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Abstract

Magnetic Resonance Imaging (MRI), a reference examination for cardiac
morphology and function in humans, allows to image the cardiac right ven-
tricle (RV) with high spatial resolution. The segmentation of the RV is a
difficult task due to the variable shape of the RV and its ill-defined borders
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in these images. The aim of this paper is to evaluate several RV segmenta-
tion algorithms on common data. More precisely, we report here the results
of the Right Ventricle Segmentation Challenge (RVSC), concretized during
the MICCAI’12 Conference with an on-site competition. Seven automated
and semi-automated methods have been considered, along them three atlas-
based methods, two prior based methods, and two prior-free, image-driven
methods that make use of cardiac motion. The obtained contours were com-
pared against a manual tracing by an expert cardiac radiologist, taken as
a reference, using Dice metric and Hausdorff distance. We herein describe
the cardiac data composed of 48 patients, the evaluation protocol and the
results. Best results show that an average 80% Dice accuracy and a 1 cm
Hausdorff distance can be expected from semi-automated algorithms for this
challenging task on the datasets, and that an automated algorithm can reach
similar performance, at the expense of a high computational burden. Data
are now publicly available and the website remains open for new submissions
(http://www.litislab.eu/rvsc/).

Keywords: Cardiac MRI, right ventricle segmentation, segmentation
method evaluation, segmentation challenge, collation study

1. Introduction

Evaluation of right ventricular (RV) structure and function is of great
importance in the management of most cardiac disorders, such as pulmonary
hypertension, coronary heart disease, dysplasia and cardiomyopathies (Cau-
dron et al., 2011). RV imaging is considered challenging, mainly because of
the complex motion and anatomy of the RV. Magnetic resonance imaging
(MRI) is increasingly used as a standard tool in the evaluation of the RV
function (Haddad et al., 2008; Attili et al., 2010). As a prerequisite to the
computation of functional parameters with MRI, the segmentation of the RV
cavity on MR images is a necessary step.

The RV segmentation is challenging because (i) fuzziness of the cavity
borders due to blood flow and partial volume effect, (ii) the presence of
trabeculations (wall irregularities) in the cavity, which have the same grey
level as the surrounding myocardium, (iii) the complex crescent shape of the
RV, which varies according to the imaging slice level. The segmentation of
the RV is thus currently performed manually in clinical routine. This lengthy
and tedious task requires about 15 min by a clinician and is also prone to
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intra and inter-expert variability (Caudron et al., 2012; Bonnemains et al.,
2012).

As a consequence, RV functional assessment has long been considered
secondary compared to that of the LV, leaving the problem of RV segmenta-
tion wide open. The segmentation of the LV in cardiac MRI has even given
rise to three segmentation competitions1. The goal of such competitions is
to compare different algorithms for a particular task on the same (clinically
representative) data, using the same evaluation protocol. Indeed, medical
image analysis papers require today solid experiments to prove the useful-
ness of their proposed methods. However, experiments are often performed
on data selected by the researchers, which may come from different insti-
tutions, scanners and populations; evaluated with different measures, which
make published methods difficult to compare. This has resulted in a growing
interest in competitions in medical image analysis. The format of a compe-
tition or challenge is usually as follows: given a clinically relevant question,
a set of data is collected by a research group, together with its gold standard
(i.e. manual annotations). The image data is then made available to volun-
teering research groups and companies. After performing experiments on the
image data, they return the results of their algorithms. Comprehensive and
dedicated evaluation tools are then employed for an objective assessment of
the algorithm performance, as compared to the gold standard.

RV segmentation algorithms have never been evaluated on common data.
The aim of the Right Ventricle Segmentation Challenge (RVSC) is to propose
a common evaluation framework, that includes MR datasets, a reference
segmentation and standard evaluation measures. More precisely, the task
is to delineate the RV endocardium, or endocardium and epicardium, on
short-axis views, on end diastole (ED) and end systole (ES) phases (Fig. 1).

In this paper, based on the challenge results, we attempt to address the
following questions: what accuracy can be expected from semi-automated
and automated algorithms for RV endocardium and epicardium segmenta-

1The Cardiac MR Left Ventricle Segmentation Challenge during MICCAI’09:
http://smial.sri.utoronto.ca/LV Challenge/, STACOM’11 Cardiac Left Ventricular
Segmentation Challenge during MICCAI’11: http://cilab2.upf.edu/stacom cesc11/
and the SATA Segmentation Challenge for LV myocardium during MICCAI’13:
https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Segmentation Challenge Details.
These websites, as well as up-to-date information about other challenges may be found
at: http://www.grand-challenge.org/
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(a) End diastole (b) End systole

Figure 1: The RV endocardium and epicardium are manually delineated in green and red
respectively, at (a) end diastole and (b) end systole, in consecutive SA slices. Note that
apical and basal slices may differ between ED and ES.

tion, this latter case being known to be particularly problematic? How do
automated algorithms compare to semi-automated ones? What type of meth-
ods performs best? Are 3D methods really the most appropriate? With the
open availability of both the data and the evaluation framework, we hope to
encourage researchers to contribute to this challenging task in the future.

The remainder of the paper is as follows. A brief state-of-the-art of RV
segmentation in cardiac MRI is given in Section 2. In Section 4, the car-
diac data and the manual reference are described. Evaluation measures and
scoring methodology are given in Section 3. The outline of the challenge
at MICCAI’12 is presented in Section 5. The 7 participating methods are
introduced in Section 6 and the results are detailed and analyzed in Section
7. We finally conclude with a discussion about the methods and the results,
and the perspectives in Sections 8 and 9.

2. Previous work

The literature of RV segmentation is much less abundant than the one
of LV segmentation (Petitjean and Dacher, 2011; Zhuang, 2013). A number
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of techniques have indeed been applied to the LV segmentation: in partic-
ular thresholding, deformable models and level sets, graph cuts as well as
knowledge-based approaches, such as active and appearance shape models
or atlas-based methods. Among them, some take advantage of cardiac mo-
tion. All these methods are well suited to the MR image characteristics and
to the LV geometry and still may give some insight about what techniques
could be successful with RV segmentation. In the RV segmentation field,
deformable models and, active shape models and their variants, are indeed
particularly popular. Note that most of the methods are based on a joint
segmentation of both ventricles – only a few methods focus exclusively on
RV segmentation (Abi-Nahed et al., 2006; Mahapatra and Buhmann, 2013).
Joint segmentation methods take benefit from the similarity of the gray levels
in their respective blood cavities and from the stability of the relative posi-
tions of both ventricles, and can thus perform a joint segmentation of cardiac
ventricles. This kind of information may be used within the active contours
(Pluempitiwiriyawej et al., 2004; Grosgeorge et al., 2011) or the graph cuts
(Mahapatra and Buhmann, 2013) framework, within an image-driven frame-
work combining thresholding, clustering and morphological operations (Co-
cosco et al., 2008) or through prior anatomical information used to guide the
segmentation process. A priori information can be introduced in the form of
a biomechanical model (Sermesant et al., 2003), a 3D heart model (Peters
et al., 2007), atlases (Lorenzo-Valdes et al., 2004; Kirisli et al., 2010; Bai
et al., 2013), or statistical shape models (Mitchell et al., 2001; Ordas et al.,
2003; Lötjönen et al., 2004; Abi-Nahed et al., 2006; Sun et al., 2010; ElBaz
and Fahmy, 2012).

Atlas-based segmentation approaches make use of an intensity and a la-
belled image (denoted atlas) that describes the different structures present
in a given type of image. The segmentation of the ventricles is obtained by
registering a single (Lorenzo-Valdes et al., 2004) or multiple atlases (Kirisli
et al., 2010; Bai et al., 2013) onto the image to be segmented. The main draw-
back of this technique is its dependence on the quality of the registration,
particularly when a single atlas is used.

Statistical shape models have been widely explored in cardiac segmen-
tation (Mitchell et al., 2001; Ordas et al., 2003). They typically consist of
three steps: alignment of manually segmented contours, model construction
through a technique such as principal component analysis (PCA) and usage
of the model for segmentation. Statistical models have been used within
the well-known active shape and appearance modelling framework (Cootes
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et al., 1995). This technique ensures to have a realistic solution since only
shapes similar to the training set are allowed, but at the expense of building
a training data set with manually generated segmentations.

With the emergence of machine learning techniques in the medical im-
age domain, a novel method was proposed by (Lu et al., 2011) in which
the a priori model is learnt via probabilistic boosting trees. In (Mahapa-
tra and Buhmann, 2013), the random forests algorithm is used to generate
RV probability maps that were then used within the graph cuts framework
for segmentation. Although these methods have proven to be robust, they
remain to depend on the quality and amount of annotated training data.

Although all of the works in the literature perform a quantitative eval-
uation of their methods, there is not a unique and common set of metrics
among them. The Dice metric (Abi-Nahed et al., 2006; Grosgeorge et al.,
2011; Kirisli et al., 2010; Mahapatra and Buhmann, 2013; Bai et al., 2013),
surface-to-surface error (Lötjönen et al., 2004; Lorenzo-Valdes et al., 2004;
Kirisli et al., 2010; ElBaz and Fahmy, 2012) (e.g. Hausdorff distance (Gros-
george et al., 2011; Mahapatra and Buhmann, 2013)), point-to-mesh dis-
tance (Sun et al., 2010; Lu et al., 2011), false segmentation rate (Grosgeorge
et al., 2011), area and shape similarity measures(Pluempitiwiriyawej et al.,
2004), ventricle area difference (Mitchell et al., 2001; Ordas et al., 2003),
linear regression analyses of volumes (Lorenzo-Valdes et al., 2004) and cor-
relation with cardiac functional parameters (Sermesant et al., 2003; Cocosco
et al., 2008) have been reported. This, in addition to the heterogeneity of
the database size used for evaluation, complicates a fair comparison among
methods.

3. Evaluation measures

In this challenge, we propose to analyze the performance of the methods
technically, by computing the accuracy of the segmentation itself as compared
to the gold standard, and clinically, by comparing global RV function indices.

Technical performance. A standard way to assess segmentation re-
sult when compared to a reference, is to compute an overlap measure, such
as the Dice Metric, and a local, point-based distance measure, as they of-
fer complementary information. For the latter, we chose the 2D Hausdorff
Distance (HD), which is less sensitive to contour sampling contrary to some
other measures such as mean point to curve error or perpendicular distance

6



between contours, but is sensitive to outliers. The Hausdorff distance is a
symmetric measure of distance between both contours (Huttenlocher et al.,
1993). Let us denote by A and B the two contours. The HD is defined as:

HD(A,B) = max
(

max
a∈A

(min
b∈B

d(a, b)),max
b∈B

(min
a∈A

d(a, b))
)

(1)

where d(·, ·) denotes Euclidean distance. In the challenge, the Hausdorff dis-
tance is computed in mm with spatial resolution obtained from the PixelSpacing
DICOM field.

The Dice Metric (DM), based on the pixel labeling as the result of a
segmentation algorithm, is a measure of area overlap, defined as the ratio of
the intersection by the sum of the two surfaces. Let us denote by U and V
the areas enclosed by the two contours. The DM is defined as:

DM(U, V ) = 2
U ∩ V
U + V

(2)

The DM varies from 0 (total mismatch) to 1 (perfect match).
The DM is computed from a polygon obtained from the contour points,

which makes it little influenced by the contour sampling. HD is also little
influenced by the contour sampling, since it is determined by the largest error
between two curves. Both error measures (HD and DM) are computed in a
multiple 2D way, i.e. one error computed for one slice and one phase, and
independently for the endocardium and for the epicardium. Then, errors are
averaged over slices, phases (i.e. ED and ES), and patients.

Clinical performance. Segmentation methods are also evaluated on the
accuracy of the clinical indices based on the provided contours. One of the
major clinical indices is the ejection fraction (EF), the best evaluation tool of
RV systolic function. For instance, in young adults, RV EF can be used as a
marker of systolic dysfunction, following tetralogy of Fallot surgery, to decide
for secondary correction of pulmonary regurgitation. In right ventricular
dysplasia, a RV EF value inferior to 40% as measured by MRI is one of the
major diagnostic criteria for this pathology (Marcus et al., 2010). Another
indicator is the RV mass, whose evaluation is required in some post-operative
situations where the RV acts as the LV and vice versa ; for example in the case
of a systemic RV, after senning or mustard correction of transposition of the
great vessels (Lorenz et al., 1995). Tetralogy of Fallot, following a pulmonary
stenosis, is also a major indication for RV mass evaluation (Davlouros et al.,
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2002). In this case, the free wall of the RV is often thickened, thus easing its
segmentation on MR images.

Ventricular volumes are also of interest. Endocardial volumes at ED and
ES (denoted resp. V ED

endo and V ES
endo) are computed (in ml) as the sum of

all endocardial areas multiplied by the SpaceBetweenSlices value2. The
definitions of the ejection fraction EF and ventricular mass vm (in g) are
based on ventricular volumes, as follows:

EF =
(V ED

endo − V ES
endo)

V ED
endo

(3)

vm = ρ ∗ (V ED
epi − V ED

endo) (4)

where ρ is the density equal to 1.05g/cm3 (Bogaert et al., 2005). The vm is
evaluated at ED, based on the convention used for the LV. RV volumes, EF
and mass are obtained for both automated and manual contours. They may
be compared through the computation of the correlation coefficient R, linear
regression fitting and Bland-Altman analysis.

4. Cardiac data and manual reference

4.1. Cardiac MR data

Patients. From June 2008 to August 2008, all patients referred to our centre
(Rouen University Hospital) with a clinical indication of cardiac MR were
invited to participate in the study. The institutional review board approved
the study and all patients gave written informed consent. Exclusion crite-
ria were as follows: age < 18 years; contra indication to MR; arrhythmias
during MR examination; congenital heart disease; and patients referred for
an examination that did not include ventricular function analysis (i.e. MR
angiography of pulmonary veins or thoracic aorta). A total of 48 patients
were included; mean patients’ age was 52.1 ± 18.1 years and 36 (75%) were
males. Clinical indications were represented by a panel of the currently most
frequent cardiac MRI indications in patients with acquired heart diseases:
myocarditis, ischaemic cardiomyopathy, suspicion of arrhythmogenic right
ventricular dysplasia, dilated cardiomyopathy, hypertrophic cardiomyopathy,
aortic stenosis (Caudron et al., 2012).

2SpaceBetweenSlices = 8.4 mm for all patients. This value is the absolute difference
between SliceLocation DICOM fields in 2 adjacent images.
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Cardiac MR protocol. Cardiac MR examinations were performed at 1.5T
(Symphony Tim, Siemens Medical Systems, Erlangen, Germany). A dedi-
cated eight-element phased-array cardiac coil was used. Retrospectively syn-
chronized balanced steady-state free precession sequences were performed for
cine analysis, with repeated breath-holds of 10-15 s. Since the subject could
not hold the breath at exactly the same position each time, there may be a
shift in the slices. This inter-slice shift was not corrected. All conventional
planes (2-, 3- and 4-chamber views) were acquired and a total of 10-14 con-
tiguous cine short axis slices were performed from the base to the apex of
the ventricles. Sequence parameters were as follows: TR = 50 ms; TE = 1.7
ms; flip angle = 55˚; slice thickness = 7 mm; matrix size = 256 × 216; Field
of view (FOV) = 360 mm × 420 mm; 20 images per cardiac cycle.

Selection of MR datasets for training and test sets. Cardiac images have
been zoomed and cropped to a 256 × 216 (or 216 × 256) pixel ROI. On
each MRI dataset, the LV was left visible for joint ventricle segmentation,
if necessary. Each patient examination typically includes between 200 and
280 images, with 20 images per cardiac cycle. Spatial resolution is originally
1.6 mm/pixel (as seen from the FOV and matrix size values above) but
decreases down to around 0.75 mm/pixel depending on the patient, after
zooming and cropping. The MR data is divided into a Training set (16
patients), a Test1 set (16 patients) and a Test2 set (16 patients). Data is
anonymized, formatted and named following the naming convention of the
MICCAI’09 LV segmentation challenge.

Selection of basal and apical slices. Basal and apical slices have been selected
by a cardiac radiologist before the data were released to the participants.
The basal and apical slice numbers were provided to the participants. This
selection task was thus not part of the challenge.

4.2. Manual RV segmentation methodology

Even though conventions are used to guide cardiac radiologists for their
manual delineation, manual segmentation is known to be quite observer-
dependent3 (Caudron et al., 2012; Bonnemains et al., 2012). The following
conventions were used in this challenge:

3In particular, tracing tricuspid valve and pulmonary valve planes within SA images
for the selection of basal and apical slices is a difficult task. Some guidelines may be found
in (Prakken et al., 2008).
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End-diastole (ED) and end-systole (ES) definitions. ED was defined as the
first temporal image of each stack, i.e. the first cine phase of the R-wave
triggered acquisition (Fig. 1a) whereas ES was defined on a mid short axis
slice as the image with the smallest ventricular cavity area (Fig. 1b).

Definition of basal and apical slices. The basal slice of the RV at ED and
ES was inferred from the position of the tricuspid annulus as defined on the
4-chamber view at ED/ES. Apical slice was defined as the last slice with a
detectable ventricular cavity.

Manual endocardial and epicardial delineation. The expert manually delin-
eated endocardial and epicardial borders of the RV on short axis slices at ED
and ES. Trabeculae and papillary muscles were included in the ventricular
cavity. On the septum specifically, the convention is not to include the inter-
ventricular septum in the RV mass, and thus to draw the epicardial border
stuck to the endocardial one. Even it was the radiologist intention to fol-
low this convention, the drawing software tool would not fully allow it, thus
resulting in a minimal distance between the epicardial and the endocardial
borders, especially as the duration of the delineation activity was kept com-
patible with clinical practice. Processing time per patient was indeed around
15 minutes.

5. MICCAI 2012 Challenge outline

The RVSC, organized by five of the authors (CP, DG, SR, JND and JC),
was launched in March 2012 with the electronic invitation of a large number
of researchers working on cardiac MR segmentation to visit the website and
to participate in the challenge, and the announcements on various mailing
lists. The RVSC went through different stages of data distribution and re-
sult submission and finally ended up with the ”3D Cardiovascular Imaging:
a MICCAI segmentation challenge” workshop that was organized in conjunc-
tion with the 15th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), held on October 1st, 2012
in Nice Sophia Antipolis, France, that included an on-site competition. 47
teams initially registered to the challenge and 7 of them submitted results
and participated to the on-site challenge. The 7 evaluated algorithms are de-
scribed in Section 6 and more details can be found in the full paper version,
available on our website (http://www.litislab.eu/rvsc/).
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Phase 1 (Training). In March 2012, participants were provided with a Train-
ing set that included the whole MR examination of 16 patients, i.e. all DI-
COM MR images, a list of images to be segmented (corresponding to selected
images at ED and ES phases), and associated reference manual contours. It
means that the participants did not have to choose by themselves apical and
basal slices, as well as ED and ES phases. A Matlab evaluation code was
provided to participants, intended to help them assessing their segmentation
method performance on the Training dataset, with the same evaluation tool
subsequently used by the organizers during Test1 and Test2 stages. This
code yields DM and HD measures for each image and averaged (mean and
standard deviation) for each patient and each phase (ED and ES), as well as
correlation coefficient, linear regression fitting and Bland-Altman analysis as
described in Section 3.

Phase 2 (Test1). At the beginning of June 2012, participants were provided
with a Test1 set, that included MR images of other 16 patients, and a list
of images to be segmented. Participants entered their best algorithm to
find either the RV endocardium, or the RV endocardium and epicardium
automatically, with little or no user intervention. In order to assess the per-
formance of their algorithm on the Test1 set, participants were invited to
send their automatic contours to the RVSC organizers, who in return, pro-
vided them with the performance measures using the same evaluation code
proposed during the Training phase. Participants had then until July 5th
to submit their papers describing their methods and results obtained on the
Test1 set. These papers are now part of our workshop proceeding (avail-
able at http://www.litislab.eu/rvsc/). The results were published on
the website, anonymously at that time (see Section 7 for the results).

Phase 3 (Test2). On the day of the workshop (October 1st 2012, at MIC-
CAI), challengers were provided a new Test2 set of 16 patients. A 3-hour
time-slot was dedicated to the on-site competition. For some algorithms,
segmentation of large datasets could be technically challenging in terms of
processing power and memory requirements. Thus challengers were allowed
to perform the segmentations using remotely located hardware. Results were
computed and presented by the organizers during the conference. Note that
challengers were allowed to improve their algorithm between the Test1 sub-
mission and the day of the challenge.
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6. Methods

Methods presented by the 7 challenger teams include three atlas-based
methods, two prior based methods, and two prior-free, image-driven methods
that make use of the temporal dimension of the data, as shown in Table 1,
with some of them processing 3D data and some others 2D data. A majority
of them (5) include prior knowledge in their segmentation framework while 2
algorithms were image driven, specifically designed for RV segmentation, but
based on cardiac motion. Our panel of methods show the current interest for
atlas registration based segmentation.

As stated in the Introduction, the RVSC offered the possibility to seg-
ment either the endocardium only (2 methods), or the epicardium and the
endocardium of the RV (5 methods). For these two tasks, automated and
semi-automated algorithms (3 vs 4 resp.) are distinguished. An automated
algorithm does not require landmarks, ROIs, thresholds or similar settings
to be defined by the user manually prior to starting the algorithm. A semi-
automated algorithm would have some small number of manual steps prior
to initiating the algorithm. The contours (unadjusted) that are output by
the algorithm are the results that are evaluated.

6.1. CMIC (M. Zuluaga et al.)

This fully automated method is based on a coarse-to-fine strategy. The
segmentation of an unseen image is incrementally refined by means of a
multi-atlas propagation framework (Zuluaga et al., 2013). The coarser seg-
mentation obtained at each propagation level is used as a mask to gradually
improve the registration initialization and accuracy. Through a three level
process, the algorithm first locates the heart, then obtains a rough segmen-
tation of the RV and, finally, obtains a refined segmentation of the epi- and
endocardium.

First, the unseen image is globally registered to the atlases using a block
matching approach. The obtained transformations are applied to the atlas
labels, which are all fused using majority voting. This fusion yields a binary
mask, which is used next to suppress structures that are not of interest and
that might bias the registration process (at this step, the mask covers the
complete heart, i.e. LV and RV). Second, the atlas are rigidly registered to
the masked unseen image, followed by a non-rigid alignment using a fast free
form deformation algorithm. As the segmentation is performed on 2D slices
and cardiac images can exhibit large variability, it is necessary to perform
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Team Method principle A/SA Contours

CMIC, UK
2D multi-atlas registration A Endo+Epi

(Zuluaga et al., 2013)
NTUST, Taiwan

2D clustering and motion A Endo+Epi
(Wang et al., 2012)
SBIA*, USA

3D multi-atlas registration A Endo+Epi
(Ou et al., 2011)
BIT-UPM, Spain 4D watershed graphcut

SA Endo
(Maier et al., 2012) segmentation
GEWU*, Canada

3D distribution matching prior SA Endo
(Nambakhsh et al., 2013)
ICL, UK

3D multi-atlas registration SA Endo+Epi
(Bai et al., 2013)
LITIS, France 2D shape prior graphcut

SA Endo+Epi
(Grosgeorge et al., 2013) segmentation

Table 1: List of challengers. A: Automatic, SA: Semi-automatic. *Team not present at
the workshop for the on-site challenge.

an atlas selection that chooses the best suited atlases for a particular unseen
image slice. For this matter, a multi-label ranking criterion (Cardoso et al.,
2013), based on the local normalized cross correlation, is used to select the
best 10% atlases for label fusion. As a third step, all the label images are
affinely aligned to the estimated rough segmentation, and the transformed
label images are fused through majority voting. The newly obtained mask
is used to remove surrounding structures in the final non-rigid registration
step. The label images are non-rigidly transformed and fused using the same
multi-label fusion algorithm. Typical computation time per patient is 12 min
on a PC with a 2.13 GHz quad-core processor.

6.2. NTUST (C.-W. Wang et al.)

The principle of this automatic method is to use motion to detect the
LV and the RV. The endocardium contour is segmented first on all images
thanks to a binarization using the isodata algorithm, and cleaned up with
morphological operations. Then the image sequence (denoted S) where ven-
tricles are observed to be the largest of all slice levels is identified (empirically
determined to be at the 4th slice level). For this S sequence, an exclusive or
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between all binarized images yields a motion map, and repeated motion maps
are generated by overlapping consecutive motion maps. Then, the repeated
motion map allows to select the two largest connected components from the
binary image, which are the LV cavity on the right and the RV cavity on
the left. The LV components of the S sequence are used to find the LV con-
tours in other slice levels, by selecting components with the largest overlap.
The RV endocardial contours over the remaining slices are found similarly,
by finding components with a large overlap with the RV cavities of the S
sequence and with a low overlap with the LV cavities of the S sequence. A
dilatation of the endocardium contour allows to obtain the epicardium con-
tour. Typical computation time per patient is 90.3 sec on a PC with a 3.1
GHz dual core processor.

6.3. SBIA (Y. Ou et al.)

This team has designed a fully automatic iterative segmentation frame-
work based on multi-atlas registration and label fusion (Y.Ou et al., 2012).
Manual segmentations of RV of the atlases were deformably registered onto
the target image space using an attribute-based general-purpose non-rigid
registration algorithm (Ou et al., 2011). A weighted majority voting strat-
egy, which assigns higher weights to atlases locally more similar to the target
image, is used for the label fusion. Note that there is no atlas selection.
Within the iterative framework, the initial segmentation is used for a) re-
stricting the focus area to the vicinity of the target anatomy, i.e. RV, and
b) selecting a subset of atlases that are globally more similar to the target
image within this restricted area, prior to a second round of registrations.
In this way, the negative effects of large variations in images, mainly due
to differences in field-of-view and/or the anatomic variability of structures
surrounding the RV, have been partially reduced. In practice, the method
converged to a stable final RV segmentation at the end of two iterations.

The multi-atlas segmentation framework has several hyperparameters.
They are: the choice of registration algorithms, the weight for the smooth-
ness of registration, the number of atlases to be used, the choice of atlas
selection and label fusion strategies. A general-purpose attribute-based im-
age registration algorithm with the default weight for registration smoothness
is chosen here. The whole training set is used as atlases. Atlas-to-target reg-
istration each takes 2-3 minutes and the final label fusion takes around 10
seconds on a Linux OS with 2.8 GHz dual core CPU.
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Team Contours User input
ICL SA Endo+Epi 5 landmarks per volume
LITIS SA Endo+Epi 2 landmarks per image
BIT-UPM SA Endo rough contouring of 4 to 5 2D slices of ED phase
GEWU SA Endo 1 landmark per patient

Table 2: Amount of user input for semi-automatic (SA) methods

6.4. BIT-UPM (O. Maier et al.)

The proposed 4D semi-automatic segmentation approach is based on re-
gions resulting from a watershed filter, merged through a graph cuts strategy
(Maier et al., 2012). The watershed filtering is a popular solution to reduce
the size of the graph, as voxel-based graph cuts are known to be memory
consuming.

The user is required to trace a contour inside of the RV wall in four or
five 2D slices of the ED phase (as shown in Table 2). The manual delineation
inside the RV wall is dilated and eroded to create background and foreground
markers respectively, and then propagated forward and backward along the
temporal dimension, exploiting the cardiac cycle symmetry. Next, the 4D
volume is pre-segmented into many small regions using the watershed trans-
form. Finally, these regions are merged using 4D graph-cuts with an intensity
based boundary-term. This approach extends the works of (Li et al., 2004)
and (Stawiaski et al., 2008) to the fourth dimension. Typical cardiac MRI
volumes exhibit a significant slice-to-slice discontinuity, because of the shift
between two adjacent 2D slices (caused by breathing artifacts) and the large
distance between two slices (8.4 mm) , while the temporal discontinuity is
less obvious. Whereas a 3D GC approach might have failed to segment two
neighboring slices, the proposed 4D GC approach takes advantage of the
temporal consistency to impose a correct cut in the spatial dimension. A
complete 4D segmentation of the RV is thus obtained in a single step. The
method shows a strong robustness: since the approach is prior-free, it is suit-
able for any pathological cases and accounts for differences in MRI volumes
originating from scanners and acquisition protocols. The hyperparameters
concern the foreground and background marker extraction (three parame-
ters linked to dilatation and erosion) and the graph cost function. They have
been fixed once and for all on the training set. Thanks to the robust process
to build background and foreground markers, results are little influenced by
variable manual delineation, as shown in the study of inter and intra-observer
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variability presented in (Maier et al., 2012). The method medium runtime
is 2 min 15 sec per patient on a 2.2GHz quadcore PC. Manual interaction
requires an additional time of around 2 min.

6.5. GEWU (C. Nambakhsh et al.)

This method is a 3D segmentation via convex relaxation and distribution
matching. The algorithm requires a single subject for training and a very
simple user input, which amounts to one click at about centroid of LV in
one of the 2D slices (as seen in Table 2). The RV endocardial contour is
sought following the optimization of a functional containing shape as well as
intensity priors, each based on a distribution matching measure, namely the
Bhattacharyya measure. The shape prior evaluates the conformity between
the distributions of some distance/angle features within the target right ven-
tricular region (between RV contour points and the LV centroid) and fixed
model distributions learned a priori from a single training subject. The in-
tensity prior ensures that the image distribution within the target region
most closely matches a model learned interactively from user inputs. These
priors are used in conjunction with a standard total variation term, which
regularizes the segmentation boundaries and attract them towards strong
image edges. The overall functional is optimized with a convex relaxation
technique.

The method involves the parameters balancing the contribution of the
shape terms in the overall functional (four parameters involved) and two pa-
rameters for computing the distributions, one is the kernel width (a standard
parameter in kernel density estimates based on the Gaussian kernel) and the
other is the number of bins. The proposed algorithm relaxes the need of costly
pose estimation (or registration) procedures and large, manually-segmented
training sets. Furthermore, unlike related graph-cut approaches, it can be
parallelized. The parallelized implementation on a graphics processing unit
(GPU) demonstrates that the proposed algorithm requires about 5 seconds
for a typical cardiac MRI volume.

6.6. ICL (W. Bai et al.)

This team presents a 3D multi-atlas based segmentation method which
labels the RV myocardium and blood pool by ensembling opinions from mul-
tiple atlases. It only requires an initial input in the form of a few landmarks
per volume (typically 5 landmarks, as specified in Table 2). Each atlas is

16



aligned with the target image using landmark-based affine registration, fol-
lowed by B-spline non-rigid image registration. In order to estimate the label
at a target voxel x, the labels from the atlas voxels are combined using local
weighted label fusion and defined as:

L̃(x) = arg max
l

N∑
n=1

∑
∆x∈S

P (I(x)|In(x+ ∆x)) · P (L(x) = l|Ln(x+ ∆x)) (5)

where N denotes the number of atlases, S denotes a search volume centered
at voxel x. The first weight term P (I(x)|In(x + ∆x)) is determined by the
intensity similarity between the target voxel x and the atlas voxel x + ∆x
and the second weight term P (L(x) = l|Ln(x + ∆x)) is determined by the
distance between the target and atlas voxels (Bai et al., 2012, 2013). An atlas
voxel with a similar intensity to the target voxel and close to it will have a
higher impact in determining its label than an atlas voxel less similar or far
away from the target voxel. The label with the highest summed weight will
be assigned to the target voxel. Regarding the parameter, both the intensity
similarity weight and the distance weight are modelled using the Gaussian
distribution. Main parameters of the method are thus the bandwidth of the
Gaussian kernels, which are tuned on a small set of training images. Typical
computation time per patient is 5 min with a parallel run on a 32-core com-
puting server.

6.7. LITIS (D. Grosgeorge et al.)

This semi-automatic method is based on the 2D graph cut segmentation
framework and uses a shape prior to guide the segmentation process. Each
endocardial contour of the training set is transformed into a signed distance
map (Tsai et al., 2003; Grosgeorge et al., 2013) and rigidly aligned on an ar-
bitrary reference shape. All training shapes are averaged into a mean shape.
Main variation axis of the endocardium are obtained via a PCA performed
on the set of centered endocardial shapes. A single prior map is then derived
from the PCA: areas of variations of the mean shape are first identified by
generating several highly deformed shape instances for each variation axis
and combined with the mean shape distance map, to form a single map.
This endocardial shape prior is incorporated into the graph cut segmenta-
tion framework (Boykov and Jolly, 2001). The cost function of the graph
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classically includes a region (intensity-based) term and the boundary (reg-
ularization) term. In this approach, the shape prior contributes to both
terms. The prior also allows to define object and background areas as hard
constraints, and yields a probability model computed from the histogram of
the mean shape, used in the region term. The image to be segmented is
affinely registered to the shape model thanks to user input (two anatomi-
cal landmarks on the junction of the interventricular septum, as specified in
Table 2). The prior-based graph cut approach allows to obtain the endo-
cardium, and a combination of dilatations allows to obtain the epicardium.
Parameters of the methods include the weighting of the graph cost terms,
fixed using the training set, and the number of shape models built according
to different the slice levels (6 for ED, 5 for ES). The graph cut framework is
computationally efficient in 2D: typical computation time per patient is 45
sec on a PC laptop with 2.8 GHz processor.

7. Results and analysis

The results presented in this section have been obtained during Phase 2
(Test1) and Phase 3 (Test2). In particular, results obtained on Test2 have
been obtained during an on-site competition, by the algorithms presented
at the workshop. The method performance on the Training set was not
evaluated, since this set of images was given only for training and parameter
tuning purposes. As specified in Section 4.1, the 48 patients have been equally
divided into the three datasets, yielding a number of 243 images for the
Training set, 248 for Test1 and 252 for Test2. We denote by Test set the set
of both Test1 and Test2.

7.1. Endocardium and epicardium segmentation accuracy

As a preamble, we have performed an inter-expert variability study in
order to better interpret the obtained DM values. This study is expected
to provide an indication of an acceptable accuracy for a (semi-)automated
method. All ED phases from the Test1 set were delineated by another ra-
diologist, using the same guidelines as specified in Section 4.2. Agreement
between contours is measured with a DM equal to 0.90 ± 0.10. From Table 3,
it can be seen that the DM values for endocardium ranges from 0.55 to 0.81,
with high standard deviation, showing that performance may vary much from
one patient to another. The best DM obtained by enrolled methods being
around 0.8, one can say that room for improvement is left, as compared to
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inter-expert variability (0.90 ± 0.10). Nevertheless, the comparison to the
companion task of LV segmentation, for which the state-of-the-art DM is
about 0.84 to 0.9 (Bai et al., 2013; Zhuang et al., 2010) shows that the best
DM obtained here for the RV is comparable to the state-of-the-art for LV.
Figures 5, 6 and 7 help to visually grasp the difference between DM of values
0.8 and 0.9.

From Table 3, one can see that minimal HD values are close to 1 cm.
When compared to the HD value obtained with the inter-expert study, i.e.
5.02 ± 2.87 mm, this value may seem large when considered alone, especially
in comparison to the RV size. A HD value should actually be examined
along with the corresponding DM value. Two images can have similar HD
and different DM, see for example in Fig. 5, in which the LITIS-basal image
(first row) and the SBIA-mid image (second row) have similar HD values
(8.40 and 8.08 mm resp.), and a difference of 0.09 in their DM. The error
between contours in SBIA is rather global (over the whole contour) whereas
it is local in the LITIS image. In Fig. 6, mid slices in CMIC and LITIS
have similar DM (0.94 and 0.95 resp.) but different HD values 5.18 and 7.17
mm. When anticipating about post-processing manual corrections, HD gives
an idea of the correction amplitude, and DM of the amount of correction
needed.

Out of the seven methods, five of them have reported segmentation for
epicardium. Results reported in Table 4 shows that a Dice Metric can reach
up to 0.82 (resp. 0.77) for automatic method (CMIC) and 0.83 (resp. 0.85)
for semi-automatic ones (ICL, LITIS) on Test1 and Test2 respectively. Even
if the segmentation of the epicardium might seem more challenging in terms
of image content than the endocardium segmentation (the RV has a very
thin wall, reaching the limit of MRI spatial resolution), comparison between
epicardium and endocardium results show that they reach comparable ac-
curacy, as seen Fig. 4. The quality of the epicardium as compared to the
segmentation complexity may be due to the fact that no method segment
the epicardium directly: all of them either apply a model (for atlas-based
methods) or deduce the epicardium contour from the endocardium one. The
superiority of the quality of epicardium segmentation was found significant
with a one-tailed unpaired t-test only for the LITIS (P < 0.01).

4In the SATA Segmentation Challenge mentioned in the Introduction, the best-ranking
DM for LV myocardium is about 0.8.
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A separate analysis for ED and ES image (as shown in Fig. 2 for the
endocardium and Fig. 3 for the epicardium) shows that segmentation results
are superior for ED images than for ES images, for all methods: ED images
are easier to process, as the heart is then the most dilated. ES images are
also fuzzier because of partial volume effect. The difference of performance
between ED and ES ranges from 0.05 up to 0.17 depending on the method
and is shown to be significant (P < 0.01 for all methods thanks to an one-
tailed, unpaired t-test). Note how the distribution is tightened around the
median value for certain methods (BIT-UPM, ICL, LITIS), which indicates
a stable behavior of the method.

It can be seen from Fig. 5, 6 and 7 that the erroneous behaviour of all
methods depends on the slice level. We have thus performed a quantitative
analysis of errors along the longitudinal axis of the RV, for all patients. Each
volume having a different number of slices (ranging from 6 to 12, with a
mean value of 8.94±1.53 for ED volumes), the DM values obtained for each
slice have been interpolated over 12 values, so as to allow for a comparison
between patients. Fig. 8 shows, for all methods, the average Dice metric in
function of three normalized slice levels: basal, mid-ventricular and apical.
It reveals that the error increases as most apical slices are processed. For
the endocardial contour for example, the DM decreases by around 0.20 from
base to apex: most basal slices have a score of 0.91 (when averaged over the
three best methods CMIC, ICL, LITIS), whereas most apical ones have a
score of 0.73. This indicates that the improvement of segmentation accuracy
could be searched in apical slices, maybe with an emphasis of the model over
the image content for these slices. Error on apical slices has eventually little
influence on the volume computation but it can be a limiting factor in other
fields such as studies of the fiber structure.
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Test1 Test2
DM HD (mm) DM HD (mm)

CMIC A 0.78 ± 0.23 10.51 ± 9.17 0.73 ± 0.27 12.50 ± 10.95
NTUST A 0.57 ± 0.33 28.44 ± 23.57 0.61 ± 0.34 22.20 ± 21.74
SBIA A 0.55 ± 0.32 23.16 ± 19.86 0.61 ± 0.29 15.08 ± 8.91
BIT-UPM SA 0.80 ± 0.19 11.15 ± 6.62 0.77 ± 0.24 9.79 ± 5.38
GEWU SA 0.59 ± 0.24 20.21 ± 9.72 0.56 ± 0.24 22.21 ± 9.69
ICL SA 0.78 ± 0.20 9.26 ± 4.93 0.76 ± 0.23 9.77 ±5.59
LITIS SA 0.76 ± 0.20 9.97 ± 5.49 0.81 ± 0.16 7.28 ± 3.58

Table 3: Endocardium segmentation: mean values (± standard deviation) of Dice Metric
(DM) and Hausdorff Distance (HD) averaged over ED and ES. A: Automatic, SA: Semi-
automatic

Figure 2: Endocardium segmentation: median DM value obtained for the Test patients.
The median is the middle bar, in red. The box indicates the lower quartile (splits 25%
of lowest data) and the upper quartile (splits 75% of highest data). The whiskers are the
maximum and minimum values.
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Test1 Test2
DM HD (mm) DM HD (mm)

CMIC A 0.82 ± 0.19 10.94 ± 8.32 0.77 ± 0.24 12.70 ± 10.44
NTUST A 0.62 ± 0.35 26.71 ± 22.90 0.64 ± 0.35 22.14 ± 21.61
SBIA A 0.58 ± 0.29 22.53 ± 18.06 0.68 ± 0.25 15.17 ± 8.88
ICL SA 0.83 ± 0.14 9.64 ± 4.95 0.80 ± 0.18 10.34 ± 5.41
LITIS SA 0.82 ± 0.13 10.40 ± 5.45 0.85 ± 0.11 8.32 ± 3.70

Table 4: Epicardium segmentation: mean values (± standard deviation) of Dice Metric
(DM) and Hausdorff Distance (HD) averaged over ED and ES. A: Automatic, SA: Semi-
automatic

Figure 3: Epicardium segmentation: median DM value obtained for the Test set. The
median is the middle bar, in red. The box indicates the lower quartile (splits 25% of
lowest data) and the upper quartile (splits 75% of highest data). The whiskers are the
maximum and minimum values.
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Figure 4: Endocardium vs. epicardium segmentation: mean DM value for the Test set.
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CMIC NTUST SBIA BIT-UPM GEWU ICL LITIS

Figure 5: Endocardial contours at ED on one patient (P#33 from Test2) for all methods, from selected basal, mid-ventricular
and apical slices (from top to bottom). Manual contours are shown in yellow, automatic contours in red. Corresponding DM
and HD values are provided for each image.
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CMIC NTUST SBIA BIT-UPM GEWU ICL LITIS

Figure 6: Endocardial contours at ES on one patient (P#42 from Test2) for all methods from selected basal, mid-ventricular
and apical slices (from top to bottom). Manual contours are shown in yellow, automatic contours in red. Corresponding DM
and HD values are provided for each image. For visualization purposes, the image contrast has been modified.

25



CMIC NTUST SBIA ICL LITIS

Figure 7: Epicardial contours at ED on one patient (P#38 from Test2) for all methods. Selected basal, mid-ventricular and
apical slices, from top to bottom. Manual contours are shown in yellow, automatic contours in red. Corresponding DM and
HD values are provided for each image.
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(a) Endocardium (b) Epicardium

Figure 8: Longitudinal distribution of DM values for all algorithms on the Test set for (a)
endocardium and (b) epicardium segmentation.

7.2. Clinical performance

Endocardial volumes at ED and ES are computed as the sum of all en-
docardial areas enclosed by the contours, multiplied by a constant. Even if
the comparison between volumes is conventionally made via correlation and
linear regression analysis, these figures should be handled with caution as
ventricular volumes measurements, as sum of areas, may be subject to com-
pensation of contouring errors. More importantly, the correlation coefficient
resulting from regression analysis is not directly related to the accuracy of
the segmentation: very accurate segmentations will result in very high vol-
ume correlation, but not vice versa. The good correlation values between
manual and automatic contours reported in Table 5 (coefficient R can reach
up to 0.99 for semi-automatic methods (BIT-UPM) and 0.93 for automatic
methods (CMIC)) show that automated contours behave similarly to manual
contours.

Based on ventricular volumes, the ejection fraction and ventricular mass
are computed. The analysis of ejection fraction and ventricular mass is a bit
different from the volume values. As the EF is a ratio and vm is a difference,
any existing, constant bias in the volume assessment may cause EF errors and
vm errors to decrease. Yet EF correlation values is not that satisfying and
there is a non-negligible fixed offset in the Bland-Altman plot, as shown in
Fig. 9 and 10: the mean differences (red line) exhibit absolute values ranging
from 0.06 to 0.19, with an average of 0.10. A two-tailed paired Student’s t-
test allowed to determine that there are indeed significant differences between
manual and automated measurement of the EF (P < 0.01) for some of the
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R (ED) R (ES)
CMIC A 0.93 0.93
NTUST A 0.71 0.78
SBIA A 0.63 0.69
BIT-UPM SA 0.99 0.97
GEWU SA 0.81 0.81
ICL SA 0.98 0.98
LITIS SA 0.95 0.90

Table 5: Correlation coefficient R for RV volumes at ED and ES. A: Automatic, SA:
Semi-automatic

teams (CMIC, ICL, GEWU). The same remarks holds for vm. Fig. 11
shows quite deceptive correlation and regression values. When performing
the paired t-test, the null hypothesis was not rejected for only one team
(LITIS); for the remaining teams, vm values were found significantly different
(P < 0.01) from reference values. Room for improvement is thus left for the
computation of clinical values. In addition to the significance test, we want to
know if the estimated EF or vm values reach intra-expert variability, in order
to assess whether they are clinically acceptable. We have thus compared them
to intra-expert variability values obtained from (Caudron et al., 2012), where
the EF Bland Altman plots reveal a bias close to zero and the 95% limits
of agreement (±2σ) are ±0.10 (Fig. 3 of (Caudron et al., 2012)). Looking
at Fig. 9 and 10, one can see that there exists a non zero bias in general
with the 95% limits closer to ±0.20. The same conclusion holds for the vm.
The evaluation of EF and vm by (semi-)automated, although encouraging,
cannot be fully satisfying in this study.

8. Discussion and conclusion

Let us now return to our introduction questions: what accuracy can be ex-
pected from semi-automated and automated algorithms for RV endocardium
and epicardium segmentation? An overall reasonable accuracy 80% (in terms
of DM) should be expected. Epicardium compared well to endocardium seg-
mentation, with equivalent or even better results. ES phases exhibited more
errors that ED phases. Apical slices were found to be difficult to process,
with a DM of 0.62 for the most apical slices, while accuracy of basal slices
reached 0.91. Clinical evaluation of the methods showed that ejection frac-
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Figure 9: Analysis of EF for automatic methods on the Test set. Correlation coefficient
(R). Linear regression: the black dotted line is the identity function. Bland-Altman plots:
black lines indicate the 95% limits of agreement (±2σ).

tion and ventricular mass were in some cases correctly estimated though
room for improvement is left.

Second question was to know how do automated algorithms compare
to semi-automated ones. The method presented by CMIC is a proof that
automated can reach an accuracy very close to that of semi-automated al-
gorithms. Difference with the closest semi-automatic methods is evaluated
with a paired t-test: compared to BIT-UPM’s DM on the endocardium con-
tour, no significant difference was found (P ≈ 0.41) ; yet CMIC’s results
were found significantly different from the ones of ICL and LITIS (P < 0.05)
(same conclusion holds for epicardium contours). A fair comparison should
include not only accuracy, but also complexity or computation time, which is
an important matter for clinical use of the methods, and requested amount of
user interaction. From the clinician point of view, a fast and semi-automatic
method, involving for example the identification of landmarks such as the RV
attachment to the LV, the triscupid or pulmonary valve, would be preferred
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to a fully automatic, lengthy one. Although computation times may not be
fully compared, it seems that the good performance of CMIC algorithm is
obtained at the expense of a higher computation time (see Section 6), in
relation with the speed – degree of automation tradeoff. Although real time
is not requested, the running time should be limited to a few minutes, which
is the case for all methods here. For semi-automated methods, the amount
of user interaction differs depending on the methods, from a few clicks per
patient to full manual segmentation of some images, as shown in Table 2.
Note that the robustness of the methods to user variability has not been
assessed here.

As 3D methods are the state-of-the-art in many segmentation domain,
one legimate question was if they really were the most appropriate for the
task of RV segmentation. In our cardiac MR data, space between slices
and slice thickness are quite large (8.4 mm and 7 mm resp.), and differ
from the order of magnitude of spatial resolution within the image (1.6 mm
per pixel). Most of the imaging centres still acquire cardiac MR data with
8 or even 10 mm slice thickness. This is still the main stream, and it has
some advantages: the 2D short-axis acquisition is accompanied by 4-chamber
and long-axis imaging acquisitions which allow for an easy identification of
the pulmonary and tricuspid valves, thus preventing to include ”out-of-RV”
volumes (such as pulmonary artery or atrial volume). However, it seems
that some groups have started to work on 3D isotropic MR images: voxel
reported to be 1.4 × 1.4 × 1.4 mm in (Rajchl et al., 2014), 2.5 × 2.5 ×
2.5 mm in (Uribe et al., 2007), 2 × 2 × 4 mm (reconstructed to 2 × 2 ×
2 mm) in (Dawes et al., 2013). Authors of (Uribe et al., 2007) mentioned
the drawback of the 3D SSFP sequence is that ”current methods, even those
that use undersampling techniques, involve breath-holding for periods that
are too long for many patients.” This might be the reason why in some
studies 3D cine image acquisition is restrained to healthy volunteers (Uribe
et al., 2007; Dawes et al., 2013). Also, it sacrifices some signal-to-noise-
ratio. Definitely, isotropic imaging has some drawbacks which makes many
radiologists still subscribe to the 2D imaging sequence. Our cardiac MR data
may not be fully considered as 3D data, due to an anisotropic resolution and
to a longitudinal shift between consecutive images since every phase image
is acquired during a different breathhold (Attili et al., 2010). We can expect
that, with the advances of MR imaging technique, it would become possible
that cardiac images (for both LV and RV) can become truly 3D, like brain
images. But for now, most of groups still process 2D cardiac image stacks and
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3D segmentation methods may not be the best adapted to this data. This
is also demonstrated in the paper empirically: some 2D methods (LITIS,
BIT-UPM) exhibit good results.

At last, and as a conclusion question, we wanted to know what type of
methods performs best, although this is an open and difficult question, and
we are fully aware that the answer is limited by the framework of this chal-
lenge, and by the sample of methods that answered back to our challenge
proposal. In the following, we summarize advantages and drawbacks of the
methods.

Atlas-based methods (CMIC, ICL, SBIA). Atlas-based methods
incorporate prior anatomical knowledge from multiple atlases. With good
target-to-atlas registration, the resulting segmentation can be quite robust
and accurate. For example, multi-atlas segmentation has been successfully
applied to brain image segmentation in recent years and achieved very good
results. Multi-atlas segmentation methods consist of two steps, namely image
registration and label fusion. In this challenge, three methods are atlas-based,
which differ on these two points, and also on how they handle the challenges
arising from the direct registration of the entire cardiac images. ICL defines
a ROI using the landmarks and performs registration only in the ROI for
the RV, CMIC has a pre-processing step to remove non-relevant structures
before the registration, and SBIA directly registers the whole atlas and the
whole target images, which may account for the relatively low segmentation
accuracy in the SBIA approach. Regarding the deformable registration al-
gorithms, they all used free form deformation (FFD) as the transformation
model, but ICL and CMIC used normalized mutual information (NMI) with
continuous optimization strategies, whereas SBIA used a texture-attribute-
based similarity metric with a discrete optimization strategy. ICL and CMIC
use local weighting, where the label from each atlas voxel has its own weight:
for ICL, the weight is determined by the intensity similarity to the target
voxel and for CMIC, it is based on local normalized cross correlation. On
the contrary, SBIA uses global weighting, where all the voxels from one atlas
have the same weight, determined by the similarity between this atlas and
the target image. The limitations of atlas-based methods include a high com-
putational cost, which is associated with the registration between the target
image and multiple atlases, and the dependence of the results on the quality
of the atlas set. While CMIC and ICL exhibit some of the best results of this
challenge, SBIA’s results leave room for improvement. While being general,
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the SBIA framework was not specifically designed, and hence it is not neces-
sarily optimal for, cardiac segmentation. For example, a purely registration
based approach was used. Most general-purpose registration algorithms en-
counter challenges when directly applied to raw cardiac MRI data, mainly
due to the complications caused by many neighboring structures in the im-
age. Future studies may need to consider shape or anatomical priors as an
initialization or constraint for the registration specifically for cardiac images.
Also of interest would be the optimization of hyperparameters (registration
algorithms, number of selected atlases, label fusion) specifically in the con-
text of cardiac segmentation.

Shape prior-based approaches (LITIS). Based on a statistical shape
prior model, the LITIS method yields quite accurate results, with an advan-
tageous computation time. Main drawbacks are a heavy user interaction (2
landmarks per image) and the construction of the shape prior models.

Prior-based approaches (GEWU). The GEWU algorithm uses prior
knowledge in its segmentation process, but not under the form of a shape
model, which thus removes the need for costly pose estimation (or registra-
tion) procedures. As it uses a single subject for training, the need for large,
manually segmented training sets is also relaxed. A good property is that
performance is not significantly affected by the choice of the training subject
(Nambakhsh et al., 2013). Another advantage of this algorithm is its possible
parallelized implementations, which makes it run in near real time on typical
graphics processing units can. This can accommodate interactive scenarios,
where the user can correct the results or change the inputs. A limitation is
that it is not straightforward to extend this formulation to train several sub-
jects. When a large training set is available, as in this challenge, the shape
prior cannot take full advantage of the available information (unlike stan-
dard statistical shape models) because the distribution matching measure
provides summarized, not comprehensive, shape information. Therefore, in
cases where massive training information is available, this algorithm is not
expected to outperform standard statistical shape models. The results might
depend on the user input.

Image-driven approaches (BIT-UPM, NTUST). These two ap-
proaches are based on cardiac motion to compensate the lack of a priori
knowledge. One clear advantage is that they do not depend on a training
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set. Another is that images are segmented over full cardiac cycle. Apart
from that, they principle are different. The automatic method of NTUST
does not include any constraint and thus might fail in some difficult cases.
The BIT-UPM approach circumvents the problem of discontinuity between
slices by relying on temporal coherence with a 4D approach, with a certain
efficacy. The BIT-UPM framework is flexible enough to include in the fu-
ture a shape prior, such as the one proposed by the LITIS, incorporated as
the graph-cuts regional term. On the other hand, it requires user interaction.

Conclusion. It is difficult to conclude on the best type method for this
task. It may be surmised from the results, that at the present time and
for this set of data, the best performing methods are CMIC for the auto-
matic methods, ICL, LITIS and to a lesser extent BIT-UPM for the semi-
automatic methods, whose performance are comparable (BIT-UPM perfor-
mance is shown to be significantly inferior to ICL and LITIS with a paired
t-test on DM values (P < 0.01), whereas the null hypothesis cannot be re-
jected between ICL and LITIS). We cannot conclude on whether the best
approach should be 2D, 3D or 4D, or whether it should be prior shape based
or data-driven. What we can say on the other side, is that the designed
algorithm should contain some kind of spatial constraint (thanks to a model
or a global, temporal approach), and that hyperparameters have to be some-
how optimized for the context of cardiac segmentation. There is obviously a
choice to make between between computational burden (required by CMIC)
or a user interaction (required by LITIS, ICL and BIT-UPM). Yet, efforts
still have to be made for the segmentation accuracy to reach inter-expert
variability. Clinically acceptable accuracy has not been reached.

9. Perspectives

This paper has presented the results of the Right Ventricle Segmenta-
tion Challenge, provided over 48 patients and 7 different algorithms. Today,
the challenge datasets are available to the MICCAI community, in order to
encourage future investigations in this field. We hope these datasets will be-
come reference datasets, and serve as standard performance tools for future
segmentation methods. Ever since the challenge was finished, the datasets
have been requested and downloaded around thirty times by research teams
from all over the world, resulting in new publications already (Labrador et al.,
2013; Ringenberg et al., 2014).
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Future works concern the investigation of more reliable ground truth es-
timation, as manual segmentation is known to be quite observer-dependent.
A new estimation of the reference segmentation could be generated, based
for example on the well-known STAPLE algorithm (Warfield et al., 2004) or
the more recent multi-STEPS approach (Cardoso et al., 2012). The STAPLE
algorithm estimates a ground truth from the collection of rater segmentation
results based on the Expectation-Maximization algorithm. Raters, in this
case, can be a collection of automated segmentation results, manual assess-
ment, or a mixture between the two. Other recent approaches regarding the
evaluation of segmentation methods without ground truth will be profitably
investigated (Kohlberger et al., 2012; Lebenberg et al., 2012).

Other perspectives also include investigation on the data. Following the
standard protocol in use today, the RV is imaged based on the short-axis
view perpendicular to the left ventricular long axis. Whereas the short-axis
view is particularly well-suited to the LV, there might be better, alternative
imaging orientations for right ventricular analysis. In recent research, it has
been shown that axial slices (Attili et al., 2010) or 4-chamber view (Caudron
et al., 2011) could be fruitfully used to evaluate the RV EF. Nonetheless, they
require the patient to remain 15 additional minutes in the MR scanner and
to perform around ten apneas for the RV only, which limits the use of these
acquisitions in practice. The short-axis view should remain the standard
protocol in the absence of consensus on optimal imaging orientation, with
the advantage to allow functional assessment of both ventricles on the same
slice stack. In this respect, a next and natural step after two challenges on
the LV segmentation and one on the RV segmentation in MRI, would be
the evaluation of the joint segmentation of both cardiac ventricles, whose
outcome is known to be useful in the clinic.
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Figure 10: Analysis of EF for semi-automatic methods on the Test set. Correlation coeffi-
cient (R). Linear regression: the black dotted line is the identity function. Bland-Altman
plots: black lines indicate the 95% limits of agreement (±2σ).
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Figure 11: Analysis of ventricular mass (g) for epicardium-concerned methods on the Test
set. Correlation coefficient (R). Linear regression: the black dotted line is the identity
function. Bland-Altman plots: black lines indicate the 95% limits of agreement (±2σ).
The NTUST algorithm failed for some cases and the vm could not be computed.
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