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ON THE REPRESENTATION OF FRIABLE INTEGERS BY LINEAR
FORMS

ARMAND LACHAND

Abstract. Let P +(n) denote the largest prime of the integer n. Using the so-called nilpotent
Hardy-Littlewood method developped by Green and Tao, we give an asymptotic formula for
the cardinal

ΨF1···Ft
(
K ∩ [−N, N ]d, N1/u

)
:= #

{
n ∈ K ∩ [−N, N ]d : P +(F1(n) · · ·Ft(n)) ≤ N1/u

}
where (F1, . . . , Ft) is a system of affine-linear forms of Z[X1, . . . , Xd] no two of which are
affinely related and K is a convex body. This improves a work of Balog, Blomer, Dartyge and
Tenenbaum [BBDT12] in the case of product of linear forms.

1. Introduction and statement of the result

Given a real number y > 1, an integer n is said to be y-friable if its greatest prime factor,
denoted by P+(n), satisfies P+(n) ≤ y, with the conventions P+(±1) = 1 and P+(0) = 0.
Due to the duality beetwen sifted integers and friable integers, these occur in several places in
number theory (see [HT93] and [Gra08] for interesting surveys). In particular, a theorem of
Hildebrand [Hil86], related to the number Ψ(N, y) of y-friable integers n ≤ N , asserts that, for
any ε > 0 and uniformly in the domain

(Hε) N ≥ 3 and 1 ≤ u ≤ logN
(log logN)5/3+ε ,

we have the asymptotic formula

Ψ
(
N,N1/u

)
:= #

{
1 ≤ n ≤ N : P+(n) ≤ N1/u

}
= Nρ(u)

(
1 +O

(
u log(u+ 1)

logN

))
(1.1)

where ρ is the Dickman function.
A practical example of the incidence of integers without large prime factors comes from the

factorization algorithm Number Field Sieve (NFS). The interested reader may find a description
of this algorithm in the chapter 6 of the book of Crandall and Pomerance [CP05]. Given a binary
form F ∈ Z[X1, X2] without square factors, an important step of NFS rests over the assumption
that the cardinality

(1.2) ΨF

(
K ∩ [−N,N ]2, N1/u

)
:= #

{
(n1, n2) ∈ K ∩ [−N,N ]2 : P+(F (n1, n2)) ≤ N1/u

}
is sufficiently large for some large u and K a sufficiently regular compact.

Let F1, . . . , Ft ∈ Z[X1, X2] be the distinct irreducible factors of F and d1 ≥ . . . ≥ dt ≥ 1 their
degree respectively. If we assume that the y-friability of the values of F1, . . . , Ft are independent
events, each descripted by the probabilistic model suggested by (1.1), we can conjecture the
following asymptotic formula

(1.3) ΨF

(
K ∩ [−N,N ]2, N1/u

)
∼

N→+∞
Vol

(
K ∩ [−N,N ]2

)
ρ(d1u) · · · ρ(dtu)
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2 ARMAND LACHAND

in a range for u to be determined and for a sufficiently regular compact K.
Such a result for general forms F seems beyond reach but there exists some partial results for

estimating ΨF

(
[0, N ]2, N1/u) when u is sufficiently small. In [BBDT12], Balog Blomer, Dartyge

and Tenenbaum established the existence of a constant αF > 1/d1 such that, for any ε > 0 and
uniformly for N ≥ 2, we have

(1.4) ΨF

(
[0, N ]2, N1/αF+ε

)
�ε N

2.

We now focus on binary forms F of type F = F1 · · ·Ft where F1, . . . , Ft are some linear
forms in Z[X1, X2]. The cases t = 1 and t = 2 can be deduced from results of [FT91] related
to the distribution of friable integers in arithmetic progressions. The case t = 3 was essentially
considered by a succession of articles of various authors ([dlB99, LS12, dlBG14, Dra13, Dra, Har]).
In Corollary 1 of [Har], Harper used the Hardy-Littlewood circle method to show the existence
of c > 0 such that, for any ε > 0 and uniformly for N ≥ 2 and y ≥ (logN)c, we have

#
(
1 ≤ n1, n2, n1 + n2 ≤ N : P+(n1n2(n1 + n2)) ≤ y

}
∼

N→+∞

Ψ (N, y)3

2N .(1.5)

The study of ΨF

(
K ∩ [−N,N ]2, N1/u) when F is a product of linear forms also belongs to

the area of linear correlation. As a result of their impressive work on the generalized Hardy-
Littlewood conjecture, Green and Tao show that, if N ≥ 2, F := (F1, . . . , Ft) : Zd → Zt is a
system of affine-linear forms such that any two forms Fi and Fj are affinely independent over Q
and |Fi(0)| ≤ N , and K ⊂ [−N,N ]d is a convex body such that F (K) ⊂ [0, N ]t, then we have

(1.6)
∑

n∈K∩Zd
Λ(F1(n)) · · ·Λ(Ft(n)) = Vol(K)

∏
p

βp + oK,F (Nd)

where Λ denotes the von Mangoldt function,

βp := pt−d

(p− 1)t# {n (mod p) : p - Fi(n) for any 1 ∈ {1, . . . , t}}

and the implicit constant depends only on K and nonconstant coefficients of F1, . . . , Ft.
This result was proved in [GT10] under the assumption of two important conjectures, namely

the inverse Gowers-norm conjecture and the Möbius and nilsequence conjecture. The first conjec-
ture was settled in [GTZ12] and its resolution is the climax of a serie of papers [GT08, GTZ11,
GTZ12]. On the other hand, the Möbius and nilsequence conjecture was proved in [GT12a]
where Green and Tao have extended the standard analysis of Type I/II sums, in analogy to the
classical Hardy-Littlewood circle method.

With the development of the Green-Tao method, it seems possible to get an asymptotic
estimation of the average value

(1.7)
∑

n∈K∩Zd
h(F1(n)) · · ·h(Ft(n))

for a wide class of arithmetic functions h. For example, Green and Tao have considered in
[GT10] the case of the Möbius function h = µ or the Liouville function h = λ. In this direction,
Matthiesen obtained some results when h = τ is the divisor function [Mat12a] or h = rG is
the number of representation of a binary quadratic form G [Mat12b, Mat13]. More recently,
Frantzikinakis and Host [FH] have used the Green-Tao method to show that∑

1≤n1,n2≤N

h(G(n1, n2)rF1(n1, n2) · · ·Ft(n1, n2)) = o
(
N2)
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where h is a 1-bounded multiplicative function satisfying
∑
n≤N h(a + qn) = o(N) for any a

and q, F1, . . . , Ft ∈ Z[X1, X2] are primitive linear forms such that any two forms are affinely
independent, G is a quadratic form of a prescribed shape and r ≥ 2.

In this note, we study how the nilpotent Hardy-Littlewood method may be direclty applied
to get a straightforward asymptotic formula of (1.7) when h = 1S(y) is the indicator of the set
S(y) of the y-friable integers. Our main result is the following theorem.

Théorème 1.1. Let d, t,N, u0 ≥ 1 be some integers, and let (F1, . . . , Ft) : Zd → Zt be a system
of affine-linear forms such that any two forms Fi and Fj are affinely independent over Q and
|Fi(0)| ≤ N . Let K ⊂ [−N,N ]d be a convex body such that F (K) ⊂ [0, N ]t. Then, for any
u1, . . . , ut ∈ [0, u0], we have

ΨF1···Ft

(
K, N1/u

)
:=#

{
n ∈ K ∩ Zd : P+(Fi(n)) ≤ N1/ui for any 1 ≤ i ≤ t

}
=Vol(K)

t∏
i=1

ρ(ui) + o(Nd)(1.8)

where the implicit constant depends only on K, u0 and nonconstant coefficients of F1, . . . , Ft.

As regards the result of Balog et al [BBDT12], we get essentially two major improvements on
their works in the case of linear forms :

• the formula (1.8) is an asymptotic equivalent which is consistent with the conjectural
formula (1.3) whereas (1.4) only gives a lower bound,

• when t ≥ 4, the formula (1.4) is valid with the parameter αF = 1 + 2
t−2 while Theorem

1.1 shows that we can choose any positive real for αF .
As stated previously, our result is far to be optimal, as regards the range of validity of the

formula for u. Our main goal is to obtain a result with the nilpotent Hardy-Littlewood method
and some straightforward combinatoric formula such as the inclusion-exclusion principle and no
more effort. In particular, when u is bounded, the indicator of the set S

(
N1/u) have asymptotic

density ρ(u) > 0 and is uniform in arithmetic progressions of small common difference unlike the
previously mentioned works of Green and Tao and Matthiesen. This is why it is not necessary
to introduct a pseudorandom measure and to use the transference principle in this work (see
[GT10] for a presentation of these two tools).

Acknowledgment. The author would like to thank Trevor Wooley for its suggestion to study
this method, Régis de la Bretèche, François Hennecart and Anne de Roton for their interest
around this work, and his PHD advisor Cécile Dartyge for her continued support.

2. A brief description of the nilpotent Hardy-Littlewood method

For any parameter of friability N1/ui , we define the balanced function

fi : N → [−1, 1]
n 7→ 1S(N1/ui)(n)− ρ(ui).

By writing 1S(N1/ui)(n) = fi(n) + ρ(ui) and using the bound ρ(ui) ≤ 1, it follows that∣∣∣∣∣ΨF1···Ft

(
K, N1/u

)
−Vol(K)

t∏
i=1

ρ(ui)

∣∣∣∣∣ ≤ ∑
I⊂{1,...,t}

I 6=∅

∣∣∣∣∣∣
∑

n∈K∩Zd

∏
i∈I

fi(Fi(n))

∣∣∣∣∣∣+Od
(
Nd−1) .(2.1)
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In [[GT10], Definition 1.5], Green and Tao introduced the Cauchy-Schwarz complexity of a
system of affine-linear forms. With this new concept, they proved that an upper bound of (2.1)
may be deduced by some estimations of the Gowers norms ‖fi‖Us(N) of fi defined by the relation

‖fi‖2
s

Us(N) :=


∑
n,h:

1≤n+ω.h≤N
∀ω∈{0,1}s

∏
ω∈{0,1}s

fi(n+ ω.h)

# {n,h : 1 ≤ n+ ω.h ≤ N for any ω ∈ {0, 1}s}−1

where ω.h = ω1h1 + · · ·+ ωshs.
In particular, by an ingenious succession of Cauchy-Schwarz inequalities already appearing

in the work of Gowers [Gow01], Green and Tao proved the following generalized von Neumann
theorem.

Proposition 2.1 ([GT10], Proposition 7.1). Let s, t, d,N ≥ 1 be some integers. Suppose that
f1, . . . , ft : [0, N ] ∩ Z → [−1, 1], (F1, . . . , Ft) : Zd → Zt is a system of affine-linear forms of
complexity s such that |Fi(0)| ≤ N and K ⊂ [−N,N ]d be a convex body such that F (K) ⊂ [0, N ]t.
Suppose also that

(2.2) min
1≤i≤t

‖fi‖Us+1[N ] ≤ δ

for some δ > 0. Then we have

(2.3)
∑
n∈K

t∏
i=1

fi(Fi(n)) = oδ(Nd) + κ(δ)Nd

where κ(δ) tends to 0 as δ → 0.

One could think that the estimation of the Gowers norms of a function h is as difficult as the
majoration of the mean value (1.7) in the case of the system of affine-linear forms defined by
(Fω)ω∈{0,1}s+1 with Fω(X0, X1, . . . , Xs+1) = X0 +

∑s+1
i=1 ωiXi. At first glance, it is not easy to

see what simplification gives the generalized von Neumann theorem. The inverse theorem for the
Gowers norms, proved by Green, Tao and Ziegler, exhibits the link between linear correlations
and polynomial nilsequences. The reader is referred to [GT12b] for definitions and properties of
filtered nilmanifolds and polynomial nilsequences.

Proposition 2.2 ([GTZ12], Theorem 1.3). Let s ≥ 0 be an integer and let δ ∈]0, 1]. Then there
exists a finite collectionMs,δ of filtered nilmanifolds (G/Γ, G•), each equipped with some smooth
Riemannian metric dG/Γ, as well as constants C(s, δ), c(s, δ) > 0 with the following property.
Whenever N ≥ 1 and f : [0, N ] ∩ Z→ [−1, 1] is a function such that

‖f‖Us+1[N ] ≥ δ,

there exists a filtered nilmanifold G/Γ ∈Ms,δ, a 1-bounded function F : G/Γ→ C with Lipschitz
constant at most C(s, δ) with respect to the metric dG/Γ and a polynomial nilsequence g : Z→ G
adapted to G• such that ∣∣∣∣∣∣

∑
0≤n≤N

f(n)F (g(n)Γ)

∣∣∣∣∣∣ ≥ c(s, δ)N.
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3. Non-correlation with nilsequences

Let (G/Γ, G•) be a filtered nilmanifold and u0 ≥ 1. In this part, we show that for any 1-
bounded Lipschitz function F : G/Γ → C, any polynomial nilsequence g : Z → G adapted to
G•, 1 ≤ u ≤ u0 and N ≥ 1, we have

(3.1)
∑
n≤N

f(n)F (g(n)Γ) = o
(
N
(
1 + ‖F‖Lip,dG/Γ

))
where f(n) := 1S(N1/u)(n)− ρ(u),

‖F‖Lip,dG/Γ := sup
g∈G/Γ

|F (g)|+ sup
g1,g2∈G/Γ
g1 6=g2

|F (g1)− F (g2)|
dG/Γ(g1, g2)

and the implicit term o(·) depends only on G/Γ and u0. In view of the results of the previous
section, this will imply Theorem 1.1.

The starting point is the Möbius inversion formula in the following form

1S(N1/u)(n) =
∑

P−(k)>N1/u

µ(k)1k|n.(3.2)

We approximate the indicator 1k|n by its mean value 1
k for k ≤ N1−τ where the parameter

τ = o(1) ∈]1/ logN, 1[ will be chosen later :∑
1≤n≤N

(
1S(N1/u)(n)− ρ(u)

)
F (g(n)Γ) = Σ1(F, g) + Σ2(F, g)

where

Σ1(F, g) :=
∑

1≤n≤N
fτ (n)F (g(n)Γ) with fτ (n) =

∑
k≤N1−τ

P−(k)>N1/u

µ(k)
(

1k|n −
1
k

)
≤ 2u(3.3)

and

Σ2(F, g) :=
∑

1≤n≤N

 ∑
k>N1−τ

P−(k)>N1/u

µ(k)1k|n +
∑

k≤N1−τ

P−(k)>N1/u

µ(k)
k
− ρ(u)

F (g(n)Γ).

First, we focus on Σ2(F, g). By Hildebrand’s formula (1.1) and the inclusion-exclusion princi-
ple (3.2), one gets that

∑
1≤n≤N

 ∑
P−(k)>N1/u

µ(k)1k|n − ρ(u)

 = Ψ
(
N,N1/u

)
−Nρ(u)� Nρ(u)u log(u+ 1)

logN .(3.4)

Moreover, the standard estimation of the cardinal of the set of N1/u-sifted integers

#
{
n ≤ N : P−(n) > N1/u

}
� u

N

logN
implies that

∑
k≤N1−τ

P−(k)>N1/u

∣∣∣∣∣∣Nk −
∑
n≤N

1k|n

∣∣∣∣∣∣� u
N1−τ

logN .(3.5)
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In view to the following series of estimations, valid whenever y > Nτ ,∑
N1−τ<k≤N
P−(k)>N1/u

µ2(k)
k
�
∑
j

∑
N1/u<p2<···<pj≤N

1
p2 · · · pj

∑
max
(
N1/u, N

1−τ
p2···pj

)
≤p1≤ N

p2···pj

1
p1

� τu
∑
j

1
j!

 ∑
N1/u<p≤N

1
p

j

� τu
∑
j

1
j! (log(u) +O (1))j−1 � τu2,

we also have the upper bound ∑
1≤n≤N

∑
k>N1−τ

P−(k)>N1/u

µ2(k)1k|n � τu2N.(3.6)

Finally, it follows from (3.4), (3.5) and (3.6) that

Σ2(F, g)�
∑

1≤n≤N

∑
k>N1−τ

P−(k)>N1/u

µ2(k)1k|n +
∑

k≤N1−τ

P−(k)>N1/u

N
k
−
∑
n≤N

1k|n



+

∣∣∣∣∣∣∣∣∣
∑
k≤N

P−(k)>N1/u

∑
n≤N

1k|n −Nρ(u)

∣∣∣∣∣∣∣∣∣ = o(N).

In view of the foregoing, it remains to obtain an upper bound of Σ1(F, g). This is the subject
of the following proposition.

Proposition 3.1. Let m, s ≥ 1 be some integers and A > 0. There exists a constant c(m, s,A) >
0 with the following property. Whenever Q,N ≥ 2 are integers such that Nτ ≥ (logN)c(m,s,A),
(G/Γ, G•) is a filtered nilmanifold of degree s and dimension m, X is a Q-rational Mal’cev basis
of (G/Γ, G•), g : Z→ G/Γ is a polynomial nilsequence adapted to G• and F : G/Γ→ [−1, 1] is
a Lipschitz function, then we have

(3.7)
∑

1≤n≤N
fτ (n)F (g(n)Γ) ≤ NQc(m,s,A) (1 + ‖F‖Lip,X ) 2u(logN)−A.

Since any smooth Riemannian metric dG/Γ is equivalent to the metric dX (see the 4th footnote
and Definition 2.2 of [GT12b]), we can deduce from this proposition that (3.1) holds for any choice
of dG/Γ by fixing a Mal’cev basis X and choosing τ = o(1) such that Nτ ≥ (logN)c(m,s,1).

The rest of the article is devoted to the proof of Proposition 3.1. The argument follows essen-
tially the proofs of [[GT12a], Proposition 2.1] and [Mat12a], Theorem 9.1] and we only outline the
major differences. A key point of the proof consists to reduce the problem to establish the formula
(3.7) for a polynomial nilsequence g totally equidistributed, i.e. such that |P |−1∑

n∈P F (g(n)Γ)
tends to

∫
G/Γ F as P is a subprogression such that |P | → +∞.

After this reduction, it will be possible to use the following analogue of [[GT12a], Proposition
2.1] and [[Mat12a], Proposition 9.3].

Proposition 3.2. Let m, s ≥ 1 be some integers. There exist some constants c0(m, s), c1(m, s) >
0 with the following property. Whenever δ ∈]0, 1/2[ and Q ≥ 2 are real, N ≥ 2 is an integer



ON THE REPRESENTATION OF FRIABLE INTEGERS BY LINEAR FORMS 7

such that δ−c0(m,s) ≤ Nτ , P ⊂ {1, . . . , N} is an arithmetic progression of size at least N/Q,
(G/Γ, G•) is a filtered nilmanifold of degree s and dimension m, X is a Q-rational Mal’cev basis
of (G/Γ, G•), g : Z → G/Γ is a polynomial and δ-totally equidistributed nilsequence adapted to
G• and F : G/Γ→ [−1, 1] is a Lipschitz function such that

∫
G/Γ F = 0, we have

(3.8)

∣∣∣∣∣∣
∑
n≤N

fτ (n)1P (n)F (g(n)Γ)

∣∣∣∣∣∣ ≤ δc1(m,s)‖F‖Lip,XQN (2u + logN) .

Proof that Proposition 3.2 implies Proposition 3.1. Following the ideas of [GT12a], we can sup-
pose without loss of generality that ‖F‖Lip,X = 1 and Q ≤ logN . Let B > 0 a parameter
wich will be explicit at the end of the proof. Applying Theorem 1.19 of [GT12b], there exists
an integer M satisfying logN ≤ M ≤ (logN)c(m,s,B) such that we can write the decomposition
g = εg′γ where

(1) ε ∈ poly(Z, G•) is (M,N)-smooth (see [[GT12b], Definition 1.18]),
(2) g̃ ∈ poly(Z, G•) takes values in G̃ and (g̃(n))n≤N is M−B-totally equidistributed in

G̃/(G̃ ∩ Γ) for the metric dX̃ (see [[GT12b], Definition 1.2]),
(3) γ ∈ poly(Z, G•) is periodic of period q ≤ M and γ(n) is M -rational for any n ∈ Z (see

[[GT12b], Definition 1.17]).
Next, we reproduce the arguments based on partitions and some pigeonhole principle of Green

and Tao and use the properties of periodicity and smoothness of γ and ε. In this way, we can
reduce the problem to show that

(3.9)
∑

1≤n≤N
fτ (n)1P (n)F ′(g′(n)Γ′) ≤ 2u−1N/(M2(logN)2A)

where P is a subprogression such that |P | ≥ N
2M2(logN)A , (G′/Γ′, G′•) is a m-dimensional nilman-

ifold of degree s with MC1(m,s)-rational Mal’cev basis X ′, F ′ : G′/Γ′ → [−1, 1] is a Lipschitz
function such that ‖F ′‖Lip,X ′ ≤ MC1(m,s) and g′ ∈ poly(Z, G′•) is M−C2(m,s)B+C1(m,s)-totally
equidistributed, for some constants C1(m, s), C2(m, s) > 0.

If we suppose that
∫
G′/Γ′ F

′ = 0, then we apply Proposition 3.2 with the choice ′Q′ :=
MC1(m,s) and ′δ′ := M−C2(m,s)B+C1(m,s). Taking B, C1(m, s) and c(m, s,A) sufficiently large,
the hypothesis on the size of P and δ are satisfied and we get (3.9).

We can reduce to the last case by writing F ′ = (F ′ −
∫
G′/Γ′ F

′) +
∫
G′/Γ′ F

′. Indeed, we

can observe that
∣∣∣∫G′/Γ′ F ′∣∣∣ ≤ 1 and then we have, under the hypothesis q ≤ Nτ ≤ N1/u, the

majoration ∣∣∣∣∣∣
∑

1≤n≤N
fτ (n)1P (n)

∫
G′/Γ′

F ′

∣∣∣∣∣∣ ≤
∑

k≤N1−τ

P−(k)>N1/u

∣∣∣∣∣∣
∑

1≤n≤N

(
1k|n −

1
k

)
1P (n)

∣∣∣∣∣∣
≤ #

{
k ≤ N1−τ : P−(k) > N1/u

}
� u

N1−τ

logN

which implies (3.9) with the condition Nτ ≥ (logN)c(m,s,A). �

Proof of Proposition 3.2. We essentially follow the proof of Proposition 9.2 of [Mat12a] and we
suppose that ‖F‖Lip,X = 1 and Q ≤ δ−c1(m,s). For T ∈]0, 1/2[ and j ≥ 1, we define Sj(T ) as
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the set of the integers k satisfying∣∣∣∣∣∣
∑

2j/k<n≤2j+1/k

1P (kn)F (g(kn)Γ)

∣∣∣∣∣∣ > T 2j

k
.

In view to the trivial upper bound (see formula (3.3))∣∣∣∣∣∣
∑

n≤N1−τ/2

fτ (n)1P (n)F (g(n)Γ)

∣∣∣∣∣∣ ≤ N1−τ/22u,

we concentrate on the integers n > X1−τ/2. Following the proof of Proposition 9.2 of [Mat12a],
we make a dyadic splitting over the variables k and n :

∑
k≤N1−τ

P−(k)>Y

∣∣∣∣∣∣
∑

N1−τ/2/k<n≤N/k

1P (kn)F (g(kn)Γ)

∣∣∣∣∣∣

�
∑

2i≤N1−τ

∑
N1−τ/2

2 ≤2j≤N

2j


∑

2i≤k<2i+1

P−(k)>N1/u

T
k

+
∑

2i≤k<2i+1

P−(k)>N1/u

k∈S(T )

1
k


�

∑
N1−τ/2

2 ≤2j≤N

2j
T logN +

∑
2i≤N1−τ

1
2i#

(
Sj(T ) ∩

[
2i, 2i+1]) .

The rest of the proof consists then to show that, if K ≤ N1−τ and T := δc1(m,s) ≤ Q−1 for a
constant c1(m, s) > 0 sufficiently small, then we have

(3.10) # (S(T ) ∩ [K, 2K]) ≤ TK

whenever N1−τ/2

2 ≤ 2j ≤ N .
To achieve this we follow the discussion of Type I case of [[GT12a], Part3] and the proof

of [[Mat12a], Lemma 9.3] and we suppose for contradiction that (3.10) does not hold for some
K ≤ N1−τ and N1−τ/2

2 ≤ 2j ≤ N . By reproducing their arguments, we observe the existence
of a non-trivial horizontal character ψ with magnitude 0 < |ψ| ≤ T −c2(m,s) such that, for any
r ≥ 1 and for at least T c2(m,s)K values of k, we have

(3.11) ‖∂r(ψ ◦ gk)(0)‖R/Z ≤ T −c2(m,s) (K/2j)r
where gk(n) = g(kn), which is the analogous of the formula (3.7) of [GT12a].

By Lemma 2 and 3 of [GT12a], it follows that there exists an integer q �s 1 and at least
T c3(m,s)Kr integers l ≤ 10dKr such that

(3.12) ‖qlβr‖R/Z ≤ T −c3(m,s)(K/2j)r

where the βr’s are defined by

(3.13) ψ ◦ g(n) = βdn
d + · · ·+ β0.

To deduce some diophantine information about the βr’s, we invoke Lemma 3.2 of [GT12b] by
an analogue way as [GT12a] after checking that the hypothesis are satisfied. It suffices for it to
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see that r ≥ 1 and T
2c3(m,s)

10d � N−τ ≥
(
K
2j
)r if the constant c1(m, s) is chosen sufficiently small.

It results that there exists q′ ≤ T −c4(m,s) such that

‖q′βr‖R/Z ≤ T −c4(m,s)2−rj

for any integer r ≥ 1. By the definition (3.13), we get the existence of c5(m, s) > 0 sufficiently
large such that q′ ≤ T c5(m,s) and

(3.14) ‖q′(ψ ◦ g)(n)‖R/Z ≤ 1/10

for any n ≤ T c5(m,s)N .
Let η : R/Z −→ [−1, 1] be a Lipschitz function of norm O(1) and mean zero, which is equal

to 1 on [−1/10, 1/10] so that∫
G/Γ

η ◦ (q′ψ) = 0 and ‖η ◦ (q′ψ)‖Lip,X ≤ T −c5(m,s).

It follows from (3.14) that we have∣∣∣∣∣∣
∑

n≤T c5(m,s)N

η(q′ψ(g(n)Γ))

∣∣∣∣∣∣ ≥ T c5(m,s)N − 1 > δ‖η ◦ (q′ψ)‖Lip,XT −c5(m,s)N

whenever c1(m, s) is sufficiently small, which contradicts the hypothesis that the (g(n))n≤N is
δ-totally equidistributed by considering as arithmetic progression the set of integers less than
T c5(m,s)N . �
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