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ON THE REPRESENTATION OF FRIABLE INTEGERS BY
LINEAR FORMS

ARMAND LACHAND

Abstract. Let P+(n) denote the largest prime of the integer n. Using
the nilpotent Hardy-Littlewood method developed by Green and Tao,
we give an asymptotic formula for

ΨF1···Ft

(
K ∩ [−N,N ]d, N1/u

)
:= #

{
n ∈ K ∩ [−N,N ]d :

P+(F1(n) · · ·Ft(n)) ≤ N1/u
}

where (F1, . . . , Ft) is a system of affine-linear forms of Z[X1, . . . , Xd] no
two of which are affinely related and K is a convex body. This improves
upon Balog, Blomer, Dartyge and Tenenbaum’s work [1] in the case of
product of linear forms.

1. Introduction and statement of the result

Given a real number y > 1, an integer n is said to be y-friable if its

greatest prime factor, denoted by P+(n), satisfies P+(n) ≤ y with the

conventions P+(±1) = 1 and P+(0) = 0. Conversely, an integer n is called

y-sifted if its smallest prime factor, denoted by P−(n), satisfies P−(n) > y

with the conventions P−(±1) = +∞ and P−(0) = 0. Due to the duality

beetwen sifted integers and friable integers, such integers occur in several

places in number theory and their distribution has been intensively studied

(see [17] and [10] for survey articles related to integers without large prime

factors). A theorem of Hildebrand [16], related to the number Ψ(N, y) of

y-friable integers smaller than N , asserts that, for any ε > 0 and uniformly

in the domain

(1.1) N ≥ 3 and 1 ≤ u ≤ logN

(log logN)5/3+ε
,

we have the asymptotic formula

(1.2) Ψ
(
N,N1/u

)
= Nρ(u)

(
1 +O

(
u log(u+ 1)

logN

))
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2 A. LACHAND

where ρ is the Dickman function, namely the unique solution to the delay

differential equation{
ρ(u) = 1 if 0 ≤ u ≤ 1,
uρ′(u) + ρ(u− 1) = 0 if u > 1.

Given F ∈ Z[X1, . . . , Xd] and K ⊂ Rd, the study of the cardinality

ΨF (K, y) := #
{
n ∈ K ∩ Zd : P+(F (n)) ≤ y

}
is an interesting question. In particular, the factorization algorithm Number

Field Sieve (NFS)1 rests on the assumption that the cardinality ΨF (K, y)

is sufficiently large for some small y, for F ∈ Z[X1, X2] and K ⊂ R2 a

sufficiently regular compact set.

Let F = F k1
1 · · ·F kt

t be the decomposition of F with F1, . . . , Ft the dis-

tinct irreducible factors of F and d1, . . . , dt their respective degrees with

d1 ≥ . . . ≥ dt ≥ 1. If we assume the events ”Fi(n) is y-friable” to be

independent, then (1.2) leads to the following conjecture

(1.3) ΨF

(
[0, N ]d, N1/u

)
∼

N→+∞
Ndρ(d1u) · · · ρ(dtu)

for any fixed u > 0.

When d = 2, the author proved the validity of (1.3) for an irreducible

cubic form F or for F = F1F2 where F1 is a linear form and F2 is an

irreducible quadratic form [18, 19]. For general binary forms F , such a for-

mula seems beyond reach but there exist some partial results for estimating

ΨF

(
[0, N ]2, N1/u

)
when u is sufficiently small. In [1], Balog, Blomer, Dar-

tyge and Tenenbaum proved the existence of a constant αF > 1/d1 such

that, for any ε > 0 and uniformly for N ≥ 2, we have

(1.4) ΨF

(
[0, N ]2, N1/αF+ε

)
�ε N

2.

Let d ≥ 2 and t ≥ 1 be integers. In this paper, we focus on binary forms

F = F1 · · ·Ft where F1, . . . , Ft are some affine-linear forms in Z[X1, . . . , Xd].

The cases d = 2 and t ∈ {1, 2} can be deduced from results of [7] related

to the distribution of friable integers in arithmetic progressions. The case

d = 2 and t = 3 was essentially considered by a succession of articles of

various authors ([3, 21, 4, 5, 6, 15]). In [[15], Corollary 1], Harper used the

Hardy-Littlewood circle method to show the existence of c > 0 such that,

uniformly for N ≥ 2 and y ≥ (logN)c, we have

ΨX1X2(X1+X2) (K(N), y) ∼
N→+∞

S0(α, y)S1(α)
Ψ (N, y)3

N

1The interested reader may find a description of this algorithm in [[2], Chapter 6].
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where K(N) = {1 ≤ n1, n2 ≤ N : n1 + n2 ≤ N}, α := α(N, y) denotes the

unique real solution of the equation∑
p≤y

log p

pα − 1
= logN,

S0(α, y) :=
∏
p≤y

(
1 +

(p− pα)3

p(p− 1)2(p3α−1 − 1)

)∏
p>y

(
1− 1

(p− 1)2

)
and

S1(α) :=

∫ 1

0

∫ 1−t1

0

α3(t1t2(t1 + t2))α−1 dt2 dt1.

The celebrated work of Green, Tao and Ziegler [11, 12, 13, 14] provides a

scheme - the so-called nilpotent Hardy-Littlewood method - to get asymp-

totic estimations of the average value

(1.5) MF1···Ft(K;h) :=
∑

n∈K∩Zd
h(F1(n)) · · ·h(Ft(n))

for any system of affine-linear forms F1, . . . , Ft ∈ Z[X1, . . . , Xd] such that

no two forms are affinely related and for any arithmetic function h with a

quasi-random behaviour. In recent years, this approach has been applied

successfully for several functions including the von Mangoldt functions Λ

(this gives a partial resolution of the generalized Hardy-Littlewood conjec-

ture [11]), the Liouville function λ or the Möbius function µ [11], the divisor

function τ [23], the function rG which counts the number of representations

of a binary quadratic form G [24, 25] or, very recently, any multiplicative

function that takes values in the unit disk [8].

In this work, we study how the nilpotent Hardy-Littlewood method may

be applied to get an asymptotic formula for (1.5) when h = 1S(N1/u) is the

indicator function of the N1/u-friable integers for bounded u ≥ 1. Such a

question is not covered by Frantzikinakis and Host work [8] since h depends

on N in the present case. The main result is the following theorem.

Theorem 1.1. Let N,L, d, t and u0 be some positive integers. Suppose that

F = (F1, . . . , Ft) : Zd → Zt is a system of affine-linear forms such that

any two forms Fi and Fj are affinely independent over Q and the non-

constant coefficients of the Fi are bounded by L. Then, for any convex body

K ⊂ [−N,N ]d such that F (K) ⊂ [0, N ]t and for any u1, . . . , ut ∈ [0, u0], we

have∑
n∈K∩Zd

1S(N1/u1)(F1(n)) . . . 1S(N1/ut)(Ft(n)) =Vol(K)
t∏
i=1

ρ(ui) + o(Nd)
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where the implicit constant depends only on t, d, L and u0 and S(y) denotes

the set of y-friable integers.

As regards the result of Balog et al. [1], we get essentially two major

improvements on their works in the case of linear forms :

• Theorem 1.1 gives an asymptotic equivalent which is consistent with

the conjectural formula (1.3) whereas (1.4) only gives a lower bound,

• when t ≥ 4, Formula (1.4) is valid with αF = 1 + 2
t−2

while The-

orem 1.1 shows that we can choose any positive real number for

αF .

Outline and perspectives In its primitive form, the nilpotent Hardy-

Littlewood method is concerned with arithmetic functions h which are

equidistributed in residue classes of small moduli and supported on a set of

integers with positive asymptotic density. For such functions, the problem

is reduced to show that h is suitably Gowers-uniform to deduce asymptotics

for MF1···Ft(K;h) (see the description of the method in Section 2).

In many applications, the function h may not satisfy the two previous

conditions. The method developed in [11, 23, 24] to overcome this difficulties

consists in two steps :

• the decomposition of h into a sum of functions which are equidis-

tributed in residue classes of small moduli (W -trick, see [[11], Sec-

tion 5]),

• the construction of a pseudorandom measure ν dominating h in view

to apply a transference principle (see [[11], Section 10]).

For bounded u ≥ 1, the set of N1/u-friable integers has positive density

ρ(u) and is well-behaved in arithmetic progressions of small common differ-

ence (see the work of Fouvry and Tenenbaum [7]). In particular, the problem

may be directly handled by using the nilpotent Hardy-Litlewood method

and showing that h has small Gowers-uniformity norms. This may be viewed

as an application of the impressive results of Matthiesen [22] related to the

orthogonality beetwen multiplicative functions and nilsequences. In the Sec-

tion 3 of the present paper, we develop a more direct and simple approach

to study the linear correlations of the friable integers.

It would be interesting to prove Formula (1.3) for unbounded parameters

u. In this case, the sequence of friable integers is too sparse to directly apply

Green-Tao-Ziegler’s work. A major step to get this generalization would be

to construct a pseudorandom majorant for 1S(N1/u).
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2. A brief description of the nilpotent Hardy-Littlewood

method

In this section, we recall two important arguments of the nilpotent

Hardy-Littlewood method. The generalized von Neumann theorem – due

to Gowers [9] and Green-Tao [11] – reduces the estimation of MF1...Ft(K;h)

defined in (1.5) to the study of the Gowers uniformity norm ‖h‖Ut−1[N ] (see

[[11], Appendix B] for a definition of Gowers norm).

Theorem A ([11], Proposition 7.1). Let t, d, L ≥ 1 be some integers. Sup-

pose that h1, . . . , ht : [0, N ] → R are functions bounded by 1 and that

F = (F1, . . . , Ft) : Zd → Zt is a system of affine-linear forms whose non-

constant coefficients are bounded by L and such that any two forms Fi and

Fj are affinely independent over Q. Let K ⊂ [−N,N ]d be a convex body

such that F (K) ⊂ [0, N ]t. Suppose also that

min
1≤i≤t

‖hi‖Ut−1[N ] ≤ δ

for some δ > 0. Then we have∑
n∈K

t∏
i=1

hi(Fi(n)) = oδ(N
d) + κ(δ)Nd

where κ(δ)→ 0 as δ → 0.

Proof. Let (e1, . . . , ed) be the canonical basis of Rd and fix n = n1e1 + ·+
nded ∈ K. Then we have

|Fi(0)| ≤
d∑
i=1

|ni|L+ |Fi(n)| ≤ (dL+ 1)N

because F (n) ∈ [0, N ]t and K ∈ [0, N ]d. With the definition (1.1) of the

norm ‖ · ‖N of [11], we therefore have ‖F‖N �d,t L and the Proposition 7.1

of [11] can be used to get the result. �

The inverse theorem for the Gowers norms, proved by Green, Tao and

Ziegler [14], exhibits the link between linear correlations and polynomial

nilsequences. The reader may refer to [13] for definitions and properties of

filtered nilmanifolds and polynomial nilsequences.

Theorem B ([14], Theorem 1.3). Let s ≥ 0 be an integer and let δ ∈]0, 1].

Then there exists a finite collection Ms,δ of s-step nilmanifolds G/Γ, each

equipped with some smooth Riemannian metric dG/Γ, as well as positive

constants C(s, δ) and c(s, δ) with the following property. Whenever N ≥ 1

and h : [0, N ] ∩ Z→ [−1, 1] is a function such that

‖h‖Us+1[N ] ≥ δ,
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there exists a filtered nilmanifold G/Γ ∈ Ms,δ, a function F : G/Γ → C

bounded in magnitude by 1 and with Lipschitz constant at most C(s, δ) with

respect to the metric dG/Γ and a polynomial nilsequence g : Z → G such

that ∣∣∣∣∣ ∑
0≤n≤N

h(n)F (g(n)Γ)

∣∣∣∣∣ ≥ c(s, δ)N.

We describe now the application of the Green-Tao method to the func-

tions 1S(N1/ui). For any parameter of friability N1/ui , we consider the bal-

anced function
hi : N → [−1, 1]

n 7→ 1S(N1/ui)(n)− ρ(ui).

By writing 1S(N1/ui)(n) = hi(n) + ρ(ui) and using the bound ρ(ui) ≤ 1, it

follows that∣∣∣∣∣ΨF1···Ft
(
K, N1/u

)
− Vol(K)

t∏
i=1

ρ(ui)

∣∣∣∣∣ ≤ ∑
I⊂{1,...,t}

I 6=∅

∣∣∣∣∣ ∑
n∈K∩Zd

∏
i∈I

hi(Fi(n))

∣∣∣∣∣
+Od

(
Nd−1

)
.

In view of the inverse theorem, the problem is reduced to prove that,

for any i ∈ {1, . . . , t}, the function hi does not correlate with nilsequences,

namely that the upper bound∑
n≤N

hi(n)F (g(n)Γ) = o (N)

holds for any (t− 2)-steps nilsequences F (g(n)Γ).

3. Non-correlation with nilsequences

Let s ≥ 0, u0 ≥ 1 be some integers and let (G/Γ, GN) be a filtered

nilmanifold of degree s. In this section, we show that for any 1-bounded

Lipschitz function F : G/Γ → C, any polynomial nilsequence g : Z → G

adapted to GN, 1 ≤ u ≤ u0 and N ≥ 1, we have

(3.1)
∑
n≤N

h(n)F (g(n)Γ) = o
(
N
(

1 + ‖F‖Lip,dG/Γ

))
where h(n) := 1S(N1/u)(n) − ρ(u) and the implicit term o(·) only depends

on G/Γ and u0. In view of Theorems A and B, this will imply Theorem 1.1.

In [22], Mathiesen develop a method to bound the correlations of a mul-

tiplicative function with polynomial nisequences, under some density and

growth conditions and some hypothesis of control of the second moment.

Its approach mix the Montgomery-Vaughan method [26], the factorisation

theorem for polynomial sequences from Green-Tao [13] and the fact that
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the W -tricked von Mangoldt function is orthogonal to nilsequences [11]. Its

main result [[22], Theorem 5.1] may be applied directly to the multiplica-

tive function 1S(N1/u)(n) to get (3.1), once we have checked it satisfies the

assumptions required. In the case of the indicator of friable integers and for

any E ≥ 1, the various hypothesis which defined the set F1(E) of [22] can

be essentially deduced from the estimation

∑
n≤N

n≡a (mod q)

1S(N1/u)(n) ∼
N→∞

N

q
ρ(u)

which holds uniformly for 1 ≤ a, q ≤ (logN)E (see [7]).

In the rest of this paper, we give a direct and simple method to establish

(3.1), with a different focus from [22]. The starting point is the Möbius

inversion formula in the following form

1S(N1/u)(n) =
∑

P−(k)>N1/u

µ(k)1k|n.

We approximate the indicator 1k|n by its mean value 1
k

for k ≤ N1−τ where

the parameter τ = o(1) ∈]1/ logN, 1[ will be chosen later. One can write

∑
1≤n≤N

(
1S(N1/u)(n)− ρ(u)

)
F (g(n)Γ) = Σ1(F, g) + Σ2(F, g)

where

Σ1(F, g) :=
∑

1≤n≤N

hτ (n)F (g(n)Γ) with hτ (n) =
∑

k≤N1−τ

P−(k)>N1/u

µ(k)

(
1k|n −

1

k

)

and

Σ2(F, g) :=
∑

1≤n≤N

 ∑
k>N1−τ

P−(k)>N1/u

µ(k)1k|n +
∑

k≤N1−τ

P−(k)>N1/u

µ(k)

k
− ρ(u)

F (g(n)Γ).

In the definition of the function hτ , the summation is restricted over the

divisors k ≤ N1−τ since the contribution from the interval N1−τ < k ≤ N

is negligible (see (3.5) below).
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First, we focus on Σ2(F, g). In view of the following series of estimations,

valid whenever τu < 1,∑
N1−τ<k≤N
P−(k)>N1/u

µ2(k)

k
�
∑
j≥1

∑
N1/u<p2<···<pj≤N

1

p2 · · · pj

∑
max

(
N1/u, N

1−τ
p2···pj

)
≤p1≤ N

p2···pj

1

p1

� τu
∑
j≥1

1

(j − 1)!

 ∑
N1/u<p≤N

1

p

j−1

� τu
∑
j≥1

1

(j − 1)!
(log(u) +O (1))j−1 � τu2,(3.2)

we have the upper bound∑
1≤n≤N

∑
k>N1−τ

P−(k)>N1/u

µ2(k)1k|n � τu2N.(3.3)

On the other hand, one can handle the sum over k ≤ N1−τ in Σ2(F, g) by

using [[20], Formula (1.5)] which states that the formula

(3.4)
∑
k≤N

P−(k)>N1/u

µ(k)

k
= ρ(u)

(
1 +O

(
u log(u+ 1)

logN

))

holds for any ε > 0 and uniformly for x ≥ 2 and 1 ≤ u ≤ (log x)3/8−ε.

Finally, (3.3) and (3.4) yield that

Σ2(F, g)�uN
(
τu+

ρ(u) log(u+ 1)

logN

)
.(3.5)

In view of the foregoing, it remains to obtain an upper bound for Σ1(F, g).

This is the subject of the following proposition.

Proposition 3.1. Let m, s ≥ 1 be some integers and let A > 0 be a

real number. There exists a constant c(m, s,A) > 0 with the following

property. Whenever Q,N ≥ 2 are integers, τ ∈]0, 1/2[ and u ≥ 1 are

such that min(N τ , N1/u) ≥ (logN)c(m,s,A), (G/Γ, GN) is a filtered nilman-

ifold of degree s and dimension m, X is a Q-rational Mal’cev basis2 of

(G/Γ, GN), g : Z → G/Γ is a polynomial nilsequence adapted to GN and

F : G/Γ→ [−1, 1] is a Lipschitz function, then we have

(3.6)
∑

1≤n≤N

hτ (n)F (g(n)Γ) ≤ NQc(m,s,A) (1 + ‖F‖Lip,X ) 2u(logN)−A.

2The notion of Q-rational Mal’cev basis is introduced in [[13], Definitions 2.1 and 2.4]
as a specific basis of the Lie algebra g of G.
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Recall that the smooth Riemannian metric dG/Γ of Proposition B is

equivalent to the metric dX (see the 4th footnote and Definition 2.2 of

[13]). With the choice τ = (log logN)1+ε

logN
, it follows from the estimations (3.5)

and (3.6) that the upper bound∑
n≤N

h(n)F (g(n)Γ) = o
(
Nρ(u)

(
1 + ‖F‖Lip,dG/Γ

))
holds for any ε > 0 and uniformly for 1 ≤ u ≤ (log logN)1−ε. This implies

(3.1) since 1 ≤ u ≤ u0 is contained in this region for any u0 which does not

depend on N .

The rest of the article is devoted to the proof of Proposition 3.1. The

argument follows essentially the proofs of [[12],Theorem 1.1] and [23], The-

orem 9.1] and we only outline the major differences. A key point in the

proof consists in reducing the problem to establish the formula (3.6) in

the case of totally equidistributed polynomial nilsequence g, i.e. such that

|P |−1
∑

n∈P F (g(n)Γ) tends to
∫
G/Γ

F as P is a subprogression such that

|P | → +∞.

After this reduction, it will be possible to use the following analogue of

[[12], Proposition 2.1] and [[23], Proposition 9.2].

Proposition 3.2. Let m, s be some positive integers. There exist some con-

stants c0(m, s), c1(m, s) > 0 with the following property. Whenever Q ≥ 2,

N ≥ 2 and δ ∈]0, 1/2[ such that δ−c0(m,s) ≤ N τ , P ⊂ {1, . . . , N} is an arith-

metic progression of size at least N/Q, (G/Γ, GN) is a filtered nilmanifold of

degree s and dimension m, X is a Q-rational Mal’cev basis of (G/Γ, GN),

g : Z → G/Γ is a polynomial and δ-totally equidistributed nilsequence3

adapted to GN and F : G/Γ → [−1, 1] is a Lipschitz function such that∫
G/Γ

F = 0, we have∣∣∣∣∣∑
n≤N

hτ (n)1P (n)F (g(n)Γ)

∣∣∣∣∣� δc1(m,s)‖F‖Lip,XQN (2u + logN) .

Proof that Proposition 3.2 implies Proposition 3.1. Following some ideas of

[12], we can assume, without loss of generality, that ‖F‖Lip,X = 1 and

Q ≤ logN . Let B > 0 be a parameter to be specified at the end of the

proof. Applying Theorem 1.19 of [13], there exists an integer M satisfying

3A sequence (g(n)Γ)n∈{1,...,N} is δ-totally equidistributed if we have∣∣∣∣∣ 1

|P |
∑
n∈P

F (g(n)Γ)

∣∣∣∣∣ ≤ δ‖F‖
for all Lipschitz function F : G/Γ→ C with

∫
G/Γ

F = 0 and all arithmetic progressions

P ⊂ {1, . . . , N} of size at least δN .
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logN ≤ M ≤ (logN)c(m,s,B) such that we can write the decomposition

g = εg′γ where

(1) ε ∈ poly(Z, GN) is (M,N)-smooth (see [[13], Definition 1.18]),

(2) g′ ∈ poly(Z, GN) takes values in a rational subgroup G′ ⊆ G with

Mal’cev basis X ′ and (g′(n))n≤N is M−B-totally equidistributed in

G′/(G′ ∩ Γ) for the metric dX (see [[13], Definition 1.10]),

(3) γ ∈ poly(Z, GN) is periodic of period q ≤M and γ(n) is M -rational

for any n ∈ Z (see [[13], Definition 1.17]).

Next, we reproduce the arguments of Green and Tao based on partition-

ing and pigeonholing and we use the properties of periodicity and smooth-

ness of γ and ε. In this way, the problem is reduced to show that

(3.7)

∣∣∣∣∣ ∑
1≤n≤N

hτ (n)1P (n)F ′(g′(n)Γ′)

∣∣∣∣∣� 2uN/(M2(logN)2A)

where P is a subprogression such that |P | ≥ N
2M2(logN)A

, (G′/Γ′, G′N) is a m-

dimensional nilmanifold of degree s with MC1(m,s)-rational Mal’cev basis X ′,
F ′ : G′/Γ′ → [−1, 1] is a Lipschitz function such that ‖F ′‖Lip,X ′ ≤MC1(m,s)

and g′ ∈ poly(Z, G′N) is M−C2(m,s)B+C1(m,s)-totally equidistributed, for some

constants C1(m, s), C2(m, s) > 0.

If we suppose that
∫
G′/Γ′

F ′ = 0, then we can apply Proposition 3.2 to

the sequence g′, with MC1(m,s) (resp. M−C2(m,s)B+C1(m,s)) as parameter of ra-

tionality (resp. totally equidistribution). Taking B, C1(m, s) and c(m, s,A)

sufficiently large, the hypothesis on the size of P and δ are satisfied and we

get (3.7).

We can reduce to this last case by writing F ′ = (F ′−
∫
G′/Γ′

F ′)+
∫
G′/Γ′

F ′.

Indeed, we can observe that
∫
G′/Γ′

F ′ is bounded by 1 and, since the com-

mon difference q of P satisfies q < N1/u, then we get some multiplicative

independence, when P−(k) > N1/u :∣∣∣∣∣ ∑
1≤n≤N

(
1k|n −

1

k

)
1P (n)

∣∣∣∣∣ ≤ 1.

We deduce the major arc estimate∣∣∣∣∣ ∑
1≤n≤N

hτ (n)1P (n)

∫
G′/Γ′

F ′

∣∣∣∣∣ ≤ ∑
k≤N1−τ

P−(k)>N1/u

∣∣∣∣∣ ∑
1≤n≤N

(
1k|n −

1

k

)
1P (n)

∣∣∣∣∣
≤
∣∣{k ≤ N1−τ : P−(k) > N1/u

}∣∣
� u

N1−τ

logN
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which implies (3.7) under the condition N τ ≥ (logN)c(m,s,A). �

Proof of Proposition 3.2. We essentially follow the proof of Proposition 9.2

of [23] and we suppose that ‖F‖Lip,X = 1 and Q ≤ δ−c1(m,s). For T ∈]0, 1/2[

and j ≥ 1, we define Sj(T ) as the set of the integers k satisfying∣∣∣∣∣∣
∑

2j/k<n≤2j+1/k

1P (kn)F (g(kn)Γ)

∣∣∣∣∣∣ > T 2j

k
.

From the estimation

∑
k≤N

P−(k)>N1/u

µ2(k)

k
�
∑
j≥1

1

j!

 ∑
N1/u<p≤N

1

p

j

� u

and the trivial bound
∣∣{k|n : P−(k) > N1/u

}∣∣ ≤ 2u valid whenever n ≤ N ,

we can see that hτ (n)� 2u. It follows that∣∣∣∣∣∣
∑

n≤N1−τ/2

hτ (n)1P (n)F (g(n)Γ)

∣∣∣∣∣∣� N1−τ/22u

and therefore we concentrate on the integers n > N1−τ/2.

Since the nilsequence (g(n)Γ)n∈{1,...,N} is δ-totally equidistributed, the

contribution from the part
∑

k
µ(k)
k

of hτ can be handled by observing that

we have ∑
k≤N1−τ

P−(k)>N1/u

µ2(k)

k

∣∣∣∣∣∣
∑

N1−τ/2≤n≤N

1P (n)F (g(n)Γ)

∣∣∣∣∣∣� uδN.

For the remaining terms
∑

k µ(k)1k|n of hτ , we follow the proof of Propo-

sition 9.2 of [23]. We make a dyadic splitting over the variables k and n and

we drop off the condition P−(k) > N1/u :

∑
k≤N1−τ

∣∣∣∣∣∣
∑

N1−τ/2/k<n≤N/k

1P (kn)F (g(kn)Γ)

∣∣∣∣∣∣
�

∑
2i≤N1−τ

∑
N1−τ/2

2
≤2j≤N

2j

 ∑
2i≤k<2i+1

T
k

+
∑

2i≤k<2i+1

k∈Sj(T )

1

k


�

∑
N1−τ/2

2
≤2j≤N

2j

T logN +
∑

2i≤N1−τ

1

2i
#
(
Sj(T ) ∩

[
2i, 2i+1

]) .
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Put T := δc1(m,s) ≤ Q−1 for a constant c1(m, s) > 0 sufficiently small.

In the previous sum, the contribution of the range N1−τ/2

2
≤ 2j ≤ T N is

negligible and may be bounded by the trivial inequality.

The rest of the proof consists in showing that, if K ≤ N1−τ , then we

have

(3.8) # (Sj(T ) ∩ [K, 2K]) ≤ T K

whenever T N ≤ 2j ≤ N .

The estimate (3.8) is the analogue of [[23], Lemma 9.3] under the con-

straint K ≤ N1−τ rather than K ≤ N1/2 and in the special case W = 1

and b = 0. To achieve this, we follow the discussion of Type I case of [[12],

Part 3] and we suppose for contradiction that (3.8) does not hold for some

K ≤ N1−τ and T N ≤ 2j ≤ N . By reproducing their arguments, we ob-

serve the existence of a non-trivial horizontal character ψ with magnitude

0 < |ψ| ≤ T −c2(m,s) such that, for any r ≥ 1 and for at least T c2(m,s)K

values of k, we have

‖∂r(ψ ◦ gk)(0)‖R/Z ≤ T −c2(m,s)
(
K/2j

)r
where gk(n) = g(kn), which is the analogue of the formula (3.7) of [12].

By Lemma 3.2 and 3.3 of [12] – consequences of Waring’s theorem – it

follows that there exists an integer q �s 1 and at least T c3(m,s)Kr integers

l ≤ 10sKr such that

‖qlβr‖R/Z ≤ T −c3(m,s)(K/2j)r

where the βr’s are defined by

(3.9) ψ ◦ g(n) = βsn
s + · · ·+ β0.

To deduce some diophantine information about the βr’s, we invoke Lemma 3.2

of [13] in an analogous way as [12] after checking that the hypothesis are

satisfied. It suffices to see that r ≥ 1 and T 2c3(m,s)

10s
� N−τ ≥

(
K
2j

)r
if the

constant c1(m, s) is chosen sufficiently small. It results that there exists

q′ ≤ T −c4(m,s) such that

‖q′βr‖R/Z ≤ T −c4(m,s)2−rj

for any integer r ≥ 1. By the definition (3.9), we get the existence of

c5(m, s) > 0 sufficiently large such that q′ ≤ T −c5(m,s) and

(3.10) ‖q′(ψ ◦ g)(n)‖R/Z ≤ 1/10

for any n ≤ T c5(m,s)2j.
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Let η : R/Z −→ [−1, 1] be a Lipschitz function of norm O(1), mean

value zero, and equal to 1 on [−1/10, 1/10] so that∫
G/Γ

η ◦ (q′ψ) = 0 and ‖η ◦ (q′ψ)‖Lip,X ≤ T −c5(m,s).

It follows from (3.10) that we have∣∣∣∣∣∣
∑

n≤T c5(m,s)2j

η(q′ψ(g(n)Γ))

∣∣∣∣∣∣ ≥ T c5(m,s)2j > δ‖η ◦ (q′ψ)‖Lip,XT c5(m,s)2j

whenever c1(m, s) is sufficiently small. This contradicts the hypothesis that

(g(n))n≤N is δ-totally equidistributed, the set of integers less than T c5(m,s)2j

being an arithmetic progression of size at least δN whenever c1(m, s) is

sufficiently small since 2j ≥ T N . �
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