
HAL Id: hal-01081279
https://hal.science/hal-01081279

Submitted on 7 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rocovo : Robust Communal Publication Scheme
Thomas Largillier, Guillaume Peyronnet, Sylvain Peyronnet

To cite this version:
Thomas Largillier, Guillaume Peyronnet, Sylvain Peyronnet. Rocovo : Robust Communal Publication
Scheme. Proceedings of the 29th Annual ACM Symposium on Applied Computing ACM, Jun 2014,
Helsinki, Finland. pp.579 - 586, �10.1145/2554850.2554889�. �hal-01081279�

https://hal.science/hal-01081279
https://hal.archives-ouvertes.fr

and a 2-player game between committees for validat-
ing the content, we ensure that published content is
both representative of the taste of the community and
not pushed by malicious users.

• A strong experimental analysis.
We present results obtained through simulation to give
evidence of the efficiency of our approach. We show
that the behavior of a social website that uses Rocovo
is the one expected, even in presence of various types
of malicious users.
We do not use any existing dataset to validate our
approach because our technique filter the content a
priori, while all existing dataset that we know contain
already published items.

The structure of the paper is as follows. In section 2 we
give some insight about the related work. Then, in section 3,
we present our modeling and describe in detail the Rocovo
algorithm. In section 4, we discuss our hypothesis and the
feasability of the method in a real life framework. Last, we
give in section 5 an experimental analysis of our method.

2. RELATED WORK
In this paper we introduce a robust voting mechanism

whose main application is to filter out spam on social web-
sites. There are a few research papers that are dedicated
to the analysis of such websites. The team around Kristina
Lerman has done extensive work in this field [10, 12, 11].
These papers analyse the behavior of users and content in
social sites such as Digg. A user modeling approach is used
to predict which news can obtain good ranking according to
the first votes [12]. Even if this work is concerned with so-
cial websites, their goal is different from ours. Their research
provides a detailed analysis of those websites while we, on
the other hand, aim at designing a robust voting scheme in
an adversarial environment (we have a normative approach).

In [6], the authors present a survey on spam countermea-
sures for social websites. They present a classification that
separates such countermeasures into three categories. In
particular, they mention spam prevention through interface-
based methods. The idea is to harden the publication of
spam using specifically designed mechanisms. Our approach
falls into the scope of these methods since we reduce the
chances that bad content is published using a specific voting
mechanism.

In [1], the authors describe a machine learning based rank-
ing framework for social media that is robust to some com-
mon forms of vote-based spam attacks. Other work focuses
on manipulation-resistant systems [14], and use a notion
close to the one of pertinence, introduced in [9].

Our present work is using a completely different approach
in order to obtain a robust voting scheme. More precisely, we
use a collaborative approach based on the concept of “games
with a purpose” of Luis Von Ahn [16, 17], where players are
representative committees of the community. This way, we
can ensure that the community will always be capable of
avoiding bad content to be published.

This approach has been already used for different pur-
poses. For instance, a two-player game to fight webspam
is presented in [5]. Also, spam assessment tasks (i.e. the
human task of labelling webpages in order to find spam) are
often done using some kind of game-inspired approach [2].

The problem of providing users of a community with a
good selection of news can also be seen as a recommenda-
tion problem [15]. One of the earliest attempts to design
recommendation systems was given in [4] for collaborative
filtering techniques. Cosley et al. [3] study the relation be-
tween recommendation systems and users, while Lam and
Riedl [8], and O’Mahony et al. [13] address the problem of
malicious users and the robustness of systems. The first step
of Rocovo borrows ideas from recommendation systems: we
ask a committee to evaluate the content suggested for pub-
lication by some users. The committee decision to allow
the publication of some content can be seen as a recommen-
dation of this content to the whole community. However,
Rocovo is not a recommender since it only assess the fact
that the published content is acceptable by the community
and do not attempt at ranking items.

3. ROCOVO ALGORITHM
Here, we first present the framework on which Rocovo is

built, together with its principle. Then, we describe each
part of the mechanism.

Framework and principle.
We assume that our publishing system Rocovo is used by

a community of n users U = {u1, · · · , un}. Any member of
the community can ask for the publication of a document.
The set of all documents is denoted by D. Rocovo is based
on rounds or periods. A period is a time interval during
which a bucket of documents is submitted and processed by
the algorithm. The set of all periods is P = {p1, · · · , p|P|}.
D can be partitionned into subsets D = ∪pi∈PDpi . Dpi is
thus the set of documents that are submitted for publica-
tion for the period pi. For the sake of clarity, we present
in the paper the behavior of the algorithm for one period.
This way we can ease the notation by removing references
to pi. Moreover, we will consider that only one document is
submitted during this unique period. this document will be
denoted by d.

Figure 1 depicts the internal process followed by Rocovo
to decide on the publication of one suggested document. Ro-
covo works in several steps in order to avoid the publication
of unwanted (by the whole community) or spammy docu-
ments with high probability.

The first idea (random committee selection) is borrowed
from recommendation systems. The document to be pub-
lished should be acceptable for the whole community but it
is not tractable to ask each community member to validate
each document. Thus, we use the opinion of a few users to
decide on the acceptance of a document. In recommenda-
tion systems, these few users constitute a committee. The
key point in constituting committtees is to make sure that
they are representative of the community. We address the
specifics of Rocovo’s committee members selection later in
the paper.

To decide if a document is suitable for publication, each
committee member is voting for acceptance or rejection of
the document. The vote is done with a 2

3
-majority rule.

An important point is that not all voters have the same
“weight”. If someone is constantly agreeing with the rest
of the community, she is rewarded and her weight increases
(up to a certain bound). If someone is disagreeing with the
rest of the community, her weight decreases. This means
that when we mention a 2

3
-majority rule one should keep in

Committees
members scores

are updated
depending on the

output

Period p

submission
of document

d
Input

Random selection
of 2 committees

Weighted
voting Concordance

Scores
updateOutput

Each member of
the committees

vote "yes" or "no"
concerning the

document

Each member has
a voting value

between 1 and 3

If each committee
outputs "yes" in a
2/3 majority vote

then d is published

otherwise d is
rejected

C1 ⇢ U

C2 ⇢ U

C1 \ C2 = ;

|C1| = |C2| = ⌘ ln(
⌘

"
)

Figure 1: Rocovo’s algorithm

mind that each committee member has a different weight
and thus the vote of one member can be worth the added
votes of several others. Moreover, the threshold of the vote
is, of course, a parameter of the method. Here we use the
specific value 2

3
to ease the readability of the paper.

Having only one committee is not enough if one wants to
obtain a robust mechanism. This is why we use two com-
mittees. At the end of the period, a document is accepted if
the two committees, selected for this item, output the same
positive recommendation. In all other cases (disagreement,
or agreement on a negative recommendation), the document
is rejected. This use of an agreement is similar to what is
done in “games with a purpose” [16, 17] (see [5] for an appli-
cation to webspam detection). However, our method is not
strictly a “game with a purpose” since it is not a game.

At the end of the period, the document is either accepted
or rejected. All committees member weights are updated,
as well as their scores.

Committees.
The first step of Rocovo is the setting of two committees

C1, C2 ⊆ U . A committee is built upon a small number of
community’s members. Its goal is to made a proposal on the
acceptance or rejection of a submitted document. If the two
committees agree on the acceptance, then the document is
accepted, otherwise it is rejected.

In order not to overwhelm users with the publication pro-
cess , we need the committees to be as small as possible, but
we also have to make sure that the chosen committees can
decide for the whole community. This means that we want
representative committees. In order to give a clear definition
of this notion, we assume that the community is partitioned
into a constant number of equivalence classes Ei. Two users
are said to be equivalent if they agree on the decision to be
made on a document. Note that the assumption that users
can be categorized in classes that strongly differ one from
each other is very common in recommendation systems. In
our framework, the categorization of users mainly depends
on their ability to distinguish between honest and spam con-
tent independently from their personal interest in the con-
tent. In the rest of the paper, we denote by η the number
of equivalence classes. For the sake of simplicity, we also

assume that all classes have the same size (this assumption
is discussed in section 4)

Definition 1. A committee C is representative if and
only if it contains with high probability at least one mem-
ber of each equivalence class. That is, C is representative if
and only if ∀Ei ∃u ∈ C s.t. u ∈ Ei, with high probability (1
- ε), where ε ∈]0, 1[.

The less costly way to set up a committee is to pick uni-
formly at random members of the community. The proba-
bility that a randomly picked user belongs to an equivalence
class Ei is 1/η for all i since all the classes have the same
size. The question that arises then is to decide how many
members must be picked at random in order to obtain a rep-
resentative committee. The following proposition addresses
this problem.

Proposition 1. If we pick uniformly at random η ln(η
ε
)

members of the community, then we obtain a representative
committee with probability at least (1− ε)

Proof. Let NOK be the event that the committee is not
representative. After picking uniformly at random m users,
the union-bound principle gives:

P (NOK) ≤
η∑
i=1

(1− 1

η
)m.

Since
∑η
i=1(1 − 1

η
)m = η(1 − 1

η
)m ≤ ηe

−m
η (by convexity

reason), we have that:

P (NOK) ≤ ηe
−m
η .

We want P (NOK) ≤ ε, so we obtain that:

m = η ln(
η

ε
)

is sufficient for our purpose.

In practice, we will take α× η ln(η
ε
) members at random,

α being a well chosen constant to avoid a deadlock due to
a small proportion of users being late to respond (or not
responding) about the status of the submitted document.
Typically it will be between 1.5 and 2. Since we need two

committees, we also have to take the same number of users
amongst those that are not in the first committee. Typical
practical values for η and ε are 3 and 0.05, meaning commit-
tees of size 13. We set η to 3 following the idea that we have
three classes: spammers, honest users capable of detecting
spam content, and honest users not capable of detecting it.

Votes.
Once a committee is set, the document is submitted to its

members. Each committee member vote for acceptance or
rejection of the document. The committe is proposing the
document for publication if the majority of the expressed
votes accept the document, otherwise it is rejected.

Note that in our election process, members are not equal.
More precisely, each member got a specific weight during
the vote. This weight is a natural number less than 3 in
our practical experiments. The bound on the weight is a
parameter whose value depends on the strength of the tar-
geted filtering of bad content. We will see later how we can
give a specific weight to a specific user.

The vote is thus made in the following way: we sum up the
weights of the supporters of the document, we sum up the
weights of the detractors of the document. The document is
accepted if more than 2

3
of the weighted votes are in favor

of it. Again, the value 2
3

is the one we use in practice, but
can be tuned to obtain a different behavior for the whole
process.

With these specific values for the weights and for the ma-
jority threshold, it is easy to see that it is very difficult for
malicious users to manipulate the outcome of the vote. Let
us consider the extreme case where all malicious users vote
in the same way and have the maximum weight (two very
unlikely events), assuming that we have 1000 users in the
community, 20% of them being malicious persons acting to-
gether and that a committee have size 13, they can manipu-
late the vote if and only if they represent more than 46 % of
the committee. In this case, the probability of a successful
manipulation of one committee is less than 3%. In a more
reasonable case where a malicious user acts like an honest
user long enough so he have the same weight, the proba-
bility of a successful manipulation is less than 0.00015%3.
All these probabilities are computed as cumulative proba-
bilities of a hypergeometric distribution. This means that
this probability of a successful manipulation is given by:

|C|∑
i=β|C|

(
n/s
i

)(
n−n/s
|C|−i

)(
n
|C|

)
Here, β is the proportion of malicious users needed in the
committee to ensure the success of a manipulation. n is the
size of the community, |C| the size of the committee and 1/s
is the probability of finding a malicious user when picking
at random a community member. Giving a closed form of
the cumulative probability above is a difficult problem, and
even approximations are difficult to obtain [18].

Validating the publication.
A document is accepted for publication if and only if the

two committees agree on the acceptance, otherwise it is re-
jected. This step can be seen as a game with a purpose
where players are the committees. The goal here is to am-

3See http://www.berbiqui.org/thomas/sac2014/

plify the probability that a bad behavior is ineffective. In
the previous examples, the probabilty of success for a ma-
nipulation becomes less than 0.1% for the extreme case, and
10−7% in the reasonable case.

Updating the values of the users.
Once a document has been either accepted or rejected,

weights and scores are updated.
The weight of a user is his value during the vote. At first,

the weight of any user is 1. The value evolves vote after
vote, but is bounded (by 3 in our setting). If the commit-
tees reached an agreement, then all users that voted for the
actual output have their weight increased by 1. Those that
are already at 3 stay at 3. Other users (that for instance
voted for acceptance while the document was rejected) have
their weight set to 1. If the committees did not reach an
agreement, then the weight of users that voted for accep-
tance is set to 1. The weight of other users is unchanged.

The score of a user is a way to reward him for his good
behavior. Each time a user is in a situation where his weight
should have been increased, his score increases. In practice,
score is a sort of money that users can exchange for various
things (following the gamification idea [19]). In our experi-
ments, users earn 10 credits each time their score increases.
Every 100 credits they can buy a publication token.

The number of tokens is the last value attached to a user.
A token is a right to submit a document for publication. At
first, a user has 1 token. When a user submit a document,
he loses a token. If the document is accepted, he retrieves
the token, otherwise the token is lost permanently. The only
other way to gain tokens is to achieve good behavior during
the voting phase.

Rocovo is strategy-proof: there is no interest for an hon-
est user to vote for a document he does not want for the
community. More precisely, an honest user can gain from
a bad behavior only if he is in a situation where he knows
that there is enough malicious users in both committees so
that the outcome of the votes will not be the one that fits
the need of the community. Since committees members are
randomly selected, making the probability of having a suffi-
ciently large set of malicious users in both committees very
low, the score expectation is higher for someone that plays
honestly.

4. DISCUSSION
In this section, we discuss the hypotheses made in this

paper. We also elaborate on some comments we had from
early readers of the paper.

Parameters’ values.
The method uses many parameters: the outcome of the

vote depends on a 2/3 threshold, the weight of a specific
user ranges in {1, 2, 3}, etc. All the values that we use in
this paper are likely to be modified in a real-life framework.
We chose to use actual values instead of symbols for the sake
of simplicity and to ease the reading of the paper.

Security issues.
Our method assume that it is possible to generate random

samples. More specifically, it means that we assume that we
have a strong enough pseudorandom generator. The exis-

tence of pseudorandom generators sufficient for monte carlo
methods is known since 1990 [7]. We can use such a gener-
ator for our method.

We don’t assume that identities are stable. More precisely,
white-washing is possible: a detected spammer can come
back with a new identity. This is of course an overhead
for the method, but it won’t preclude the behavior of the
publication system. Moreover, in a practical setting, we will
identify people using a third party service (such as openID,
facebook or twitter identification), and will thus be as strong
as these services when it comes to multiple avatars.

We implicitly limit Sybil attack with our hypothesis that
the users classes are of equivalent size. Indeed, a Sybil attack
is a large group of users sharing the same behavior, this is
thus a unique class of users. Either this class is the only one,
and it’s no longer a corruption of the community since it is
the entire community, or there are at least two classes, and
with a 2/3 majority vote, the impact of the Sybil attack is
limited.

Users’ behaviour and classes in a real-life context.
The assumption that is the most surprising is probably

the fact that we assume that all classes have the same size.
First, have the same size must be understood as have sim-
ilar sizes. Second, the main interest of this hypothesis is
that it makes the paper easier to read (less technicalities).
Moreover, we can always comply with this assumption by di-
viding big classes into smaller classes. We then obtain more
classes, but all of similar sizes.

The main concerns we have for practical settings are:

• The system depends on committees putting in time to
review posts. It means that the community must be
very motivated in order to obtain a constant stream
of published information. Because of this, the method
is best fitted for expert communities, or for enterprise
social networks. For instance, an intranet where all
engineers of a very large international company share
their best practices.

• When there are very few users, the review burden is
high. This is the case during the startup phase of a
social network. Our first real-life experiments lead us
to think that during the startup phase, it may be nec-
essary to lower the number of users in the committees.

• The punishment for attempting to post spam is draco-
nian. To overcome the fact that people may leave the
network because of that, we advise to use additional
mechanisms to give credits to users after some time.

5. EXPERIMENTS
In this section we present the simulations we conducted

to assess the good behavior of the proposed scheme from
an empirical point of view. We run 7 scenarios. In the
first we consider only honest users, in scenarios 2 to 6 the
scheme is tested against a specific adversary while in the
last scenario, it is tested against all adversaries altogether.
In those experiments, users start with 3 tokens and win 10
credits every time they do a“good”vote. When a user gather
100 credits, he buys an additional token.

Each experiment is composed of 50 rounds. The user set
consists of 1000 users, 125 of which are malicious in adver-
sarial scenarios. In each round all users get a chance to

publish a new item. The probability that any user will post
an item is determined by a power law. For any honest user,
the probability that the published item is “good” is denoted
by p. In the following experiments p = 90%. Once we have
the list of all items for a round, we select two committees for
each item and proceeds to the votes. In these experiments
any honest user has a 70% probability of voting. If they
decide to vote for an item, they have a 85% probability to
vote according to this item’s category, i.e. voting yes for a
“good” item and refusing a “spam” item. In all the following
experiments, η = 5 and ε = .05. The presented results are
the average values over 22 repetitions of each experiment.

The results are summed in Tabs. 1, 2 and Fig. 2. Tab. 1
shows the average publication ratio for posts over 10 rounds
regarding their nature. Every scenario is depicted through
a line in this table. Tab. 2 represents the minimum, aver-
age and maximum number of tokens accumulated by honest
users for the first scenario and each kind of adversaries in
the following ones after 10, 20, 30, 40 and 50 rounds. Fig. 2
depicts the “weight” of the vote for honest users and adver-
saries after each round i ≥ 1

First scenario.
The behavior of the scheme without any adversary will

be used as a reference to determine the impact of malicious
people on the system. The first line of Tab. 1 shows the
acceptance rate of posts regarding their nature. We can
see that when there are only honest users in the system, no
spam post is ever published while the publication rate of
good posts is around 90%. This is the reference behavior for
our system and we expect to see as few deviation from it as
possible in the presence of adversaries.

The first line of Tab. 2 shows the number of tokens accu-
mulated by the users over time. We can see that only a few
users have less than one token at every moment since the
average value grows together with the maximum. The pres-
ence of users with less than one token could be explained
by the fact that some users may post few and bad quality
articles even if their intent is good. On the other hand, the
maximum value represents users with a high voting rate that
propose legitimate content.

The evolution of the vote’s value of users is represented
in Fig. 2a. As it can be expected most users have a vote
value of 3 which is the maximum. Others users are those
that did not vote or chose the wrong option when voting
for a proposed post. The proportion of those users is in
accordance with the error probability we set for the votes.

Second scenario.
In this scenario, we consider adversaries that are trying

to push their content or content proposed by their friends
to the website. They will propose “bad” content and will
always vote yes for bad content. Regarding “good” content,
those adversaries behave like honest users. This is a stronger
version of the real life adversary since here all malicious
users are part of the same cabal while in reality they will
be divided into smaller groups with a smaller probability of
success. It can be seen on the second line of Tab. 1 that
despite their number, those malicious users do not succeed
in publishing spamming content. Their behavior also does
not affect the publishing ratio of good content as expected.

The second line of Tab. 2 shows the number of publication
tokens own by the malicious users over time. As one can see,

1 - 10 11 - 20 21 - 30 31 - 40 41 - 50
G S G S G S G S G S

Sc 1 89.50 0.00 90.21 0.00 90.22 0.00 90.11 0.00 89.55 0.00
Sc 2 90.14 0.00 90.06 0.00 90.66 0.00 89.81 0.00 89.86 0.00
Sc 3 82.82 0.00 87.67 0.00 88.75 0.00 88.73 0.00 87.44 0.00
Sc 4 88.74 0.00 89.48 0.00 89.15 0.00 89.44 0.00 89.00 0.00
Sc 5 90.41 0.00 90.17 0.00 89.46 0.00 89.29 0.00 89.75 0.00
Sc 6 90.36 0.00 90.38 0.00 89.90 0.00 90.49 0.00 90.56 0.00
Sc 7 90.08 0.00 90.55 0.00 90.13 0.00 89.88 0.00 90.02 0.00

Table 1: Percentage of posts acceptation regarding their type

10 20 30 40 50
Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min

Gen 18 8.30 3 33 13.96 3 45 19.72 2 60 25.58 2 73 31.26 0
Adv1 17 3.36 0 33 5.23 0 44 7.15 0 56 9.01 0 67 10.94 0
Adv2 8 3.63 3 12 4.59 3 16 5.57 3 20 6.59 3 24 7.58 3
Adv3 9 4.29 3 15 5.97 3 19 7.70 3 24 9.41 3 29 11.12 3
Adv4 13 7.87 3 23 13.08 5 32 18.38 7 41 23.73 8 50 29.03 10
Adv5 35 13.75 6 66 25.04 11 92 36.29 16 121 47.75 21 150 59.13 28
Adv6 23 6.49 0 43 10.67 0 61 14.89 0 79 19.09 0 97 23.24 0

Table 2: Number of tokens per user through time

most of them possess very few tokens. The maximum value
is similar to the honest users value since they behave as good
voters, they are able to buy a publication token every 100
credits earned. We can see that even if malicious users can
regain publication tokens through a genuine voting strategy
on non spam content, they cannot publish any spam content
as shown on Tab. 1.

Almost all malicious users in this scenario possess the
smallest vote value as seen on Fig. 2b. This is logical since
they try to push spamming content. The few users that
sometimes achieve a higher vote value are those who were
not recently on the committee involving spamming content.
Since they behave as regular users to avoid detection they
vote accordingly to the content value and can see their vot-
ing value rise. We can also see that even with users having
the maximum voting value it is not possible for those spam-
mers to push content.

Third scenario.
The adversaries implemented in this scenario do not at-

tempt to promote their content but rather to crash the web-
site by always voting no for “good” content. We can see on
the third line of Tab. 1 that their attack is ineffective on the
system. They hardly decrease the probability of accepting
good content. The third line of Tab. 2 shows the evolution
of their number of credits. Some users succeed in getting
some credits, but they are far from the number of credits
obtained by honest users (see the first line of the table). A
more interesting value for those users is the value of their
vote. One can see on Fig. 2c that almost all those users have
the smallest vote value. This is explained by the fact that
mostly good content is proposed during those simulations
and since they always vote to refuse they very often con-
tradict the community opinion and so their vote has only a
reduced impact.

Fourth scenario.
These adversaries share the objective of the ones in the

third scenario, they aim at crashing the site rather than pro-
moting their own content. They are the opposite of genuine
users since they vote no for every “good” content and yes for
“bad” content. The fourth line of Tab. 1 shows that their
action is inefficient regarding the promotion of“bad”content
or the demotion of “good” content. Since they always vote
against the nature of the content, it is really hard for them
to increase their vote value. Most of them have the lowest
possible vote value as seen on Fig. 2d. The fourth line of
Tab. 2 shows the evolution of their number of tokens. Since
they always vote against the nature of an item, when they
correctly evaluate it, it is hard for them to earn credits and
purchase more publication tokens. This explains why they
achieve numbers close to the ones of the third scenario.

Fifth scenario.
The adversaries of this scenario use a random voting strat-

egy tossing a coin each time they need to vote. This behavior
can be observed for users that do not take the time to look
at the item before voting. As seen on the fifth line of Tab. 1,
the action of these users do not affect the acceptance ratio
for both “good” and “bad” content. It is only logical since
even if there is a large enough number of them inside the
same committee, they do not cooperate. Regarding the evo-
lution of their number of tokens shown on the fifth line of
Tab. 2, we can see that few users can purchase many to-
kens, some users cannot purchase any token and that most
users can purchase some tokens. This is explained by their
voting strategy. Since it is random, a few users will always
agree with the committees decision, a few will always dis-
agree and most will alternate correct and incorrect decisions.
This effect can also be seen on the vote value of those users
on Fig. 2e. We can see that around half those users have
the lowest voting value and the remaining half is split al-

most equally between voting value 2 and 3. This is because
there are mostly “good” content proposed to the system and
therefore tossing a coin is not the optimal strategy to vote
blindly.

Sixth scenario.
In this scenario, the adversaries always vote yes, regardless

of the content quality. Again those adversaries are trying
to promote “bad” content and to crash the website. This
behavior might also be adopted by users relying on the rest
of the community to do the filtering and see the committee’s
role as too much work. This blind voting strategy, even when
used by an association of those users in a committee do not
increase the acceptance ratio of “bad” content as shown on
the sixth line of Tab. 1. Since mostly “good” content is
proposed in this scenario, these users tend to agree with the
committee most of time, therefore most of them have a high
vote value and can purchase many publication tokens as seen
on the sixth line of Tab. 2 and Fig. 2f.

Seventh scenario.
In this scenario all kinds of adversaries are represented.

Adv1 represents half the adversaries while the remaining
classes are equally distributed. All those adversaries have
divergent objectives and thus it is interesting how their com-
bined action might affect the system. As seen on the seventh
line of Tab. 1, their combined behavior do not lower the ac-
ceptance ratio of “good” content nor increase the “bad” con-
tent one. Also, most of them only possess a low number of
publication tokens and the lowest vote value as shown on the
seventh line of Tab. 2 and Fig. 2g. The system is then ro-
bust even when facing a great number of diverse adversaries
that either try to promote their own content or alter the
experience of the genuine users by promoting “bad” content
or shunning “good” content.

6. CONCLUSION
In this paper, we presented a robust validation method

for publishing content on social websites. This mechanism,
called Rocovo, uses representative committees of the whole
community and a two steps voting algorithm in order to ob-
tain both representativity of the tastes of the community,
and robustness to the behavior of malicious users. A set of
experiments show that the method is indeed robust, even if
a large number of various malicious users are in the commu-
nity.

We have implemented Rocovo in an actual social website4

to assess its real-life feasibility and efficiency.

7. REFERENCES
[1] J. Bian, Y. Liu, E. Agichtein, and H. Zha. A few bad

votes too many?: towards robust ranking in social
media. In Proc. of the 4th international workshop on
Adversarial information retrieval on the web, pages
53–60. ACM, 2008.

[2] C. Castillo and B. Davison. Adversarial web search,
volume 4. Now Publishers Inc, 2011.

[3] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and
J. Riedl. Is seeing believing?: how recommender
system interfaces affect users’ opinions. In CHI ’03:

4http://www.krinein.fr.

Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 585–592. ACM,
2003.

[4] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, pages 61 – 70,
1992.

[5] M. Goodstein and V. Vassilevska. A two player game
to combat web spam. Technical report, Technical
Report, Carnegie Mellon University, 2007.

[6] P. Heymann, G. Koutrika, and H. Garcia-Molina.
Fighting spam on social web sites: A survey of
approaches and future challenges. IEEE Internet
Computing, 11(6):36–45, 2007.

[7] F. James. A review of pseudorandom number
generators. Computer Physics Communications,
60(3):329–344, 1990.

[8] S. K. Lam and J. Riedl. Shilling recommender systems
for fun and profit. In WWW ’04: Proceedings of the
13th international conference on World Wide Web,
pages 393–402, New York, NY, USA, 2004. ACM.

[9] T. Largillier, G. Peyronnet, and S. Peyronnet.
Spotrank: a robust voting system for social news
websites. In Proceedings of the 4th workshop on
Information credibility, WICOW ’10, pages 59–66,
New York, NY, USA, 2010. ACM.

[10] K. Lerman. User participation in social media: Digg
study. In Proceedings of the 2007 IEEE/WIC/ACM
International Conferences on Web Intelligence and
Intelligent Agent Technology, pages 255–258,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] K. Lerman. Dynamics of a collaborative rating
system. pages 77–96, 2009.

[12] K. Lerman and A. Galstyan. Analysis of social voting
patterns on digg. In WOSP ’08: Proceedings of the
first workshop on Online social networks, pages 7–12,
New York, NY, USA, 2008. ACM.

[13] M. O’Mahony, N. Hurley, N. Kushmerick, and
G. Silvestre. Collaborative recommendation: A
robustness analysis. ACM Trans. Internet Technol.,
4(4):344–377, 2004.

[14] P. Resnick and R. Sami. The influence limiter:
provably manipulation-resistant recommender
systems. In RecSys ’07: Proceedings of the 2007 ACM
conference on Recommender systems, pages 25–32,
New York, NY, USA, 2007. ACM.

[15] P. Resnick and H. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[16] L. Von Ahn. Games with a purpose. Computer,
39(6):92–94, 2006.

[17] L. Von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 51(8):58–67,
2008.

[18] T. Wu. An accurate computation of the
hypergeometric distribution function. ACM
Transactions on Mathematical Software (TOMS),
19(1):33–43, 1993.

[19] G. Zichermann and C. Cunningham. Gamification by
Design: Implementing Game Mechanics in Web and
Mobile Apps. O’Reilly Media, 2011.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

1 2 3

(a) Regular users

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(b) Adversary 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(c) Adversary 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(d) Adversary 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(e) Adversary 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(f) Adversary 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 25 50 1 25 50

1 2 3

AdversariesGenuine Users

(g) All adversaries

Figure 2: Vote’s value of users after each round in the experiments

