·, 1)L2(M)J(0)

−11 +H(µ),

where µ 7→ H(µ) ∈ B
(

L2
ǫ(M),Dǫ × C

n
)

is holomorphic.

5. For µ ∈ C
+ with |µ| < ǫ the operators J(µ)A(µ)−1 and (∆0 − µ2)−1 coincide as

elements of B(L2
ǫ (M), L2

−ǫ(M)). Thus J(µ)A(µ)−1 provides the resolvent

C
+ ∋ µ 7→ (∆0 − µ2)−1 ∈ B

(

L2
ǫ (M), L2

−ǫ(M)
)

with meromorphic continuation to the disc |µ| < ǫ.

Proof. 1. For |µ| < ǫ the operator A(µ) is Fredholm as a finite-rank extension of a
Fredholm operator, see Lemma 1. It is easy to see that for any (u, c) ∈ Dǫ × C

n the
function µ 7→ A(µ)(u, c) is holomorphic in the disc |µ| < ǫ. Assume, in addition, that
µ ∈ C

+. Then for any (u, c) ∈ Dǫ × C
n we have J(µ)(u, c) ∈ L2(M) and µ2 is a regular

point of the nonnegative selfadjoint operator ∆0. Hence dimkerA(µ) = 0. Indeed, for
any (u, c) ∈ kerA(µ) we have (∆0 − µ2)J(µ)(u, c) = 0, which implies J(µ)(u, c) = 0,
and therefore v = 0 and a = 0. Besides, by Lemma 2 for any f ∈ L2

ǫ(M) we have

8



(∆0 − µ2)−1f = u+
∑

ckϕk(µ) with u ∈ Dǫ and c ∈ C
n. Therefore A(µ)(u, c) = f and

the operator A(µ) is invertible. Assertion 1 is proved.
2. It is easy to see that A(0)J(0)−11 = 0; here J(0)−11 = (1 − ∑

ϕk(0), 1, . . . , 1).
Moreover, since there are no other bounded solutions to ∆u = 0 than a constant, this
proves the first equality in Assertion 2. For v in the kernel of the adjoint operator
A(0)∗ : L2

ǫ → D∗
ǫ × C

n and any (u, c) ∈ Dǫ × C
n we have

(∆ǫu, v)L2
ǫ (M) +

∑

ck(∆ϕk(0), v)L2
ǫ (M) = 0.

Therefore v is an element in ker(∆ǫ)
∗ ⊂ Dǫ satisfying (∆ϕk(0), v)L2

ǫ (M) = 0, 1 ≤ k ≤ n;
here (∆ǫ)

∗ is the adjoint to ∆ǫ m-sectorial operator in L2
ǫ (M) with domain Dǫ; see Proof

of Lemma 1 in Appendix. Separation of variables in the cylindrical ends gives

e2ǫ(x)v(x, y) = Akx+
∑

ℓ∈Z

Bℓ
ke

2π|Ok|
−1(−|ℓx|+iℓy), (2.8)

where Ak and Bℓ
k are some coefficients. Next we show that Ak = 0. Consider, for

instance, a right cylindrical end (with cross-section Ok). Then by using the Green
formula we get

0 = (∆ϕk(0), v)L2
ǫ (M) = lim

T→+∞

∫ T

R

∫

Ok

e2ǫ(x)∆ϕk(0;x, y)v(x, y) dx dy

= lim
T→+∞

∫

Ok

ϕk(0;T, y)∂x(e2ǫv)(T, y) dy = |Ok|Ak

and hence Ak = 0. Similarly one can see that Ak = 0 for the left cylindrical ends. This
together with (2.8) implies that e2ǫv is a bounded solution and thus it is a constant.
Assertion 2 is proved.

3. Taking the derivative in (2.6) we obtain ∂µA(0)J(0)−11 =
∑

∆∂µϕk(0). The
equation for (v, d) takes the form

A(0)(v, d) = −
∑

∆∂µϕk(0).

This equation has no solutions since its right hand side is not orthogonal to e−2ǫ ∈
kerA(0)∗. Indeed,

(

∆∂µϕk(0), e−2ǫ

)

L2
ǫ (M)

= lim
T→+∞

∫ T

R

∫

Ok

∆∂µϕk(0;x, y) dx dy

= − lim
T→+∞

∫

Ok

∂x∂µϕk(0;T, y) dy = − lim
T→+∞

∫

Ok

i dy = −i|Ok|

if Ok corresponds to a right cylindrical end; in the same way one can check that
(∆∂µϕk(0), e−2ǫ)L2

ǫ (M) = −i|Ok| for the left cylindrical ends. Thus

∑

(

∆∂µϕk(0), e−2ǫ

)

L2
ǫ (M)

= −2i

and there are no generalized eigenvectors. Assertion 3 is proved.
4. Assertion 4 is the representation (2.7) written for A(µ)−1 and µ0 = 0. Indeed,

ψ0 = J(0)−11 is an eigenvector of A(µ) at µ = 0, and ω0(·) = i
2(·, 1)L2(M) because

ω0

(

∂µF (µ0)ψ0

)

=
i

2

(

∂µA(0)J(0)−11, 1
)

L2(M)
=
i

2

∑

(

∆∂µϕk(0), e−2ǫ

)

L2
ǫ (M)

= 1
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as we need.
5. For µ ∈ C

+ with |µ| < ǫ and any f ∈ L2
ǫ(M) we have (∆0−µ2)−1f = J(µ)A(µ)−1f ,

which means that the operators (∆0 −µ2)−1 and J(µ)A(µ)−1 in B
(

L2
ǫ (M), L2

−ǫ(M)
)

are
coincident. Clearly, µ 7→ J(µ) is holomorphic in the disc |µ| < ǫ. Thus the meromorphic
in the disc |µ| < ǫ function µ 7→ J(µ)A(µ)−1 ∈ B

(

L2
ǫ (M), L2

−ǫ(M)
)

provides the resolvent
(∆0 − µ2)−1 with the desired continuation. Assertion 5 is proved.

Proof of Theorem 2. As a consequence of Assertions 4 and 5 of Proposition 1 we have

(∆0 − µ2)−1 = J(µ)A(µ)−1 =
i

2µ
(·, 1)L2(M) +Φ(µ),

Φ(µ) =
i

2µ
(·, 1)L2(M)

(

J(µ)− J(0)
)

J(0)−11 + J(µ)H(µ),

where µ 7→ Φ(µ) ∈ B(L2
ǫ (M), L2

−ǫ(M)) is holomorphic in the disc |µ| < ǫ. Theorem 2 is
proved.

2.2 Dirichlet-to-Neumann operator

As before we assume that R > 0 is so large that there are no conical points on M with
coordinate x /∈ (−R,R) and denote Γ = {p ∈ M : |x| = R}. Then for µ2 ∈ C \ (0,∞)
and any f ∈ C∞(Γ) there exists a unique bounded at infinity solution to the Dirichlet
problem

(∆− µ2)u(µ) = 0 on M \ Γ, u(µ) = f on Γ, (2.9)

such that
u(µ) = f̃ − (∆D

in − µ2)−1(∆− µ2)f̃ on Min, (2.10)

where f̃ ∈ C∞(Min \ P) is an extension of f and ∆D
in is the Friedrichs selfadjoint

extension of the Dirichlet Laplacian on Min = {p ∈ M : |x| ≤ R}. We introduce the
Dirichlet-to-Neumann operator

N(µ2)f = lim
x→R+

〈

−∂xu(µ;−x), ∂xu(µ;x)
〉

+ lim
x→R−

〈

∂xu(µ;−x),−∂xu(µ;x)
〉

; (2.11)

here 〈·, ·〉 ∈ L2(Γ−)⊕ L2(Γ+) ≡ L2(Γ) with Γ± = {p ∈ M : x = ±R}.

Theorem 3. Let ǫ > 0 be sufficiently small. Then the functions

µ 7→ N(µ2) ∈ B(H1(Γ);L2(Γ)), µ 7→ N(µ2)−1 − i

2µ

(

·, 1
)

L2(Γ)
∈ B(L2(Γ)),

and µ 7→ detN(µ2) ∈ C are holomorphic in the disc |µ| < ǫ, where detN(µ2) is the zeta
regularized determinant of N(µ2). Moreover, as µ tends to zero we have

detN(µ2) = −iµ(det∗ N(0) +O(µ)), (2.12)

where N(0) has zero as an eigenvalue and det∗N(0) ∈ R is the corresponding zeta
regularized determinant with zero eigenvalue excluded.

Proof. The main idea of the proof is essentially the same as in [1, Theorem B*] and [24,
Theorem B].

First we show that N(µ2) ∈ B(H1(Γ), L2(Γ)) is holomorphic in µ, |µ| < ǫ. Since ∆D
in

is a positive selfadjoint operator, its resolvent (∆D
in−µ2)−1 : H−1/2(Min) → H3/2(Min) is
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a holomorphic function of µ2 in the sufficiently small disc |µ2| < ǫ2; here ‖v;Hs(Min)‖ =
‖(∆D

in)
s/2v;L2(Min)‖. Let f̃ ∈ H3/2(Min) be a continuation of f ∈ H1(Γ). Then in the

small disc |µ| < ǫ the equality (2.10) defines a holomorphic family of operators mapping
H1(Γ) ∋ f 7→ u(µ) ∈ H3/2(Min). As a consequence, for any f ∈ H1(Γ) the second limit
in (2.11) is a holomorphic function of µ (more precisely of µ2), |µ| < ǫ, with values in
L2(Γ). The first limit in (2.11) also defines a holomorphic with respect to µ operator in
B(H1(Γ), L2(Γ)) as it is seen from the explicit formulae

∂xu
(

µ;± (R+), y
)

= ±
(

iµ

∫

Ok

f(y′) dy′

−
∑

ℓ∈Z\{0}

√

4π2ℓ2|Ok|−2 − µ2
∫

Ok

f(y′)e2πiℓ|Ok|
−1(y−y′) dy′

)

, y ∈ Ok, 1 ≤ k ≤ n,

obtained by separation of variables in the cylindrical ends; here + signs (resp. −) are
taken if Ok corresponds to a right (resp. left) cylindrical end.

On the next step we make use of the representation

N(µ2)−1 =
(

(∆0 − µ2)−1(· ⊗ δΓ)
)

↾Γ, (2.13)

where δΓ is the Dirac δ-function along Γ, the action of the resolvent on (· ⊗ δΓ) is
understood in the sense of distributions, and ↾Γ is the restriction map to Γ; for a proof
of (2.13) see [2, Proof of Theorem2.1].

Let ̺ be a smooth cutoff function on M supported in a small neighborhood of Γ and
such that ̺ = 1 in a vicinity of Γ. Since ̺ is supported outside of conical points, the
local elliptic coercive estimate

‖̺u;H1(M)‖ ≤ C(‖ ˜̺∆u;H−1(M)‖+ ‖ ˜̺u;L2(M)‖ (2.14)

is valid, where ˜̺ ∈ C∞
0 (M \ P) and ̺ ˜̺ = ̺. In particular, for

u = Φ(µ)f :=
(

∆0 − µ2
)−1

f − i

2µ

(

f, 1
)

L2(M)

(2.14) implies

‖̺Φ(µ)f ;H1(M)‖ ≤ C
(

‖f ;L2
ǫ (M)‖+ |µ|2‖(∆0 −µ2)−1f ;L2

−ǫ(M)‖+ ‖Φ(µ)f ;L2
−ǫ(M)‖

)

.

This together with Theorem 2 shows that µ 7→ ̺Φ(µ) ∈ B
(

L2
ǫ (M);H1(M)

)

is holomor-
phic in the disc |µ| < ǫ. Since the mapping L2(Γ) ∋ ψ 7→ ψ⊗ δΓ ∈ H−1(M) = (H1(M))∗

is continuous, for any f ∈ L2
ǫ(M) we have

(

(∆0 − µ2)−1(· ⊗ δΓ), f
)

L2(M)
=

(

· ⊗ δΓ,
−i
2µ̄

(

f, 1
)

L2(M)
+Φ(−µ̄)f

)

L2(M)

=
i

2µ

(

·, 1
)

L2(Γ)

(

1, f
)

L2(M)
+
(

· ⊗ δΓ, ̺Φ(−µ̄)f
)

L2(M)
,

where (·, ·)L2(M) is extended to the pairs in H−1(M)×H1(M) and L2
−ǫ(M)×L2

ǫ(M). In
other words, the equality

(∆0 − µ2)−1(· ⊗ δΓ) =
i

2µ

(

·, 1
)

L2(Γ)
+ H(µ), |µ| < ǫ, (2.15)
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holds in L2
−ǫ(M), where µ 7→ H(µ) ∈ B

(

L2(Γ), L2
−ǫ(M)

)

is holomorphic. We substitute
u = H(µ)ψ into (2.14) and obtain

‖̺H(µ)ψ;H1(M)‖ ≤C
(

‖ψ ⊗ δΓ;H
−1(M)‖

+ |µ|2‖(∆0 − µ2)−1(ψ ⊗ δΓ);L
2
−ǫ(M)‖ + ‖H(µ)ψ;L2

−ǫ(M)‖
)

.

Thus µ 7→ ̺H(µ) ∈ B(L2(Γ);H1(M)
)

is holomorphic. Now from (2.15), (2.13), and
continuity of the embedding H1(M) ↾Γ →֒ L2(Γ) we conclude that

N(µ2)−1 =
i

2µ

(

·, 1
)

L2(Γ)
+ HΓ(µ), |µ| < ǫ, (2.16)

where HΓ(µ)ψ = (̺H(µ)ψ) ↾Γ and µ 7→ HΓ(µ) ∈ B(L2(Γ)) is holomorphic. In partic-
ular, (2.16) implies that zero is a simple eigenvalue of N(0) and kerN(0) = {c ∈ C};
cf. (2.7).

The operator N(µ2) is an elliptic classical pseudodifferential operator on Γ (all conical
points of M are outside of Γ and thus do not affect properties of the symbol of N(µ2)),
e.g. from (2.13) one can see that the principal symbol of N(µ2) is 2|ξ|. Besides, (2.13)
implies that N(µ2) with µ2 ≤ 0 is formally selfadjoint, and N(µ2) is positive if µ2 < 0
and nonnegative if µ = 0. Therefore the closed unbounded operator N(µ2) in L2(Γ)
with domain H1(Γ) is selfadjoint for µ2 ≤ 0, it is positive if µ2 < 0, and nonnegative if
µ = 0, e.g. [34].

Let µ ∈ i[0, ǫ) and let 0 ≤ λ1(µ) ≤ λ2(µ) ≤ λ3(µ) ≤ · · · be the eigenvalues of
the selfadjoint operator N(µ2). The operator N(µ2), and therefore its eigenvalues and
eigenfunctions, are holomorphic functions of µ in the disc |µ| < ǫ ; e.g. [18, Chapter
VII]). Since ǫ is sufficiently small, the eigenvalue λ1(µ) remains simple for |µ| < ǫ and
λ1(µ) → 0 as µ→ 0, while all other eigenvalues satisfy δ < |λ2(µ)| ≤ |λ3(µ)| ≤ · · · with
some δ > 0. Let ψ(µ) be the eigenfunction corresponding to the eigenvalue λ1(µ) of
N(µ2) and satisfying (ψ(µ), ψ(−µ̄))L2(Γ) = 1; clearly, ψ(0) = 2−1/2. The equality

1/λ1(µ) =
(

N(µ2)−1ψ(µ), ψ(−µ̄)
)

L2(Γ)
, µ ∈ i(0, ǫ)

extends by analyticity to the punctured disc |µ| < ǫ, µ 6= 0. This together with (2.16)
and ‖ψ(µ)− 2−1/2;L2(Γ)‖ = O(|µ|) gives

λ1(µ) = −iµ+O(µ2), |µ| < ǫ. (2.17)

For µ 6= 0 the operator N(µ2) is invertible, the function ζ(s) = TrN(µ2)−s is holo-
morphic in {s ∈ C : ℜs > 1} and admits a meromorphic continuation to C with no pole
at s = 0. We set detN(µ2) = e−∂sζ(0). Besides, the function ζ∗(s) = TrN∗(µ

2)−s of the
invertible operator

N∗(µ
2) = N(µ2) + (1− λ1(µ))(·, ψ(−µ̄))L2(Γ)ψ(µ), |µ| < ǫ,

is holomorphic in {s ∈ C : ℜs > 1} and has a meromorphic continuation to C with no
pole at s = 0; here the Riesz projection (·, ψ(−µ̄))L2(Γ)ψ(µ) is a smoothing operator.

We set det∗N(µ2) = detN∗(µ
2) = e−∂sζ∗(0). Clearly,

detN(µ2) = λ1(µ) det
∗ N(µ2). (2.18)
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Note that (2.13) also implies that the order of pseudodifferential operator ∂ℓµN(µ2)−1

is −1 − 2ℓ. Thus the order of ∂ℓµN(µ2) is 1 − 2ℓ, for ℓ ≥ 1 and |µ| < ǫ the operator

∂ℓ−1
µ

[(

∂µN∗(µ
2)
)

N∗(µ
2)−1

]

is trace class and

∂ℓµ log det
∗ N(µ2) = Tr

(

∂ℓ−1
µ

[(

∂µN∗(µ
2)
)

N∗(µ
2)−1

])

,

∂µ̄ log det
∗ N(µ2) = Tr

((

∂µ̄N∗(µ
2)
)

N∗(µ
2)−1

)

= 0;

see [10, 1]. As a consequence, µ 7→ det∗ N(µ2) is holomorphic in the disc |µ| < ǫ. This
together with (2.18) and (2.17) completes the proof.

2.3 Relative zeta function

Both perturbed and unperturbed Mandelstam diagrams can be considered as strips Π
and Π̊ with different slits. Therefore L2(Π) = L2(Π̊) and the spaces L2(M) and L2(M̊)
can be naturally identified. Starting from now on we consider only selfadjoint Friedrichs
extensions ∆ and ∆̊ in L2(M); in other words, we set ǫ = 0 and omit it from notations.

Lemma 3. For all t > 0 the operator e−t∆ − e−t∆̊ is trace class and

Tr(e−t∆ − e−t∆̊) = O(t−1/2) as t→ +∞. (2.19)

Proof. As is known [2, Theorem 2.2], (∆+1)−1− (∆D
in⊕∆D

out+1)−1 is trace class; here
∆D

in is the same as in the section 2.2 and ∆D
out is the selfadjoint Friedrichs extension of

the Dirichlet Laplacian on Mout = {p ∈ M; |x| ≥ R}, i.e. ∆D
in ⊕∆D

out is the operator of
the Dirichlet problem (2.9). Then by the Krein theorem, see e.g. [36, Chapter 8.9] or [2,
Theorem 3.3], there exists a spectral shift function ξ ∈ L1(R+, (1 + λ)−2 dλ) such that

Tr
(

(∆ + 1)−1 − (∆D
in ⊕∆D

out + 1)−1
)

= −
∫ ∞

0
ξ(λ)(1 + λ)−2 dλ.

Moreover, the following representation is valid

Tr
(

e−t∆ − e−t∆D
in⊕∆D

out
)

= −t
∫ ∞

0
e−tλξ(λ) dλ, (2.20)

where the right hand side is finite. Thus e−t∆ − e−t∆D
in⊕∆D

out is trace class. Besides,
by [2, Theorem 3.5] we have

ξ(λ) = π−1 arg detN(λ+ i0), λ > 0. (2.21)

This together with (2.12) gives ξ(λ) = 3/2 +O(
√
λ) as λ→ 0+. As a consequence, the

right hand side of (2.20) provides the left hand side with asymptotic

Tr
(

e−t∆ − e−t∆D
in⊕∆D

out
)

= 3/2 +O(t−1/2) as t → +∞. (2.22)

Similarly we conclude that e−t∆̊ − e−t∆̊D
in⊕∆̊D

out is trace class and

Tr
(

e−t∆̊ − e−t∆̊D
in⊕∆̊D

out
)

= 3/2 +O(t−1/2) as t → +∞; (2.23)

here the operators ∆̊D
in and ∆̊D

out of the Dirichlet problems on {p ∈ M̊ : |x| ≤ R} and

{p ∈ M̊ : |x| ≥ R} respectively are introduced in the same way as ∆D
in and ∆D

out. For the

operator ∆D
in (resp. ∆̊D

in) on compact manifold it is known that e−t∆D
in (resp. e−t∆̊D

in)

is trace class and Tr e−t∆D
in = O(e−λt) (resp. Tr e−t∆̊D

in = O(e−λt)) as t → +∞, where
λ > 0 is the first eigenvalue of ∆D

in (resp. ∆̊D
in). Since ∆D

out ≡ ∆̊D
out, this together

with (2.22) and (2.23) completes the proof.
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Remark 1. In the general framework [29] (see also [31, 30]) the long time behavior

of Tr
(

e−t∆ − e−t∆D
in⊕∆D

out

)

is supposed to be studied via properties of the corresponding
scattering matrix near the bottom of the continuous spectrum (as it naturally follows
from (2.20) and the Birman-Krein theorem). In contrast to this, in the proof of Lemma 3
we follow the original idea of Carron [2, Theorem 3.5], [3] and immediately obtain the
result relying on (2.21) and (2.12).

Lemma 4. Let K be the number of the interior slits of the diagram M. Then for some
δ > 0

Tr(e−t∆ − e−t∆̊) = −K/4 +O(e−δ/t) (2.24)

as t→ 0+.

Proof. Let {Uj} be a finite covering of the flat surface M by open discs centered at
conical points, flat open discs, and open semi-infinite cylinders and let {ζj} be the C∞

partition of unity subject to this covering. Let also ζ̃j be smooth functions supported
in small neighborhoods of Uj such that ζj ζ̃j = ζj and

dist(supp∇ζ̃j, suppζj) > 0

for all j. Define a parametrix for the heat equation on M as

P(p, q; t) =
∑

j

ζ̃j(p)Kj(p, q; t)ζj(q), (2.25)

where Kj is (depending on the type of the element Uj of the covering) either the heat
kernel on the infinite flat cone with conical angle 4π (see, e. g., [22], f-la (4.4)) or the
standard heat kernel in R

2 or the heat kernel

H(x, y, x′, y′, t) =
e−(x−x′)2/(4t)

√
4πta

∑

n∈Z

ei2πa
−1n(y−y′)−4π2n2a−2t (2.26)

in the infinite cylinder with circumference a (the latter is the same as the circumference
of the corresponding semi-infinite cylinder from the covering). One has the relation

lim
t↓0

∫

M

P(x, y, x′, y′; t)f(x′, y′) dx′ dy′ = f(x, y), ∀f ∈ C∞
0 (M)

and the estimate
|P1(x, y, x

′, y′; t)| ≤ Ce−δ(1+x2+x′2)/t (2.27)

for P1(p, q; t) := (∂t − ∆)P(p, q; t) and some δ > 0. To prove (2.27) one has to notice
that P1(p, q; t) vanishes when p does not belong to the union of supp∇ζj (which is a
compact subset of M) or when the distance between p and q is sufficiently small and
then make use of the explicit expressions for the standard heat kernels in (2.25). Due
to (2.27) one can construct the heat kernel on M in the same way as it is usually done
for compact manifolds (see, e. g. [28]). We introduce consecutively

Pℓ+1(x, y, x
′, y′; t) =

∫ t

0

∫

M

P1(x, y, x̂, ŷ; t− t̂)Pℓ(x̂, ŷ, x
′, y′; t̂) dx̂ dŷ dt̂, ℓ ≥ 1. (2.28)

By (2.27) the second integral in (2.28) is absolutely convergent and

|Pℓ+1(x, y, x
′, y′; t)| ≤ e−δ(1+x2+x′2)/t(ct)ℓ (2.29)
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for some c > 0. For small t the heat kernel H on M is given by

H = P+

∞
∑

ℓ=1

(−1)ℓPℓ. (2.30)

Moreover, one has the following estimate for the difference between the heat kernel
and the parametrix P

|H(x, y, x′, y′; t)− P(x, y, x′, y′; t)| ≤ Ce−δ(1+x2+x′2)/t, (2.31)

where t > 0 is sufficiently small, δ and C are some positive constants.
Similarly one can construct a parametrix Q and the heat kernel H̊ for the ”free”

diagram M̊ (coinciding with M for |x| > R, with sufficiently large R). Obviously,
P(p, p; t) = Q(p, p; t) for p = (x, y), |x| > R. Thus,

Tr(e−t∆ − e−t∆̊) =

∫

M

H(x, y, x, y; t)dx dy −
∫

M̊

H̊(x, y, x, y; t) dx dy

=

∫

M∩{|x|<R}
H(x, y, x, y; t)dx dy −

∫

M̊∩{|x|<R}
H̊(x, y, x, y; t) dx dy +O(e−δ/t),

where δ > 0 and t ↓ 0. From ([22], Theorem 8) it follows that the first integral at the
right has the asymptotics

Area(M ∩ {|x| < R}
4πt

+
1

12

∑

k

(
2π

βk
− βk

2π
) +O(e−δ/t),

as t → 0+, where the summation is over the conical points of M inside {|x| < R} and
all the conical angles βk are equal to 4π. The second term has the similar asymptotics
with Area(M̊ ∩ {|x| < R} = Area(M ∩ {|x| < R} and smaller number of conical points
(by 2K, where K is the number of interior slits of the perturbed diagram M). This
implies (2.24).

Now we are in position to introduce the relative zeta determinant det(∆−µ2, ∆̊−µ2)
following [29]. As a consequence of Lemma 3 the function

ζ∞(s;∆ − µ2, ∆̊− µ2) =
1

Γ(s)

∫ ∞

1
ts−1etµ

2
Tr(e−t∆ − e−t∆̊) dt, µ2 ≤ 0,

is holomorphic in {s ∈ C : ℜs < 1/2} (and ζ∞(0;∆, ∆̊) = 0). Lemma 4 implies that the
holomorphic in {s ∈ C : ℜs > 1} function

ζ0(s;∆ − µ2, ∆̊− µ2) =
1

Γ(s)

∫ 1

0
ts−1etµ

2
Tr(e−t∆ − e−t∆̊) dt, µ2 ≤ 0,

has a meromorphic extension to s ∈ C with no pole at s = 0 (and ζ0(0;∆, ∆̊) = −K/4).
We introduce the relative zeta function

ζ(s;∆− µ2, ∆̊− µ2) = ζ0(s;∆− µ2, ∆̊ − µ2) + ζ∞(s;∆− µ2, ∆̊ − µ2)

and the corresponding relative determinant

det(∆− µ2, ∆̊− µ2) = e−∂sζ(0;∆−µ2,∆̊−µ2), µ2 ≤ 0.
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Theorem 4.

det(∆− µ2, ∆̊ − µ2) = det(∆, ∆̊) + o(1) as µ2 → 0− . (2.32)

Proof. From analytic continuations of ζ0 and ζ∞ it is easily seen that as µ2 → 0− we
have

∂sζ0(0;∆ − µ2, ∆̊− µ2) = ∂sζ0(0;∆, ∆̊) + o(1),

∂sζ∞(0;∆ − µ2, ∆̊− µ2) = ∂sζ∞(0;∆, ∆̊) + o(1),

which proves the assertion.

2.4 Decomposition formula

Proof of Theorem 1. The asymptotic Tr(e−t∆−e−t∆D
in⊕∆D

out) ∼
∑

j≥−2 ajt
j/2 as t→ 0+

(which can be established in the same way as (2.24)) together with (2.22) implies that
the relative zeta function

ζ
(

s;∆− µ2,∆D
in ⊕∆D

out − µ2
)

=
1

Γ(s)

∫ ∞

0
ts−1etµ

2
Tr(e−t∆ − e−t∆D

in⊕∆D
out) dt, µ2 < 0,

is holomorphic for {s ∈ C;ℜs > 1} and has a meromorphic extension to s ∈ C with no
pole at s = 0. We set

det
(

∆− µ2,∆D
in ⊕∆D

out − µ2
)

= e−∂sζ
(

0;∆−µ2,∆D
in⊕∆D

out−µ2
)

.

Similarly we define det
(

∆̊− µ2, ∆̊D
in ⊕∆D

out − µ2
)

. Then by [2, Theorem 4.2] we have

det
(

∆− µ2,∆D
in ⊕∆D

out − µ2
)

= detN(µ2); det
(

∆̊− µ2, ∆̊D
in ⊕∆D

out − µ2
)

= det N̊(µ2).

Dividing the first equality by the second one we get

det(∆− µ2, ∆̊ − µ2) det(∆̊D
in − µ2)

det(∆D
in − µ2)

=
detN(µ2)

det N̊(µ2)
, (2.33)

where det(∆D
in−µ2) and det(∆̊D

in−µ2) are the zeta regularized determinants of Dirichlet
Laplacians on compact manifolds. Since ∆D

in is positive, we have det(∆D
in−µ2) → det∆D

in

as µ2 → 0, and the same is true for ∆̊D
in. Thanks to (2.32) and Theorem 3 applied to

N(µ2) and N̊(µ2) we can pass in (2.33) to the limit as µ2 → 0− and obtain

det(∆, ∆̊) det ∆̊D
in

det∆D
in

=
det∗ N(0)

det∗ N̊(0)
.

Since det ∆̊D
in and det∗ N̊(0) are moduli independent, this proves Theorem 1, where

C = (det ∆̊D
in det

∗ N̊(0))−1 and N = N(0).
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3 Variational formulas for the relative determinant

3.1 Compactification of the ends

In the holomorphic local parameter ζk = exp(∓2πz/|Ok|), z = x + iy in a vicinity
Uk = {x > R} (or {x < −R}) of the point at infinity ζk = 0 of the k-th cylindrical end
of M the flat metric m on M is written in the form

m =
|Ok|2
4π2

|dζk|2
|ζk|2

.

Let χk be a smooth function on C such that χk(ζ) = χk(|ζ|), |χk(ζ)| ≤ 1, χk(ζ) = 0
if |ζ| > exp(−2π(R + 1)/|Ok|) and χ(ζ) = 1 if |ζ| < exp(−2π(R + 2)/|Ok|). Introduce
another metric m̃ on M by

m̃ =

{

m for |x| < R;

[1 + (|ζk|2 − 1)χ(ζk)]m in Uk.

Applying BFK decomposition formula [1, Theorem B*] to the determinant of the
Laplacian ∆m̃ on the compact Riemannian manifold (M, m̃), we get

log det∆m̃ = logC0 + log det∆D
in + log det∗N + log det∆m̃

ext, (3.1)

where ∆m̃

ext is the operator of the Dirichlet problem for ∆m̃ in M \ {|x| < R},

C0 =
Area(M, m̃)

∑ |Ok|
,

and N is the same as in (2.1). From (2.1) and (3.1) it follows that log det∆m̃ and
log det(∆, ∆̊) have the same variations with respect to moduli hk, θk, τk and, therefore,

det∆m̃ = C det(∆, ∆̊)

with moduli independent factor C.

3.2 Variational formulas for resolvent kernel

Denote by G(·, ·;λ) the resolvent kernel of the Laplace operator ∆m̃. From now on we
assume that the spectral parameter λ is real, so G(·, ·;λ) is a real-valued function.

Introduce the one-form ω on M

ω = G(P, z, z̄;λ)Gzz̄(Q, z, z̄;λ)dz̄ +Gz(P, z, z̄;λ)Gz(Q, z, z̄;λ)dz . (3.2)

Clearly, dω = 0 on M ∩ {|x| < R}.
The following proposition describes the variations of the resolvent kernel G(P,Q;λ)

under variations of moduli parameters. It is assumed that positions of the points P and
Q on the diagram are kept fixed when the moduli vary.

Proposition 2.

∂G(P,Q;λ)

∂θk
= 4ℜ

{

∮

γk

ω
}

, k = 1, . . . , 3g + n− 3 ; (3.3)
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✤
✤
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Figure 3: Contours.

∂G(P,Q;λ)

∂hk
= −4ℜ

{

∮

bk

ω
}

, k = 1, . . . , g ; (3.4)

∂G(P,Q;λ)

∂τk
= 4ℑ

{

∮

±Ak±A′

k
∓Ck

ω
}

. (3.5)

Here γk are the contours along which the twists θk are performed, bk are b-cycles on
the Riemann surface M encircling the finite cuts of the diagram, contours Ak, A

′
k and

Ck coincide with circumferences of the three cylinders joining at the moment of ”time”
x = τk, the choice of sign ± depends on the position of the cylinders (two at the left and
one at the right or vice versa), see Fig. 3.

In the proof of Proposition 2 we will make use of the representation of a solution to
the homogeneous Helmholtz equation given by the following Lemma.

Lemma 5. Let G(z, z̄, ξ, ξ̄;λ) be the resolvent kernel of the operator ∆m̃, and let u be
a solution to

∆m̃u− λu = 0 (3.6)

in M. Let also Ω ⊂ M be a an open subset of M with piece-wise smooth boundary. Then
for any P ∈ Ω, P = (ξ, ξ̄) one has the relation

u(ξ, ξ̄) = −2i

∫

∂Ω
G(z, z̄, ξ, ξ̄;λ)uz̄(z, z̄)dz̄ +Gz(z, z̄, ξ, ξ̄;λ)u(z, z̄)dz . (3.7)

Proof of Lemma 5. Applying Stokes theorem to the integral over the boundary of the
domain Ωǫ = Ω \ {|z − ξ| ≤ ǫ}, one gets the relation

∫

∂Ωǫ

G(z, z̄, ξ, ξ̄;λ)uz̄(z, z̄)dz̄ +Gz(z, z̄, ξ, ξ̄;λ)u(z, z̄)dz =

∫∫

Ωǫ

(Guzz̄ −Gzz̄u) dz ∧ dz̄

=

∫∫

Ωǫ

1

ρ(z, z̄)

{

G(∆m̃u− λu)− (∆m̃G− λG)u
}

dz ∧ dz̄ = 0 ,
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where ∆m̃ = ρ(z, z̄)∂z∂z̄ in the conformal local parameter z. Sending ǫ to 0 and using
the asymptotics

G(z, z̄, ξ, ξ̄;λ) =
1

2π
log |z − ξ|+O(1)

as z → ξ, one gets (3.7).

Proof of Proposition 2. Let us prove (3.3).
Let Ω be the surfaceM cut along the twist contour γk. Denote the differentiation with

respect to θk by dot. The function Ġ(P, ·;λ) satisfies homogeneous Helmholtz equation
(3.6). (Note that the singularity of G(P, ·;λ) at P disappears after differentiation with
respect to θk.) Differentiating the relation

G−(P, z, z̄;λ; {. . . , θk, . . . }) = G+(P, z + iθk, z + iθk, λ; {. . . , θk, . . . })

for the left and right limit values of G(P, ·;λ) at the contour γk (we remind the reader
that G implicitly depends on moduli, this dependence is indicated in the previous for-
mula), we get

Ġ−(P, z, z̄;λ) = Ġ+(P, z, z̄;λ) + i(Gz(P, z, z̄;λ)−Gz̄(P, z, z̄, λ)), (3.8)

(Ġz̄)−(P, z, z̄;λ) = (Ġz̄)+(P, z, z̄;λ) + i(Gzz̄(P, z, z̄;λ)−Gz̄z̄(P, z, z̄, λ)). (3.9)

Assuming that the contour γk is not homologous to zero and using (3.7), (3.8) and
(3.9), we get

Ġ(P,Q;λ) = 2

∫

γk

G(z, z̄, Q;λ) [Gzz̄(P, z, z̄;λ)−Gz̄z̄(P, z, z̄, λ)] dz̄

+Gz(z, z̄, Q;λ) [Gz(P, z, z̄;λ)−Gz̄(P, z, z̄, λ)] dz

= 2

∫

γk

ω(P,Q) + ω(P,Q)− d (G(Q, z, z̄;λ)Gz̄(P, z, z̄;λ)) = 4ℜ
{∫

γk

ω

}

.

In the case of homologically trivial contour γk dividing the diagram M into two parts,
M− and M+, one has, say, for Q ∈ M−:

Ġ(P,Q;λ) = −2i

∮

γk

G(z, z̄, Q;λ)[Ġ−]z̄(P, z, z̄;λ)dz̄ +Gz(z, z̄;Q;λ)Ġ−(P, z, z̄;λ)dz,

−2i

∮

γk

G(z, z̄, Q;λ)[Ġ+]z̄(P, z, z̄;λ)dz̄ +Gz(z, z̄;Q;λ)Ġ+(P, z, z̄;λ)dz = 0 .

These two relations together with (3.8), (3.9) imply (3.3).
To prove (3.5) we notice (leaving the detailed proof to the reader) that the infinites-

imal horizontal shift of a zero Pk of the differential ω (or, equivalently, the variation
of the interaction time τk) is the same as the insertion (removal) of the infinitesimal
horizontal cylinders along the circumferences Ak, A

′
k and Ck of the three cylinders of

the diagram M meeting at Pk. It is easy to show that the variation of the resolvent
kernel under each such insertion (removal) is given by

4ℑ
{

∮

γ
ω
}
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where the γ is the cycle of the insertion (removal). The orientation of the cycle γ depends
on its position with respect to the point Pk (from the left or from the right).

It should also be noticed that the sum±Ak±A′
k∓Ck is homologous to a small circular

contour surrounding the zero Pk and (3.5) could also be proved using real analyticity
of the resolvent kernel with respect to the local parameter

√

z − z(Pk) (cf. the proof of
formula (4.24) in [22]).

The proof of (3.4) is similar to the proof of the formula (4.20) in [22]. We leave it to
the reader.

3.3 Variational formulas for regularized determinant

Choose a canonical basis of a and b-periods on the compact Riemann surface M, the
corresponding basis of normalized holomorphic differentials {vk};

∮

aj
vk = δjk and in-

troduce the corresponding matrix of b-periods

B = ||
∮

bj

vk||j,k=1,...,g ,

the prime form E(P,Q), the canonical meromorphic bidifferential

W (P,Q) = dp dQ logE(P,Q),

and the Bergman projective connection SB (see [8]). Denote by Sω the projective con-
nection defined via

{
∫ P

ω, x(P )

}

,

where the braces denote the Schwarzian derivative.
The following theorem gives the variational formulas for the regularized determinant

with respect to moduli.

Theorem 5. Let

Q̃ =
det∆m̃

detℑB , Q =
det(∆, ∆̊)

detℑB .

Then the following variational formulas hold:

∂ logQ

∂θk
=
∂ log Q̃

∂θk
= − 1

6π
ℜ
{

∮

γk

SB − Sω
ω

}

, k = 1, . . . , 3g + n− 3; (3.10)

∂ logQ

∂hk
=
∂ log Q̃

∂hk
=

1

6π
ℜ
{∮

bk

SB − Sω
ω

}

, k = 1, . . . , g; (3.11)

∂ logQ

∂τk
=
∂ log Q̃

∂τk
= − 1

6π
ℑ
{

∮

±Ak±A′

k
∓Ck

SB − Sω
ω

}

. (3.12)

Although methods of Fay’s memoir [8] allows to derive Theorem 5 from Proposition 2
in the same manner as [22, Theorem 9] was derived from [22, Proposition 2], we decided
to use another approach, which is shorter and more transparent than that of [22]. We rely
on the contour integral representation of the operator-zeta function and the variations
of individual eigenvalues of the Laplacian ∆m̃, see Lemma 6 below.
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Lemma 6. Let λj be an eigenvalue of ∆m̃ and let φj be the corresponding (real-valued)
normalized eigenfunction. The one-form

Ωj = (∂zφj(z, z̄))
2dz +

λj
4
φj(z, z̄)

2dz̄ (3.13)

is closed in the flat part of (M, m̃) outside the conical singularities. One has the following
variational formulas:

∂λj
∂θk

= 4ℜ
{
∮

γk

Ωj

}

, (3.14)

∂λj
∂hk

= −4ℜ
{∮

bk

Ωj

}

, (3.15)

∂λj
∂τk

= 4ℑ
{

∮

±Ak±A′

k
∓Ck

Ωj

}

. (3.16)

Proof of Lemma 6. All statements immediately follow from Proposition 2 (cf. [8], p. 53,
f-la 3.17) and the relation

λ̇n =

∫∫

M

Res
(

(λ− λn)Ġ(x, y;λ);λ = λn

) ∣

∣

∣

y=x
dm̃(x) .

However, Lemma 6 can also be proved independently. Let us omit the index j and denote
the eigenvalue by λ and the corresponding (real-valued) normalized eigenfunction by φ.
For instance, to prove (3.14) observe (cf. (3.8) and (3.9)) that the derivative φ̇ of φ with
respect to θk has the jump i(φz −φz̄) on the contour γk, whereas φ̇z has there the jump
i(φzz − φzz̄). Denote by M̂ the surface M cut along the contour γk. We have

∫∫

M̂

φφ̇ =
1

λ

∫∫

M̂

∆m̃φφ̇ =
1

λ

{

2i

∫

∂M̂
φz̄φ̇dz̄ + φφ̇zdz +

∫∫

M̂

φ(λφ)·
}

=
1

λ

{

−2

∫

γk

φz̄(φz − φz̄)dz̄ + φ(φzz − φzz̄)dz + λ̇+ λ

∫∫

M̂

φφ̇

}

Now (3.14) follows from the relations

φz̄φzdz̄ − (φz̄)
2dz̄ + φφzzdz − φφzz̄dz = d(φφz)− (φz)

2dz − φφzz̄dz̄ − (φz̄)
2dz̄ − φφzz̄dz

and

φzz̄ =
λ

4
φ;

the latter one, of course, holds only in the flat part of (M, m̃).

Proof of Theorem 5. From now on λ stands for the spectral parameter (we assume that
it is real and negative), {λk} is the spectrum of ∆m̃, z is the complex variable of in-
tegration which at some points also becomes the spectral parameter (one of the the
arguments of the resolvent kernel), x and y will denote the (flat) complex local coordi-
nates of points near the contour γk. We start from the following integral representation
of the zeta-function of the operator ∆m̃ − λ through the trace of the second power of
the resolvent:

sζ(s+ 1;∆m̃ − λ) =
1

2πi

∫

Γλ

(z − λ)−sTr
(

(∆m̃ − z)−2
)

dz , (3.17)
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where Γλ is the contour connecting −∞+iǫ with −∞−iǫ and following the cut (−∞, λ)
at the (sufficiently small) distance ǫ > 0.

Differentiating this formula with respect to θk (dot stands for such a derivative) and
making use of (3.14), we get

sζ̇(s+ 1,∆m̃ − λ) = − 1

πi

∫

Γλ

(z − λ)−s
∑

λn>0

λ̇n
(λn − z)3

dz

= − 4

πi

∫

Γλ

(z − λ)−s
∑

n

ℜ
{

∮

γk
(∂xφn(x, x̄))

2dx+ λn

4 φn(x, x̄)
2dx̄

}

(λn − z)3
. (3.18)

One can assume that the contour γk is parallel to the imaginary axis and, therefore,
ℜ
∮

γk
φ2ndx̄ = 0 (the latter trick does not work when one differentiates with respect to

other moduli hk, τk, in these cases the proof gets a little bit longer) and the right hand
side of (3.18) can be rewritten as

− 2

πi

∮

γk

∫

Γλ

(z−λ)−s
∑

n

(∂xφn(x, x̄))
2

(λn − z)3
dxdz− 2

πi

∮

γk

∫

Γλ

∑

n

(∂x̄φn(x, x̄))
2

(λn − z)3
dx̄dz . (3.19)

Using the standard resolvent kernel representation

G(x, y; z) =
∑

n

φn(x, x̄)φn(y, ȳ)

λn − z
,

where summation is understood in the sense of the theory of distributions, one can easily

identify the sum under the first (resp. the second) integral with 1
2

(

d2

(dz)2
G′′

xy(x, y; z)
) ∣

∣

∣

y=x

(resp. 1
2

(

d2

(dz)2
G′′

x̄ȳ(x, y; z)
) ∣

∣

∣

y=x
. It should be noted that although the resolvent kernel

(as well as its second xy-derivative) is singular at the diagonal x = y, after differentiation
with respect the spectral parameter this singularity disappears. Using Theorem 2.7 from
Fay’s memoir [8], we get

(

d2

(dz)2
G′′

xy(x, y; z)

)

∣

∣

∣

y=x

=
d2

(dz)2

[(

G′′
xy(x, y; z) −

1

4π

1

(x− y)2
+

z

16π

ȳ − x̄

y − x

)

∣

∣

∣

y=x

]

=:
d2

(dz)2
Φ(x, z);

note that in [8, (2.32)] one should take r = |x− y|, H0 = 1, and H1 = 0 as the metric m̃
is flat in a vicinity of the contour γk. Clearly, in the right hand side of (3.18) the sum
under the second integral equals to

d2

(dz)2
Φ(x, z̄).

Integration by parts in (3.18) (and the change of variable s+ 1 7→ s) leads to

ζ̇(s;∆m̃ − λ) = − 1

πi

∮

γk

∫

Γλ

(z − λ)−s

[

d

dz
Φ(x, z)dx+

d

dz
Φ(x, z̄)dx̄

]

dz.

Shrinking the contour Γλ to the half-line (−∞, λ), we obtain

ζ̇(s,∆m̃ − λ) = −2 sin(πs)

π

∫ λ

−∞

∮

γk

(λ− t)−s

[

d

dt
Φ(x, t)dx+

d

dt
Φ(x, t)dx̄

]

dt. (3.20)

22



We differentiate (3.20) with respect to s and set s = 0 and λ = 0. As a result we get

ζ̇ ′(0,∆m̃) = −2

∮

γk

Φ(x, t)
∣

∣

∣

t=0

t=−∞
dx+Φ(x, t)

∣

∣

∣

0

t=−∞
dx̄ (3.21)

= −2

∮

γk





1

24π
SB(x)−

1

4

g
∑

α,β=1

(ℑB)−1
αβvα(x)vβ(x)



 dx+
(

· · ·
)

dx̄ (3.22)

= − 1

6π
ℜ







∮

γk

SB(x)dx− 6π

∮

γk

g
∑

α,β=1

(ℑB)−1
αβvα(x)vβ(x)dx







,

which is the same as (3.10). To pass from (3.21) to (3.22) we used the classical Lemma 7
given below (cf. [8], p. 30).

Lemma 7. Let, as before, G(x, y;λ) be the resolvent kernel for the operator ∆m̃. Define
the Green function G(x, y) of the operator ∆m̃ via the expansion

G(x, y;λ) = − 1

Area(M, m̃)

1

λ
+G(x, y) +O(λ), λ→ 0. (3.23)

Then G′′
xy( · , · ) is a meromorphic bidifferential with unique double pole at the diagonal

x = y, related to the Bergman bidifferential W (x, y) via

4πG′′
xy(x, y) =W (x, y)− π

g
∑

1

ℑB−1
ij vi(x)vj(y) ,

where v1, . . . , vg are the normalized holomorphic differentials on the compact Riemann
surface M. In particular, we have

[

4πG′′
xy(x, y)−

1

(x− y)2

]

∣

∣

∣

y=x
=

1

6
SB(x)− π

g
∑

1

ℑB−1
ij vi(x)vj(x) ,

where SB is the Bergman projective connection.

Proof. Clearly, the Green function (symmetric with respect to its both arguments) is
the (unique) solution to the problem

{

∆m̃
x G(x, y) = − 1

Area(M,m̃) for x 6= y,

G(x, y) ∼ 1
2π log |x− y| as x→ y.

Thus, ∂x̄G
′′
xy = 0 for x 6= y and 4πG′′

xy(x, y) =
1

(x−y)2
+O(1) as y → x. This implies the

equation

4πG′′
xy(x, y) =W (x, y) +

g
∑

i,j=1

cij vi(x)vj(y) (3.24)

with some constants cij . Using Stokes theorem, it is easy to show that

v.p.

∫∫

M

G′′
xy(x, y)vi(x) = 0, i = 1, . . . , g. (3.25)

Plugging (3.24) in the orthogonality conditions (3.25) and using Stokes theorem once
again, one gets the relations

cij = −π(ℑB)−1
ij , i, j = 1, . . . , g.
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Remark 2. For other moduli (hk and τk) the trick with choosing the contour of integra-
tion parallel to the imaginary axis is impossible and one has to work with the additional
term

∑ λn
4

(φn(x, x̄))
2

(z − λn)3
=

1

2

(

d2

(dz)2
G′′

xx̄(x, y; z)

)

∣

∣

∣

y=x
.

To interchange the differentiation with respect to z and pass to the limit y → x one
should make use of the following corollary of [8, Theorem 2.7]:

(

d2

(dz)2
G′′

xx̄(x, y; z)

)

∣

∣

∣

y=x

=
d2

(dz)2

{(

G′′
xx̄(x, y; z) −

1

16π
z log |x− y|2 − 1

8π
z(log

1

2

√
z + γ − 1)

)

∣

∣

∣

y=x

}

.

After the same operations as before this term gives rise to the expressions

ℜ
[

1

Area(M, m̃)

∮

bk

dx̄

]

or
1

Area(M, m̃)

∮

±Ak±A′

k
∓Ck

dx̄.

Both of them vanish.

Remark 3. For non Friedrichs self-adjoint extensions of the Laplacian on (M, m̃) λ = 0
is not an eigenvalue and (3.23) is no longer true. Determinants of such extensions were
studied in [16].

4 Bergman tau-function on Mandelstam diagrams and ex-

plicit formulas for regularized determinant

In this section we show that a solution to the system of equations in partial derivatives
(3.10, 3.11, 3.12) can be found explicitly in terms of certain canonical objects related
to the underlying Riemann surface M (theta-functions, prime-forms) and the divisor of
the meromorphic differential ω. This leads to an explicit formula for the regularized
determinant det(∆, ∆̊) (up to moduli independent multiplicative constant).

We construct the above mentioned solution as the modulus square of the function
τ defined on the space of Mandelstam diagrams of a given genus. (More precisely, only
some integer power of τ is single-valued on the space of diagrams, the function τ itself
is defined up to a unitary factor.)

We start with definition of the function τ . Note that it is a straightforward gener-
alization of the Bergman tau-function on the moduli space of Abelian differentials [22]
(i. e. the moduli space of pairs (X,ω), where X is a compact Riemann surface, and ω
is a holomorphic one-form on X) to the case of a meromorphic one-form ω with pure
imaginary periods and simple poles with (fixed) real residues. This generalization (along
with many others) was also recently discussed in [17].

The cases of genus g = 0, g = 1 and g ≥ 2 should be considered separately, the first
two are pretty elementary and do not involve somewhat complicated auxiliary objects.

Genus zero case. Let the Riemann surface M have genus zero. In this case the
Mandelstam diagram Π has no interior slits. The Riemann surface M is biholomorphi-
cally equivalent to the Riemann sphere CP 1, let z be the uniformizing parameter which
came from C = CP 1 \ ∞. The canonical meromorphic bidifferential is given by

W (P,Q) =
dz(P ) dz(Q)

(z(P )− z(Q))2
.
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Assume that the circles O1, . . . , On−
correspond to the left cylindrical ends of M, i.e.

∪1≤ℓ≤n−
Oℓ is the cross-section {p ∈ M : x = −R}. Then there are n+ = n − n−

circles On−+1, . . . , On corresponding to the right cylindrical ends of M. Let P−
k with

k = 1, . . . , n− and P+
j with j = 1, . . . , n+ be the corresponding points at infinity of the

diagram M or, equivalently, the poles of the meromorphic differential ω with residues

− |Ok|
2π and

|Oj+n
−
|

2π respectively. Let also R1, . . . , Rn−2 be the zeros of the meromorphic
differential ω or, equivalently, the end points of the semi-infinite slits of the diagram M.

Introduce the local parameters

ζ−k = exp(2πz/|Ok |) (resp. ζ+j = exp(−2πz/|On−+j |)) (4.1)

in vicinities of the poles P−
k (resp. P+

j ) of the differential ω and

ζℓ =
√

z − z(Rl) (4.2)

in vicinities of the zeros Rl of ω. We call the parameters (4.1), (4.2) distinguished. In
what follows we denote by W (Rl, · ) the meromorphic one-form on the Riemann surface
M

W (P, · )
dζ(P )

∣

∣

∣

P=Rl

,

where ζ is the distinguished local parameter in a vicinity of Rl; the quantities W (P±
k , · )

have similar meaning. Introduce the function τ on the space of Mandelstam diagrams
via

τ12 =
1

ω2( · )

∏n−

k=1W (P−
k , · )

∏n+

j=1W (P+
j , · )

∏n−2
l=1 W (Rl, · )

. (4.3)

Clearly, the right hand side of (4.3) is a holomorphic function on the Riemann surface
M and, therefore, a constant (depending on moduli).

Genus one case. Let the Riemann surface M have genus one. In this case the
Mandelstam diagram M has one interior slit and the number of poles of the differential
ω (i. e. the points at infinity of the diagram M) equals to the number of zeros of ω
(i. e. the endpoints of the slits of the diagram M). For the poles and zeros we keep
the same notation P±

k , Rl as before. Let B be the b-period of the normalized
(∫

a v = 1
)

differential v on the marked Riemann surface (M, {a, b}). Let

v(Rl) =
v(P )

dζ(P )

∣

∣

∣

P=Rl

,

where ζ is the distinguished local parameter near Rl. The quantities v(P±
k ) are defined

similarly. Define the function τ via

τ12 =
[

Θ′
1(0 |B )

]8

∏n−

k=1 v(P
−
k )

∏n+

j=1 v(P
+
j )

∏n
l=1 v(Rl)

, (4.4)

where Θ1 is the first Jacobi’s theta-function.
Case of genus g ≥ 2. Let the Riemann surface M have genus g ≥ 2. Following [8],

introduce the (multivalued) g(g − 1)/2-differential

C(P ) =
1

W[v1, v2, . . . , vg](P )

g
∑

α1,...,αg=1

∂gΘ(KP )

∂zα1 . . . ∂zαg

vα1 . . . vαg (P ) ,
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where {v1, . . . , vg} is the normalized basis of holomorphic differentials on M, W is the
Wronskian determinant of the holomorphic differentials, KP is the vector of Riemann
constants, Θ is the theta-function built from the matrix B of the b-periods of the Riemann
surface M. Let E(P,Q) be the prime-form on M (see [8]).

It is convenient to denote the zeros and poles of the meromorphic one-form ω by Dl.
The divisor of the one-form ω can be written as

(ω) =
∑

l

dlDl,

where dl = 1 if Dl is a zero and dl = −1 if Dl is a pole of ω.
Define the function τ via

τ = F2/3e−
πi
6
<r,Br>

∏

m<n

{E(Dm,Dn)}dmdn/6 , (4.5)

where the (scalar)

F = [ω(P )](g−1)/2e−πi<r,KP>

{

∏

m

[E(P,Dm)]
(1−g)dm

2

}

C(P )

is independent of the point P of the Riemann surface M and the integer vector r is
defined by the equality

A((ω)) + 2KP + Br+ q = 0;

here q is another integer vector and the initial point of the Abel map A coincides with
P . If one argument (or both) of the prime-form coincides with some point Dl then the
prime-form is computed with respect to the distinguished local parameter at this point.

Remark 4. If n− = n+ and there is a one-to-one correspondence between the sets
{Ok}n−

k=1 and {Oj}nj=n−+1, then as M̊ one take the union ∪n−

ℓ=1R × Oℓ of n/2 infinite
cylinders. As a result the right hand sides of (4.3), (4.4), and (4.5) turns out to be
invariant under the horizontal shifts of the diagram z 7→ z + C or, what is the same,
independent of the choice of the initial moment of time τ0 = 0.

The following theorem states that the logarithm of the modulus square of the just
introduced function τ has the same derivatives with respect to moduli as the quantity

log det(∆,∆̊)
detℑB

.

Theorem 6. Then the following variational formulas hold:

∂ log |τ |2
∂θk

= − 1

6π
ℜ
{

∮

γk

SB − Sω
ω

}

, k = 1, . . . , 3g + n− 3; (4.6)

∂ log |τ |2
∂hk

=
1

6π
ℜ
{
∮

bk

SB − Sω
ω

}

, k = 1, . . . , g; (4.7)

∂ log |τ |2
∂τk

= − 1

6π
ℑ
{

∮

±Ak±A′

k
∓Ck

SB − Sω
ω

}

. (4.8)
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Proof. The proof is completely similar to the proofs of [22, Theorems 6 and 7]. First,
one has to derive variational formulas (under variations of the moduli θk, τk, and hk)
for the basic objects on the compact Riemann surface M which appear as ingredients
in the explicit expression for the function τ (i.e. the basic holomorphic differentials, the
matrix of b-periods, the canonical meromorphic bidifferential, the prime-form, the vector
of the Riemann constants, and the multi-valued differential C). Then one has to check
(4.6)–(4.8) via direct calculation. We decided not to repeat this rather long calculation
here, we only sketch the proof in a relatively simple case of a low genus curve, where
most of the technicalities disappear. For instance, let us prove (4.6) in case g = 1.

Choose a canonical basis {a, b} of cycles on M and introduce the normalized holo-
morphic differential v such that

∫

a
v = 1 and

∫

b
v = B .

Take P ∈ Π, then in vicinity of P ∈ M the ratio of the two one-forms v
dz defines

a scalar function. Denote the value of this function at P by v(P ). For a fixed P
this value still depends on the moduli θk, hk, τk. Using the same idea as in the proof of
Proposition 2 (see also [22, Proof of Theorem 3]), one can prove the following variational
formula for the v(P ) with respect to the coordinate θk:

∂v(P )

∂θk
=

1

2π

∫

γk

W ( · , P )v
ω

, (4.9)

whereW is the Bergman bidifferential and the one formW ( · , P ) is defined as W ( ·, Q)
dz(Q)

∣

∣

∣

Q=P
.

Integrating (4.9) over the b-cycle, one gets the following variational formula for the b-
period:

∂B

∂θk
= i

∫

γk

v2

ω
. (4.10)

Moreover, since the distinguished local parameters (4.1) at P−
k , P+

j and (4.2) at Rl are
moduli independent, (4.9) implies that

∂v(P−
k )

∂θk
=

1

2π

∫

γk

W ( · , P−
k )v

ω
, (4.11)

∂v(P+
j )

∂θk
=

1

2π

∫

γk

W ( · , P+
j )v

ω
, (4.12)

and
∂v(Rl)

∂θk
=

1

2π

∫

γk

W ( · , Rl)v

ω
, (4.13)

where, say, v(P−
k ) = v

dζ−
k

∣

∣

∣

Pk

and W (·, Rl) =
W ( · ,Q)
dζl(Q)

∣

∣

∣

Q=Rl

, etc.

Now using (4.11)–(4.13)) and the well-known formula

W (z1, z2) =

[

P(

∫ z2

z1

v)− 4iπ

3

d

dB
logΘ′

1(0 |B)
]

v(z1)v(z2)

for the Bergman bidifferential on an elliptic curve (see, e.g., [7]), where P is the Weier-
strass P-function, we arrive at

∂θk log

∏n−

k=1 v(P
−
k )

∏n+

j=1 v(P
+
j )

∏n
l=1 v(Rl)
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=
1

2π

∫

γk

v(Q)

ω(Q)







n−
∑

k=1

W (Q,P−
k )

v(P−
k )

+

n+
∑

j=1

W (Q,P+
j )

v(P+
j )

−
n
∑

l=1

W (Q,Rl)

v(Rl)







=
1

2π

∫

γk

v2(Q)

ω(Q)





n−
∑

k=1

P(

∫ Q

P−

k

v) +

n+
∑

j=1

P(

∫ Q

P+
j

v)−
n
∑

l=1

P(

∫ Q

Rl

v)



 . (4.14)

Consider the meromorphic function R′ = ω
v on M. (Clearly, it can be considered as

the derivative of the (mulivalued) map ξ =
∫ P

v 7→ R(ξ) =
∫ P

ω). Observe that the
expression in the square brackets in (4.14) coincides with

d

dξ

(

R′′(ξ)

R′(ξ)

)

.

Therefore, using integrating by parts, (4.14) can be rewritten as

1

2π

∫

γk

1

R′(ξ)

d

dξ

(

R′′(ξ)

R′(ξ)

)

dξ =
1

2π

∫

γk

(R′′(ξ))2

(R′(ξ))3
dξ =

1

π

∫

γk

{R, ξ}
R′(ξ)

dξ (4.15)

=
1

π

∫

γk

{
∫ P

ω, · } − {
∫ P

v, · }
ω

, (4.16)

where { · , · } denotes the Schwarzian derivative. The integrand in (4.16) is a meromor-
phic one-form: the ratio of the difference of two projective connections (this difference
gives a quadratic differential) and a meromorphic one-form.

Moreover, using (4.10), we get

∂θk log
[

Θ′
1(0 |B )

]8
= 8i

∂ logΘ′
1(0 |B )

∂B

∫

γk

v2

ω

and, therefore,

∂θk log(τ
12) =

1

π

∫

γk

{
∫ P

ω, · } −
[

{
∫ P

v, · } − 8iπ
∂ logΘ′

1(0 |B )
∂B v2

]

ω
, (4.17)

where τ is from (4.4). It is known (see, e. g., [7]) that the expression in square brackets
in (4.17) coincides with the Bergman projective connection. Therefore

∂θk log τ = − 1

12π

∫

γk

SB − Sω
ω

,

which proves (4.6).

The following immediate corollary of Theorem 6 is the main result of the present
paper.

Corollary 1. One has the following explicit expression for the regularized determinant
of the Laplacian on the Mandelstam diagram M:

det(∆, ∆̊) = C detℑB |τ |2, (4.18)

where C is moduli independent constant.

Remark 5. If the unperturbed diagram M̊ is a disjoint union of infinite cylinders then
the regularized determinant det(∆, ∆̊) is invariant with respect to horizontal shifts of the
diagram M (i. e. the choice of the initial moment of time τ0). The same is, of course,
true for the right hand side of (4.18), cf. Remark 4.
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A Appendix.

A.1 Proof of Lemmas 1 and 2

Proof of Lemma 1. The proof is based on well-known methods of the theory of elliptic
boundary value problems, see e.g. [19, 20, 25]. Recall that a bounded operator is said
to be Fredholm if its kernel and cokernel are finite dimensional and its range is closed.
We will rely on the following lemma due to Peetre, see e.g. [20, Lemma 3.4.1] or [25,
Lemma 5.1]:

Let X,Y and Z be Hilbert spaces, where X is compactly embedded into Z. Fur-
themore, let L be a linear continuous operator from X to Y. Then the next two
assertions are equivalent: (i) the range of L is closed in Y and dimkerL <∞, (ii)
there exists a constant C, such that

‖u;X‖ ≤ C(‖Lu;Y‖ + ‖u;Z‖) ∀u ∈ X. (A.1)

Below we assume that

{µ2 − (ξ + iǫ)2 ∈ C : ξ ∈ R} ∩ {0, 4π2ℓ2|Ok|−2 : ℓ ∈ N, 1 ≤ k ≤ n} = ∅ (A.2)

and establish the estimate

‖u;Dǫ‖ ≤ C(‖(∆ǫ − µ2)u;L2
ǫ (M)‖+ ‖u;L2(M)‖) (A.3)

of type (A.1).
Let R > 0 be so large that there are no conical points on M with coordinate x /∈

(−R,R). Take some smooth functions ̺k, 1 ≤ k ≤ n, on M satisfying

̺k(p) =

{

1, p ∈ (−∞,−R− 1)×Ok (resp.p ∈ (R+ 1,∞) ×Ok),
0, p ∈ M \ (−∞,−R)×Ok (resp. p ∈ M \ (R,∞)×Ok),

if Ok is the cross-section of a cylindrical end directed to the left (resp. directed to the
right). We also set ̺0 = 1−∑

k ̺k, then {̺k}nk=0 is a partition of unity on M.

Let L2
ǫ (R×Ok) be the weighted space with the norm

(∫

R×Ok
|eγkxu(x, y)|2 dx dy

)1/2
,

where γk = −ǫ if the corresponding cylindrical end of M is directed to the left and γk = ǫ
if the end is directed to the right. Introduce the weighted Sobolev space H2

ǫ (R×Ok) as
completion of the set C∞

c (R×Ok) in the norm

‖u;H2
ǫ (R×Ok)‖ =

(

∑

p+q≤2

‖∂px∂qyu;L2
ǫ(R ×Ok)‖2

)1/2
.

For u ∈ Dǫ

(

⊂ H1
ǫ (M)

)

we extend uk = ̺ku, 1 ≤ k ≤ n, to R×Ok by zero. Clearly, the
right hand side of the equation

(−∂2x +∆Ok
− µ2)uk = fk (A.4)

is in L2
ǫ (R×Ok). Applying the Fourier-Laplace transform Fx 7→ξ+iγk we pass from (A.4)

to the equation

(∆Ok
− µ2 + (ξ + iγk)

2)Fx 7→ξ+iγkuk = Fx 7→ξ+iγkfk, ξ ∈ R. (A.5)
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The norm of the inverse of the operator ∆Ok
− µ2 + (ξ + iγk)

2 in L2(Ok) is bounded by
the reciprocal of the distance from the parabola

{µ2 − (ξ + iγk)
2 : ξ ∈ R} = {µ2 − (ξ + iǫ)2 : ξ ∈ R}

to the spectrum {0, 4π2ℓ2|Ok|−2 : ℓ ∈ N} of the selfadjoint Laplacian ∆Ok
on Ok,

cf. (A.2). This together with elliptic coercive estimates for ∆Ok
and the Parseval equality

implies

‖uk;H2
ǫ (R ×Ok)‖ ≤ c

∥

∥

(

−∂2x +∆Ok
− µ2

)

uk;L
2
ǫ (R×Ok)

∥

∥ (A.6)

with an independent of u ∈ H2
ǫ (R ×Ok) constant c; moreover, the operator

−∂2x +∆Ok
− µ2 : H2

ǫ (R ×Ok) → L2
ǫ (R×Ok)

yields an isomorphism, see e.g. [20, Chapter 5] or [19] for details.
From (2.2) and (A.6) it immediately follows that

‖u;Dǫ‖ ≤
n
∑

k=0

‖̺ku;Dǫ‖ ≤ ‖(∆ǫ − µ2)̺0u;L
2
ǫ(M)‖

+ (1 + |µ|2)‖̺0u;L2
ǫ (M)‖ +

n
∑

k=1

‖̺ku;H2
ǫ (R×Ok)‖

≤ ‖(∆ǫ − µ2)u;L2
ǫ (M)‖+

n
∑

k=0

‖[̺k,∆ǫ]u;L
2
ǫ (M)‖ + (1 + |µ|2)‖̺0u;L2

ǫ (M)‖.

(A.7)

Here the commutators [̺k,∆ǫ] are first order differential operators with smooth coef-
ficients supported on a smooth compact part of M. Local elliptic coercive estimates
imply

‖[̺k,∆ǫ]u;L
2(M)‖ ≤ C

(

‖η(∆ǫ − µ2)u;L2(M)‖ + ‖ηu;L2(M)‖
)

, (A.8)

where η ∈ C∞
c (M) is such that η[̺k,∆ǫ] = [̺k,∆ǫ] and η̺0 = ̺0. Now the estimate (A.3)

follows from (A.7) and (A.8). It remains to note that compactness of the embedding
Dǫ →֒ L2(M) is a consequence of the compactness of

H2
ǫ (R×Ok) ∋ ̺ku 7→ ̺ku ∈ L2(R×Ok), D ∋ ̺0u 7→ ̺0u ∈ L2(M),

where the domain D of the selfadjoint Friedrichs extension of Dirichlet Laplacian on
MR = {p ∈ M : |x| ≤ R} is compactly embedded into L2(MR).

The above argument also implies that the graph norm (2.2) in Dǫ is equivalent to
the norm

‖u;Dǫ‖ ≍ ‖̺0u;D‖+
n
∑

k=1

‖̺ku;H2
ǫ (R×Ok)‖, (A.9)

and the space Dǫ consists of all elements u ∈ H1
ǫ (M) with finite norm (A.9).

In order to see that the cokernel of the operator (2.3) is finite-dimensional, one
can apply a similar argument to the adjoint m-sectorial operator (∆ǫ)

∗ in L2
ǫ(M). In

particular, it turns out that the graph norm of (∆ǫ)
∗ is equivalent to the norm (A.9)

and Dǫ is the domain of (∆ǫ)
∗.

We have proved that the operator (2.3) is Fredholm if (A.2) holds true. Now we
assume that for some ξ ∈ R the number µ2 − (ξ + iǫ)2 coincides with an eigenvalue λ of
∆Ok

and show that the operator (2.3) is not Fredholm.
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For instance, let Ok correspond to a cylindrical end directed to the right. Introduce
a cutoff function χ ∈ C∞(R) such that χ(x) = 1 for |x − 3| ≤ 1 and χ(x) = 0 for
|x− 3| ≥ 2. We set uℓ(p) = 0 for p ∈ M \ (R,∞)×Ok and

uℓ(x, y) = ̺k(x, y)χ(x/ℓ) exp
(

ix(ξ + iǫ)
)

Φ(y), (x, y) ∈ (R,∞)×Ok, (A.10)

where ∆Ok
Φ = λΦ. Straightforward calculations show that

‖(∆ǫ − µ2
)

uℓ;L
2
ǫ (M)‖ ≤ C, ‖uℓ;L2(M)‖ ≤ C, ‖uℓ;Dǫ‖ → ∞

as ℓ→ +∞. Thus the sequence {uℓ} violates the estimate (A.3) and the operator (2.3)
is not Fredholm.

Proof of Lemma 2. As the result is essentially well-known, see e.g. [20, Chapter 5]
or [19], we only give a sketch of the proof. The notations below are the same as in
the proof of Lemma 1. Let u = (∆0−µ2)−1f . Then uk = ̺ku ∈ H2

0 (R×Ok), 1 ≤ k ≤ n,
is a (unique) solution to the equation (A.4) with right hand side fk = ̺kf − [∆, ̺k]u,
where fk is extended to R × Ok by zero. The inclusion f ∈ L2

ǫ(M) implies that the
function ξ 7→ f̂k(ξ) = Fx→ξfk ∈ L2(Ok) is analytic in the strip |ℑξ| < ǫ with boundary

values satisfying
∫

R
‖f̂k(ξ ± iǫ);L2(Ok)‖2 dξ <∞. We have

uk = F
−1
ξ→x(∆Ok

− µ2 + ξ2)−1 f̂k(ξ).

Let ǫ > 0 be less than the first positive eigenvalue of ∆Ok
. Then the resolvent (∆Ok

−
µ2 + ξ2)−1 is a meromorphic function of ξ in the strip −ǫ ≤ ℑξ ≤ ǫ having poles at
ξ = ±µ, which correspond to the zero eigenvalue and the constant eigenfunction of ∆Ok

.
This together with the Cauchy’s integral theorem implies

uk(x, y) = vk(x, y) + Cke
sign(γk)iµx, vk = F

−1
ξ→x(∆Ok

− µ2 + (ξ + iγk)
2)−1 f̂k(ξ + iγk),

where vk is a unique in H2
ǫ (R×Ok) solution to the equation (A.4) and Ck ∈ C depends

on µ and fk. The term Cke
sign(γk)iµx = Cke

iµx (resp. Cke
sign(γk)iµx = Cke

−iµx ) appears
as the residue at the pole ξ = µ (resp. ξ = −µ) if Ok corresponds to a right (resp.
left) cylindrical end. As a consequence, for some ck ∈ C we have ̺ku − ckϕk(µ) ∈ Dǫ,
cf. (2.4). Since ̺0u ∈ Dǫ, we conclude that (2.5) is valid provided

0 < ǫ < λ = min
ℓ∈N,1≤k≤n

4π2ℓ2|Ok|−2,

where λ is the first positive eigenvalue of the selfadjoint Laplacian on the union of
O1, . . . , On.

A.2 Existence of embedded eigenvalues

In this subsection we demonstrate that the selfadjoint Laplacian ∆ on (M,m) can have
eigenvalues embedded into the continuous spectrum σc(∆) = [0,∞). Let us construct a
simple suitable example of (M,m).

Consider the following strip with two semi-infinite slits:

S = {x+ iy ∈ C : |x| ≥ π, 0 < |y− π/2| < π/2} ∪ {x+ iy ∈ C : −π < x < π, 0 < y < π}.

Let ∆D be the Friedrichs selfadjoint extension of the Laplacian −∂2x−∂2y initially defined

on the set C∞
0 (S \ {−π + iπ/2, π + iπ/2}). It is easy to check that ∆D is positive and
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its continuous spectrum is [4,∞). The first eigenvalue of the Dirichlet Laplacian in
the square (−π/2, π/2) × i(0, π) ⊂ S is 2. Extending the corresponding eigenfunction
cos x sin y to the strip S by zero, one obtains some function u in the domain H1(S) of
the quadratic form q of ∆D. Clearly, q[u, u] = 2. Then the minimax principle implies
that ∆D has at least one (discrete) eigenvalue λ ≤ 2 below the continuous spectrum
[4,∞). We extend the corresponding eigenfunction U to S̄ = {x − iy : x + iy ∈ S} by
setting U(x,−y) = −U(x, y). Thus we constructed an eigenfunction U corresponding
to the (embedded) eigenvalue λ ∈ (0, 2] of the Laplacian ∆ on the Mandelstam diagram
(M,m), where M is obtained from S ∪ S̄ by the following identifications of boundaries:

R+ iπ − i0 with R− iπ + i0; R+ i0 with R− i0;

{x+ iπ/2 + i0 : |x| ≥ π} with {x− iπ/2 − i0 : |x| ≥ π};
{x+ iπ/2 − i0) : |x| ≥ π} with {x− iπ/2 + i0 : |x| ≥ π}.

References

[1] D. Burghelea, L. Friedlander, T. Kappeler, Meyer-Vietoris Type Formula for De-
terminants of Elliptic Differential Operators, J. Funct. Anal. 107 (1992), 34-66
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