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Abstract

Observed avalanche flows of dense granular material have the prop-
erty to present two possible behaviors: static (solid) or flowing (fluid).
In such situation, an important challenge is to describe mathemati-
cally the evolution of the physical interface between the two phases.
In this work we derive a set of equations that is able to manage the
dynamics of such interface, in the so-called shallow regime where the
flow is supposed to be thin compared to its downslope extension. It is
obtained via a shallow asymptotics starting from the Drucker-Prager
model for viscoplastic materials, in which we have to make several
assumptions. Additionally to the classical ones that are that the cur-
vature of the topography, the width of the layer of material, and the
viscosity are small, we assume that the internal friction angle is close
to the slope angle, the velocity is small, and the pressure is convex
with respect to the normal variable. The assumption that the inter-
nal friction angle has to be close to the slope angle is necessary for
the velocity to remain small, and the convexity of the pressure is an
assumption of stability of the double layer static-flowing configura-
tion. We present here the resulting model, that takes the form of
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an overdetermined initial-boundary problem in the variable normal to
the topography. It handles arbitrary velocity profiles, and is there-
fore more general than previous models such as the BCRE model. It
includes a new non-hydrostatic nonlinear coupling term. It has the
property to be numerically solvable, at least in the uncoupled case,
with or without viscosity.

1 Introduction

One of the key features of dense granular materials, like sand or dust, is to
flow like a fluid when the surface slope or the inflow velocity are large enough,
or to behave like a solid in the other cases, or when the internal cohesion is
sufficiently strong. Describing the transition between the so-called flowing
and static states is critical for industrial and geophysical purposes. In par-
ticular, the static-flowing transition plays a key role in erosion/deposition
processes within geophysical flows such as debris flows or debris and snow
avalanches [20, 33, 29, 30, 22, 16]. The rheology of dense granular materials
have been very much studied, e.g. [2, 31]. It has been proposed in [23] that a
basic description of the flows of dense granular matter can be done with the
incompressible Drucker-Prager model of viscoplastic materials. Further stud-
ies comparing this model to discrete element methods [25] and experimental
granular flows [21] confirmed the ability of the incompressible Drucker-Prager
model to describe granular material behavior.

Mass and momentum conservation equations of this system read:

div U = 0, (1.1)

∂tU + U · ∇U = div σ − g, (1.2)

where U is the velocity vector, −g is the gravity force, and σ is the stress
tensor normalized by the density, that is assumed to be constant. The tensor
σ is symmetric, and for viscoplastic materials a “Bingham type” class of
models is described by the relation

σ = −p Id + 2νDU + κ
√

2 Λ, (1.3)

where p is the scalar pressure, DU is the strain rate tensor,

DU =
∇U + (∇U)t

2
, (1.4)

and Λ is the normalized strain rate,




|Λ| ≤ 1, Λt = Λ, Tr Λ = 0,

Λ =
DU

|DU| whenever DU 6= 0.
(1.5)
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Here the norm of a matrix A = (Aij) is the Frobenius norm |A| = (
∑

ij A2
ij)

1/2.
The coefficient ν ≥ 0 is the viscosity, and κ ≥ 0 is the plasticity. A constant
coefficient κ characterizes the Bingham model, while for the Drucker-Prager
model one takes

κ = µ max(p, 0), (1.6)

where µ ≥ 0 is the internal Coulomb friction coefficient (µ = tan δ, where δ
is the internal friction angle of the material involved).

The Bingham model has been studied mathematically, starting from [15]
in the viscous case, to [26] in the two-dimensional viscous or inviscid cases.
However, for granular flows and other complex materials, the plasticity κ is
not constant and depends on the pressure, so that the Drucker-Prager law
(1.6) provides a good approximation of their behavior [23]. In particular,
while in Bingham fluids, a plug zone may develop on top of the flowing layer
[6], for Drucker-Prager or Coulomb fluids, the static zone is generally found
near the base of the flow due to the specific form of the κ law. The reference
[23] suggests that the friction coefficient µ is not constant. Even though
taking into account a variable µ may be very important in some situations, a
constant µ with a constant viscosity gives very similar results to when using
a variable µ, accurately describing granular flows [21]. For sake of simplicity,
we will take µ and ν constant in the following developments.

The model (1.1)-(1.5) describes a flowing behavior where DU 6= 0, and
a static behavior where DU = 0. However, the interface between these two
domains is not written explicitly, it is embedded in the whole formulation.
The aim of this work is to derive a more explicit description of the evolution
of this interface in the context of a shallow approximation.

Shallow approximations for newtonian flows have been derived rather
precisely, and studies for non newtonian flows have been proposed in [6, 7,
8, 11, 14, 18, 32, 10]. A quite general approach is proposed in [13], where
it is explained what orders of approximations are necessary in order to get
accurate average equations. Numerical methods for these shallow models are
described in [14, 1, 17]. Taking into account the static-flowing transition
in shallow models has been done based on phenomenological models or on
strong assumptions such as a specified velocity profile or reducing the flow
to a sliding block [3, 9, 12, 19, 24, 4, 29, 5, 22].

Here we propose a rigorous way to describe the dynamics of the interface,
directly derived from the Drucker-Prager model. As in [10], we show that we
have to push the expansions to higher order than usual in order to close the
system. Several assumptions have to be done. In particular, the viscosity has
to be small, the slope of the topography has to be nonzero, the internal fric-
tion coefficient has to be close to the slope, the velocity has to be moderate,
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and the pressure has to be convex with respect to the normal variable, which
is a kind of static-flowing stability condition. The obtained model is written
as an overdetermined boundary problem, for which the extra boundary con-
dition (with respect to a standard parabolic problem) drives the evolution
of the interface between the two phases. A simplified system is compared to
laboratory experiments in [28], confirming the relevance of the approach.

2 Two-dimensional model and topography-

based coordinates

2.1 Flow domain and boundary conditions

We consider a Drucker-Prager material described by the system (1.1)-(1.6),
set in the spatial domain x ∈ Ωt between a fixed bottom topography and a
free surface. The system is completed with the following boundary condi-
tions. At the bottom we set the no slip condition

U = 0 at the bottom, (2.1)

at the free surface we set the stress free condition

σN = 0 at the free surface, (2.2)

where N is the unit external normal to the free surface. Moreover, the free
surface evolves with the material, and thus satisfies the kinematic condition

Nt + N · U = 0 at the free surface, (2.3)

where (Nt,N) is the time-space normal to the free surface.
It is not clear if (2.1) leads to a formally well-posed problem if ν = 0.

Nevertheless, we shall look for solutions for which U vanishes identically in
a neighborhood of the topography (static part), thus this condition will be
automatically satisfied.

2.2 Two-dimensional formulation

We consider the two-dimensional problem. Following [11], the topography
can be described by the relation z = B(x) in horizontal/vertical coordinates
(x, z), where B(x) is a smooth function. We denote by θ the angle between
the horizontal and the tangent to the topography, and by X the curvilinear
coordinate along the topography, so that

tan θ =
dB

dx
,

dX

dx
=

1

cos θ,
,

dB

dX
= sin θ. (2.4)
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We shall consider that B, θ, x are functions of X, instead of B, θ, X being
functions of x.

A point M within the material layer Ωt can be described by its distance Z
to the topography and the coordinate X of its projection on the topography,
or equivalently by the relation

M = (x − Z sin θ, B + Z cos θ), (2.5)

where x, X, B, θ are related by the relations (2.4), as illustrated on Figure 1.
The variable Z is lower than the width h(t, X) of the material in the normal

x

topography

free surface

Z

M

X
B(X)

θ (X)

Ωt

Figure 1: The material layer between topography and free surface.

direction,
0 < Z < h(t, X). (2.6)

The change of variable between M and (X, Z) is a diffeomorphism provided
that h dXθ < 1, where dX denotes the derivative with respect to the single
variable X. Note that dXθ ≡ dθ/dX is the curvature of the topography. We
define the velocity components (U, W ) at M in the coordinates tangent and
normal to the topography

(
U
W

)
=

(
cos θ sin θ
− sin θ cos θ

)
U, (2.7)

and the new stress tensor

Σ =

(
ΣXX ΣXZ

ΣZX ΣZZ

)
=

(
cos θ sin θ
− sin θ cos θ

)
σ

(
cos θ − sin θ
sin θ cos θ

)
, (2.8)
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with ΣXZ = ΣZX . Then, according to the computations of [11] (that were
done in the more general case of time-dependent topography), we can refor-
mulate the equations (1.1)-(1.2) and (2.1)-(2.3) in the coordinates (t, X, Z).
Denoting by

J = 1 − Z dXθ, (2.9)

the system (1.1)-(1.2) becomes in the new coordinates

∂XU + ∂Z(JW ) = 0, (2.10)

∂t(JU) + U∂XU + JW∂ZU + ∂X

(
g(B + Z cos θ) − ΣXX

)
− ∂Z(JΣXZ)

= (−ΣXZ + UW )dXθ,
(2.11)

∂t(JW ) + U∂XW + JW∂ZW − ∂XΣXZ + J∂Z (gZ cos θ − ΣZZ)
= (ΣXX − ΣZZ − U2)dXθ,

(2.12)

where g > 0 is the gravity constant. The kinematic condition (2.3) becomes

Jh∂th + Uh∂Xh = JhWh, (2.13)

where the index h means that the quantity is evaluated at Z = h(t, X). It
can be written equivalently, integrating (2.10) for Z between 0 and h, as

∂t

(
h − h2

2
dXθ

)
+ ∂X

(∫ h

0

UdZ

)
= 0. (2.14)

The boundary conditions (2.1), (2.2) become at the free surface

JΣXZ − ΣXX∂Xh = 0, JΣZZ − ΣXZ∂Xh = 0, at Z = h, (2.15)

and at the bottom

W = 0, U = 0, at Z = 0. (2.16)

Finally, one can check that the Bingham type relations (1.3)-(1.5) become

ΣXX = −p−
(

2ν +
κ

|DU|/
√

2

)
∂ZW, ΣZZ = −p+

(
2ν +

κ

|DU|/
√

2

)
∂ZW,

(2.17)

ΣXZ =

(
2ν +

κ

|DU|/
√

2

)
1

2

(
∂ZU +

∂XW + UdXθ

J

)
, (2.18)

1

2
|DU|2 = (∂ZW )2 +

1

4

(
∂ZU +

∂XW + UdXθ

J

)2

, (2.19)
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where we recall that (2.10) relates ∂XU and ∂ZW . These formulas (2.17)-
(2.19) are valid where |DU| 6= 0, but they can be obviously generalized via
a multivalued formulation like (1.5).

We are interested in flows having a transition between a static phase
at rest above the bottom (U = 0), and a flowing phase with shear above
(DU 6= 0),

U(t, X, Z) = 0 for 0 < Z < b(t, X),(
∂ZU +

∂XW + UdXθ

J

)
(t, X, Z) 6= 0 for b(t, X) < Z < h(t, X),

(2.20)
for some interface b(t, X) such that 0 < b(t, X) < h(t, X). Note that the first
line in (2.20) implies that W also vanishes for Z < b, because of (2.10) and
the bottom boundary condition on W in (2.16). An illustration is proposed
on Figure 2.

x

B(X) b

h

X

U(Z)

free surface

interface
topography

flowing phase

static phase

Figure 2: Velocity profile U(Z) within the granular layer of thickness h, with
the interface b separating the static and flowing layers, in the case θ < 0 and
∂ZU > 0
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2.3 Uniform flows

In this subsection we would like to show that there exist some flows with
a fluid layer flowing above a static layer as stated in (2.20), at least in the
uniform case, i.e. when the quantities do not depend on X.

We assume a constant slope θ, and we look for solutions h, U , W , p to
(2.10)-(2.19) with (1.6) such that

h, U, W, p, ΣXX , ΣZZ , ΣXZ do not depend of X. (2.21)

Then, J = 1, and (2.10) and the bottom boundary condition gives that
W ≡ 0. The kinematic condition (2.13) (or (2.14)) gives ∂th = 0, thus
h is constant. The normal momentum conservation equation (2.12) gives
that ∂Z (gZ cos θ − ΣZZ) = 0, and together with the free surface boundary
condition on ΣZZ in (2.15) it yields ΣZZ = −g cos θ(h − Z). Then, (2.17)
yields

−ΣXX = −ΣZZ = p = g cos θ(h − Z). (2.22)

The Drucker-Prager remaining relations (2.18)-(2.19) then give

ΣXZ = ν∂ZU + κ sgn(∂ZU), (2.23)

where the sign is multivalued, i.e. whenever ∂ZU = 0, sgn(∂ZU) is any
number in [−1, 1]. It finally remains to write (2.11),

∂tU + g sin θ − ∂ZΣXZ = 0, (2.24)

and the boundary condition on ΣXZ in (2.15),

ΣXZ = 0 at Z = h. (2.25)

This system is completed by the relation (1.6), which is with (2.22)

κ = µg cos θ(h − Z). (2.26)

The solutions to (2.10)-(2.19), (1.6) satisfying (2.21) are thus obtained by
finding a solution U(t, Z) defined for 0 < Z < h satisfying (2.23)-(2.26).

The solutions to (2.23)-(2.26) satisfying (2.20) for some b(t) ∈ (0, h) can
then be characterized by a system of equations set in the flowing phase Z > b,
together with a static equilibrium condition, as stated in the appendix (taking
Φ = g sin θ for the source), and we note that here κ is linear, thus convex.

The conclusion is that given sb = ±1 the sign of the shear ∂ZU , and
assuming that

sb θ ≤ 0, (2.27)
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the problem of finding a solution U(t, Z) defined for 0 < Z < h to (2.23)-
(2.26) satisfying (2.20) is equivalent to finding a solution U(t, Z) defined for
b(t) < Z < h to

∂tU + g sin θ + sbµg cos θ − ∂Z(ν∂ZU) = 0 for Z > b, (2.28)

with
sb∂ZU > 0 for Z > b, (2.29)

satisfying the boundary conditions

ν∂ZU = 0 at Z = h, (2.30)

U = 0 at Z = b(t), (2.31)

ν∂ZU = 0 at Z = b(t), (2.32)

and the friction dominating condition

|tan θ| ≤ µ. (2.33)

must hold for the static layer to exist. Note that (2.27) means that the slope
and the shear ∂ZU in the flowing zone have opposite signs, which is very
natural, see Figure 2. Here it is important to mention that the boundary
condition (2.32) is not imposed a priori, but is a consequence of the analysis
provided in Appendix, that ensures that ν∂ZU is continuous through the
interface. The necessary condition (2.33) can be found surprising at first.
Indeed, if it does not hold, the static-flowing interface can no longer persist
for positive time, and we expect in this case the whole layer of material to
flow down immediatly.

Under the condition (2.33), numerical simulations performed in [28] show
that there is a solution to (2.28)-(2.32). In this system there is one more
boundary condition than what is expected in parabolic problems, this is
what is called an overdetermined problem. This extra condition determines
the evolution of the interface b(t).

Indeed, in the inviscid case ν = 0, there remains only the extra condition
U(t, b(t)) = 0 to determine the interface. The solution is given explicitly as
follows, in the case sb = 1, θ ≤ 0 to simplify,

U(t, Z) = max
(
U0(Z) − g(sin θ + µ cos θ)t, 0

)
for 0 < Z < h, (2.34)

where U0(Z) is the initial data, assumed to be defined for 0 < Z < h
satisfying ∂ZU0 ≥ 0, U0 ≥ 0. The interface b(t) is given implicitly by the
relation

U0(b(t)) = g(sin θ + µ cos θ)t, (2.35)
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as long as the right-hand side remains less than U0(h). After that time, b
can be extended by setting b(t) = h, and U = 0. Thus this solutions becomes
static in finite time, and the interface b(t) is nondecreasing with respect to
time (this is not the case with viscosity, see [28]). Note that the formula
(2.34) works for any (nondecreasing) initial profile U0. Thus there is no
preferred shape for the Z dependency of the velocity.

3 Shallow layer asymptotics

We consider the two-dimensional Drucker-Prager model in curvilinear coor-
dinates (2.10)-(2.19) with (1.6), satisfying (2.20). As is by now common in
shallow asymptotics [10], we consider a small dimensionless parameter ε and
we assume that

h ∼ ε, dXθ = O(ε), (3.1)

Σ = O(ε), p = O(ε). (3.2)

These assumptions are related to the knowledge of a characteristic length L
and a characteristic time τ with L/τ 2 = g, and to the introduction of the
appropriate scales. Relation (3.1) means that h/L is of the order of ε, and
that LdXθ is at most of the order of ε, while (3.2) means that ΣXX , ΣZZ ,
ΣXZ , p are at most of the order of (L/τ)2ε.

We assume that the derivatives with respect to t or X does not induce
singularities (they just involve the characteristic scales L and τ , but not ε).
However, derivatives with respect to Z naturally involve, apart from the scale
L, a factor 1/ε at worse, because Z lies in the interval (0, h), which is of order
ε. Taking into account the incompressibility (2.10) and the vanishing of W
at the bottom in (2.16), for bounded velocities we get the following natural
assumptions of orders of magnitude

U = O(1), W = O(ε),
∂XU = O(1), ∂XW = O(ε),

∂ZU = O(1/ε), ∂ZW = O(1).
(3.3)

Now and further on, we do not write explicitly the units in terms of L and
τ , but only the orders of magnitude in terms of ε. Note that another scaling
which is used in shallow granular flows consists in taking the free-fall time
scale

√
h/g, which is in

√
ε, leading to U ≃

√
gh, which is also of order

√
ε.

Additionally to (3.3) , we shall also consider the case of slow velocities
U = O(ε), which leads to

U = O(ε), W = O(ε2),
∂XU = O(ε), ∂XW = O(ε2),
∂ZU = O(1), ∂ZW = O(ε).

(3.4)
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In each situation (3.3) or (3.4), if ∂ZU is really of order 1/ε, respectively
1 (i.e. it is not smaller than this scale) in the flowing domain, then the
expression (2.19) gives

|DU| =
1√
2
|∂ZU |(1 + O(ε2)) for Z > b(t, X). (3.5)

Assuming that the viscosity is small

ν =

{
O(ε2) in case (3.3),
O(ε) in case (3.4),

(3.6)

the equations (2.17) give that ΣXX + p = O(ε2), ΣZZ + p = O(ε2) for Z > b.
We are going to look for solutions that extend these orders of magnitude in
the static zone. Thus we assume for 0 ≤ Z ≤ h

ΣXX + p = O(ε2), ΣZZ + p = O(ε2). (3.7)

These assumptions imply that ΣXX −ΣZZ = O(ε2), and with (3.2) we obtain
from (2.15) the approximate boundary conditions at the free surface

ΣXZ = O(ε3) at Z = h, ΣZZ = O(ε4) at Z = h. (3.8)

We are looking for an approximation of (2.11) (momentum along the topog-
raphy) up to O(ε2). Therefore we need an approximation of (2.12) (momen-
tum normal to the topography) up to O(ε). This latter equation is therefore
expanded as

∂Z(gZ cos θ − ΣZZ) = O(ε), (3.9)

from which we deduce with (3.8)

ΣZZ = −g cos θ(h − Z) + O(ε2). (3.10)

Reporting this in (2.11) and using (3.7), we get

∂tU + U∂XU + W∂ZU + g∂X(B + h cos θ) − ∂Z(ΣXZ) = O(ε2). (3.11)

We have to see that W is deduced from the knowledge of U by the incom-
pressibility condition (2.10) and the bottom condition (2.16), that simplify
to

∂XU + ∂ZW = O(ε2), W = 0 at Z = 0. (3.12)

The equation (3.11) is completed by the asymptotics coming from (2.18),
(3.5),

ΣXZ = ν∂ZU + κ sgn(∂ZU) + O(ε3), (3.13)
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where sgn(∂ZU) has to be interpreted as multivalued. The equations (3.11)-
(3.13) are completed by the boundary condition

ΣXZ = O(ε3) at Z = h, (3.14)

coming from (3.8), and by the equation (2.14) giving the evolution of h.

The system (3.11)-(3.14), (2.14) involves an unknown U(t, X, Z) defined
up to errors in ε2. However, there are two main difficulties that arise. The
first is that the value of κ in (3.13) needs to be known up to an error in
ε3. According to (1.6) this means to know the pressure p up to an error in
ε3, what we do not have from (3.7), (3.10). Thus the system is not closed.
The second difficulty is that it is not obvious how to describe the interface
dynamics with (3.11), because of the inertial terms U∂XU , W∂ZU . Note
however that the system is coherent with the assumptions (3.2) and (3.3),
because the formulas (3.10), (3.7), (3.13) give Σ = O(ε), and all the terms
in (3.11) are bounded.

4 Slow model

In order to resolve the difficulties previously stated on the system (3.11)-
(3.14), (2.14) under the assumption (3.3), we complete here the analysis in
the case of slow velocity, i.e. assumption (3.4).

The first observation to make is that for this assumption (3.4) to remain
valid for all time, we need that ∂tU = O(ε). Looking thus at equation (3.11),
we get the compatibility condition

g sin θ = ∂Z(ΣXZ) + O(ε). (4.1)

In order to simplify, we make the assumption of very small viscosity

ν = O(ε2), (4.2)

which is stronger than (3.6). Using (3.13) and (1.6), (3.7), (3.10), this leads
to the relation in the flowing phase g sin θ = −gµ cos θ sgn(∂ZU) + O(ε). If
µ is not O(ε), then also θ must not be small (not O(ε)), and we get the two
conditions

µ = | tan θ| + O(ε), (4.3)

and
sgn(∂ZU) = − sgn(θ) for Z > b(t, X). (4.4)
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The condition (4.3) means that the effects of gravity and friction compensate,
up to a fluctuation of order ε. Without this assumption, one of the two forces
would dominate the other, with the effect of a strong acceleration, violating
our assumption ∂tU = O(ε).

We therefore make the assumption (3.1), (4.2), (4.3) (note that θ can
nevertheless be X dependent). Looking for solutions to (2.10)-(2.19) with
(1.6), satisfying (2.20), (3.2), (3.4), we arrive at the system (3.11)-(3.14),
(2.14), (1.6), (2.20), (4.4). In this system, according to (3.4) the inertial
terms U∂XU , W∂ZU in (3.11) are O(ε2), and can be neglected. We can then
forget equation (3.12).

We wish now to obtain an expansion of p up to errors in ε3, so that we
can close the equation (3.13) with (1.6). Expanding (2.12) at higher order
than in (3.9) yields

∂Z(gZ cos θ − ΣZZ) = ∂XΣXZ + O(ε2). (4.5)

But using (4.1) and (3.14) we get

ΣXZ = −g sin θ(h − Z) + O(ε2), (4.6)

which gives in (4.5) by using (3.1)

∂Z(gZ cos θ − ΣZZ) = −g sin θ∂Xh + O(ε2). (4.7)

With the boundary condition (3.8) we deduce

ΣZZ = −g(cos θ + sin θ∂Xh)(h − Z) + O(ε3). (4.8)

But independently, taking into account (2.17), (3.5), (3.12), one has

−ΣZZ − p = 2κ
∂XU

|∂ZU | + O(ε3), for Z > b, (4.9)

thus with (4.8) we get

p = g(cos θ + sin θ∂Xh)(h − Z) − 2κ
∂XU

|∂ZU | + O(ε3), for Z > b. (4.10)

To leading order, this quantity is nonnegative. Taking into account (1.6),
(4.3) and the approximation g cos θ(h − Z) of p up to O(ε2), we arrive at

p = g

(
cos θ + sin θ∂Xh − 2| sin θ| ∂XU

|∂ZU |

)
(h − Z) + O(ε3), for Z > b.

(4.11)
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This has to be taken into account in (3.11), (3.13), which becomes

∂tU + g
(
sin θ + ∂X(h cos θ)

)
− ∂Z

(
ν∂ZU + µp sgn(∂ZU)

)
= O(ε2), (4.12)

with the boundary condition (3.14) that simplifies to

ν∂ZU = O(ε3) at Z = h. (4.13)

We conclude that under assumptions (3.1), (4.2), (4.3), solutions to the two-
dimensional Drucker-Prager model with static/flowing interface that satisfy
(3.2), (3.4) are determined by the system (4.11)-(4.13), (2.14), (4.4). We
notice that the pressure in (4.11) is only defined in the flowing phase, because
the ratio ∂XU/∂ZU is not defined in the static phase. In order to go further,
we shall assume that

the pressure p is convex with respect to Z in [0, h]. (4.14)

This assumption, including the static phase, seems to be rather valid in
Drucker-Prager flows of interest, see [21], [27, p. 115-120], at least in its
weaker form stated after (A.14). In view of (4.11), this condition (4.14) im-
plies a particular shape for the ratio ∂XU/∂ZU in the flowing phase, this term
representing the main non-hydrostatic part of the pressure. The assumption
(4.14) expresses a kind of stability of the double layer configuration with
flowing on top of static material. According to the Appendix, applied here
with Φ = g(sin θ+∂X(h cos θ)), it ensures the force balance in the static layer,
and without it one would have an immediate flowing of the whole granular
material. The assumption (4.14) allows to formulate the problem in the flow-
ing phase only (thus avoiding the knowledge of the values of the pressure in
the static phase), together with boundary conditions at the interface.

Therefore, under assumptions (3.1), (4.2), (4.3), (4.14), solutions to the
two-dimensional Drucker-Prager model with static/flowing interface that sat-
isfy (3.2), (3.4) are determined by the system (2.14), (4.4),

∂tU + g
(
sin θ +∂X(h cos θ)

)
+sgn(θ)∂Z(µp)−∂Z(ν∂ZU) = O(ε2) for Z > b,

(4.15)
with p given by (4.11), and the boundary conditions

ν∂ZU = O(ε3) at Z = h, (4.16)

U = 0 at Z = b(t), (4.17)

ν∂ZU = 0 at Z = b(t), (4.18)

subject to the static equilibrium condition

g |sin θ + ∂X(h cos θ)| ≤ −
(
∂Z(µp)

)
b
+ O(ε2). (4.19)
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We can observe that since U(t, X, b(t, X)) = 0, differentiating with respect
to X we get

∂XU

∂ZU
(t, X, b(t, X)) = −∂Xb(t, X), (4.20)

where the ratio on the left-hand side has to be computed as the limit as
Z → b(t, X) by above (since both the numerator and the denominator vanish
in the case ν > 0). This gives the limit value at Z = b in (4.11).

4.1 Steady states at rest

An important situation to look at is the case a fully static solution to the slow
model. We thus look for a solution to (2.14), (4.4), (4.11), (4.15)-(4.19) such
that U ≡ 0. Then b ≡ h, (4.11), (4.4), (4.15) say nothing, and (4.16)-(4.18)
are satisfied. The equation (2.14) gives that ∂th = 0. It remains to write
(4.19). Viewing (4.11) as an expansion in Z − b (recall that b = h) and using
(4.20) yields the formal relation (∂Zp)b = −g(cos θ +sin θ∂Xh−2 sin θ∂Xb)+
O(ε2). Thus (4.19) reduces to

| sin θ + ∂X(h cos θ)| ≤ µ (cos θ + sin θ∂Xh − 2 sin θ∂Xh) + O(ε2), (4.21)

or equivalently ∣∣∣∣
sin θ + ∂X(h cos θ)

cos θ − ∂X(h sin θ)

∣∣∣∣ ≤ µ + O(ε2). (4.22)

The interpretation of this inequality is as follows. Consider the coordinates
(y(X), z(X)) of a point at the free surface,

y = x − h sin θ, z = B + h cos θ, (4.23)

where x is the horizontal coordinate, according to (2.4), (2.5), see Figure 1.
Then (4.22) says that |dz/dy| ≤ µ+O(ε2), i.e. the slope of the free surface is
less than or equal to µ. We conclude that this natural slope condition (4.22)
is the one for the solution to the slow model to remain at rest. It is a first
order correction taking into account the width h and the dependency in X
to the uniform condition (2.33).

4.2 Steady flows with static/flowing transition

Some steady flows with static/flowing interface can be obtained for the slow
model. A solution to (2.14), (4.4), (4.11), (4.15)-(4.19) is built as follows,
under the assumption that the viscosity is negligible,

ν = O(ε3). (4.24)
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We assume that θ(X) has a constant sign, and we take the velocity of the
form

U(X, Z) = Ũ(Z − h(X)), (4.25)

where Ũ(Y ) is a profile verifying

sgn(θ)dŨ/dY ≤ 0, Ũ(Y ) = 0 for Y ≤ −y0, (4.26)

for some y0 ≥ 0. We consider a spatial domain where h(X) ≥ y0. Then

(2.14) is verified since
∫ h

0
UdZ =

∫ 0

−∞
ŨdY is independent of X, and the sign

condition (4.4) holds according to (4.26). With (4.17) we have b(X) = h(X)+

y1 with y1 the largest value for which Ũ(y1) vanishes, thus ∂X(h − b) = 0,
∂XU/∂ZU = −∂Xh, and (4.11) gives p = g(cos θ− sin θ∂Xh)(h−Z) + O(ε3).
Thus (4.15) and (4.19) give the single equation

sin θ + ∂X(h cos θ) − µ sgn(θ) (cos θ − ∂X(h sin θ)) = O(ε2). (4.27)

The boundary conditions (4.16), (4.18) are satisfied up to O(ε3). Thus there
remains only the condition (4.27). With the notations (4.23), this means
that |dz/dy| = µ + O(ε2), i.e. the slope of the free surface is equal to µ. The
steady solution built in this way has free surface and static/flowing interface
with slopes µ, and it generalizes the steady uniform solution given by (2.34)
in the case | tan θ| = µ.

4.3 Interface dynamics and discussion

The slow problem (2.14), (4.4), (4.11), (4.15)-(4.19) can be reformulated as
follows. Defining S(t, X, Z) by

S = −g sgn(θ)(sin θ + ∂X(h cos θ)) − ∂Z(µp), (4.28)

the equation (4.15) can be written (dropping the ε) as

∂tU − sgn(θ)S − ∂Z(ν∂ZU) = 0 for Z > b(t, X), (4.29)

with (2.14), (4.4), (4.11), the boundary conditions (4.16)-(4.18), and the
static condition (4.19), that becomes

S(t, X, b(t, X)) ≥ 0. (4.30)

Note that in the uniform case (no dependency in X), we recover the system
obtained in Subsection 2.3. The pressure convexity assumption (4.14) gives
that ∂ZS ≤ 0. Applying a formal maximum principle [27], this implies that
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the monotonicity condition (4.4) remains true if it is the case at initial time.
Indeed, without (4.14), the solution U to (4.29) would not remain monotone
with respect to Z, violating the conditions under which it has been derived.
Then in the viscous case ν > 0, the monotonicity of U implies the static
condition (4.30), see [28]. In the inviscid case ν = 0, the static condition
(4.30) is not automatically satisfied, and can be interpreted as an entropy
condition. As in the uniform situation, the three boundary conditions (4.16)-
(4.18) (reducing to the single condition (4.17) in the inviscid case ν = 0)
determine the dynamics of the static/flowing interface b(t, X).

If ν = 0, differentiating the boundary condition U(t, X, b(t, X)) = 0 with
respect to t enables to get ∂tb(t, X)∂ZU(t, X, b(t, X)) = −∂tU(t, X, b(t, X)),
and with (4.29) we obtain

∂tb(t, X) = − sgn(θ)
S(t, X, b(t, X))

∂ZU(t, X, b(t, X))
, if ∂ZU(t, X, b(t, X)) 6= 0.

(4.31)
Using (4.30) and (4.4) we obtain ∂tb ≥ 0 whenever ∂ZU(t, X, b(t, X)) 6= 0.
However, a precise analysis performed in [27] shows that it is possible to
have ∂tU < 0 together with ∂ZU(t, X, b(t, X)) = 0 and S(t, X, b(t, X)) =
0. Hence, the formula (4.31) only gives partly the dynamics, and it is not
possible to formulate the evolution of the interface by specifying a simple
formula for ∂tb. Instead we have to use the whole formulation (4.28), (4.29)
with (2.14), (4.4), (4.11), the boundary conditions (4.16)-(4.18), and the
static condition (4.30). Specific numerical methods have then to be used, see
[28]. Noticing the hydrostatic approximation p = g cos θ(h−Z)+O(ε2) from
(3.10), and the approximation S = −g| sin θ| − µ∂Zp + O(ε) from (4.28), we
get S = g cos θ(µ − | tan θ|) + O(ε). With (4.3) this is O(ε), but anyway the
formula (4.31) with this approximation of S identifies with the ∂tb equation
of the models discussed in [11], namely the model equation (4.22) in that
reference, the BCRE model ((4.16) in [11]) from [9], and Khakhar’s model
((4.14) in [11]) from [24]. In order to improve the expansion we need here to
write down the next terms from (4.11), (4.28). The term in ∂Xh corresponds
in particular to the ones in (4.5) or (4.18) in [11]. However, the term in
∂XU/∂ZU in (4.11) is specific to our approach, it includes a non-hydrostatic
coupling that cannot be expressed by averages in Z.

We conclude that on one hand our approach here is quantitatively close to
the BCRE and Khakhar models, and on the other hand its formulation (4.28),
(4.29) with (2.14), (4.4), (4.11), the boundary conditions (4.16)-(4.18), and
the static condition (4.30), is better mathematically, indeed it enables clear
numerical schemes [28] (at least in the case of uncoupled source S), including
the case of non-zero viscosity. A comparison of the uniform approximation
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of Subsection 2.3 with experimental data is performed in [28], showing the
relevance of our formulation, including the effect of viscosity.

The effect of the Z dependency of S is described in the inviscid case
in [27], showing that the eventual zero b∗(t, X) of S in the variable Z (i.e.
satisfying S(t, X, b∗(t, X)) = 0) merely drives the evolution of b(t, X). This
property enables to put into motion the static phase (i.e. the decrease of b)
even without viscosity, which is not possible without dependency in Z, as
seen in (2.34), (2.35). Therefore, in order to describe the fact that the static
phase can be put into motion, for example in the case of horizontal space
inhomogeneities and initially vanishing velocity, we have to take into account
the Z dependency of the source S, which means to include the coupling with
the pressure expansion (4.11) with the term in ∂XU/∂ZU , that produces the
Z dependency of S. The effect of this term is illustrated by the configurations
of Subsections 4.1 and 4.2, where ∂XU/∂ZU = −∂Xh is non-zero.

When considering the full coupling with (4.28) and the pressure formula
(4.11), we have first to remark that the model is only valid as long as the
pressure remains convex with respect to Z, a condition that could eventually
break up in finite time. The coupled problem (4.29), (4.28) with p given by
(4.11) looks difficult to solve. It is nonlinear in the two space derivatives of U ,
because of the ratio ∂XU/∂ZU in (4.11). It is possible to remove the infinite
values of this ratio, by replacing ∂XU/|∂ZU | in (4.11) by ∂XU/((∂ZU)2 +
4(∂XU)2)1/2, without affecting the accuracy of the approximation. Indeed
the denominator |∂ZU | has been obtained as an expansion of |DU| in (2.19).
However by doing this we loose the nice relation (4.20). The equation anyway
contains second-order terms linear in ∂2

XZU (and ∂2
ZZU), that make it ill-

posed unless adding sufficient viscosity in X (and eventually in Z). The
formulation and simulation of a well-posed suitably modified system is an
important issue that will be explored in future works.

5 Conclusion

The description of avalanche flows of granular materials involves the key
feature of the dynamics of the static-flowing interface. In contrast with the
usual approach which is to formulate a phenomenological differential equation
on the interface, we have been able to derive a set of equations for the velocity,
the width of the domain, and the interface, from a shallow layer asymptotics
starting from the Drucker-Prager model for viscoplastic materials with yield
stress. Our shallow model keeps the normal to the flow variable, and is set in
the flowing phase as a parabolic-like model with overdetermined boundary
conditions. The extra condition determines the dynamics of the interface,
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but cannot be replaced by a simple ordinary differential equation on the
position of the interface. The model is quantitatively close to the BCRE
and Khakhar models, but at the same time its formulation is mathematically
attractive since it can be solved numerically, and can take into account small,
but non-zero, viscosity. In contrast to the BCRE and Khakhar models, it is
formulated for arbitrary velocity shape, and it is therefore more general. A
specific property is that it involves a non-hydrostatic nonlinear coupling term,
that could have the effect of displacing the static-flowing interface according
to the space inhomogeneities. The model is described by the equations (2.14),
(4.28), (4.29), (4.4), (4.11), (4.16)-(4.18), (4.30). It is established under the
conditions that the curvature of the topography is small (3.1) the internal
friction is close to the slope (4.3), the velocity is small (3.4), the viscosity is
small (4.2), and the pressure is convex (4.14).

The evaluation of the model without pressure coupling is performed in [28,
27], and shows promising results. The case of full coupling with dependency
in the horizontal variable needs to be explored.

A Appendix

Appendix: formulation in the flowing phase
with extra boundary condition

In this appendix we would like to justify conditions under which we have
the mathematical equivalence between multivalued equations set in the whole
material and equations set in the flowing phase with extra boundary condi-
tion.

We consider an unknown U(t, X, Z) defined for 0 < Z < h(t, X), where
h(t, X) > 0 is assumed to be known. Given a source Φ(t, X) independent of
Z, the problem is set as

∂tU + Φ − ∂Z

(
ν∂ZU + κ sgn(∂ZU)

)
= 0, for 0 < Z < h(t, X), (A.1)

where the sign is understood as multivalued, ν ≥ 0 and κ(t, X, Z) are given.
We complete the problem with the boundary condition

ν∂ZU + κ sgn(∂ZU) = 0 at Z = h(t, X), (A.2)

and the no slip condition at the bottom U = 0 at Z = 0. This condition will
be however unnecessary since we are looking for solutions to (A.1) that have
a static/flowing interface 0 < b(t, X) < h(t, X) such that

U(t, X, Z) = 0 for 0 < Z < b(t, X),
∂ZU(t, X, Z) 6= 0 for b(t, X) < Z < h(t, X).

(A.3)
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Note that in this problem, the variable X is only a parameter, and the
dynamics is in the variables t, Z. We shall therefore often omit the variable
X.

The aim of this appendix is to examine under which conditions the prob-
lem (A.1)-(A.3) can be formulated in the flowing domain Z > b, eliminating
the static part where Z < b. We shall assume that κ is continuous with
respect to Z and satisfies

κ(t, X, h(t, X)) = 0, κ(t, X, Z) > 0 for 0 < Z < h, (A.4)

κ is convex with respect to Z in [0, h]. (A.5)

We shall use the notation

ΣXZ = ν∂ZU + κ sgn(∂ZU). (A.6)

The solutions to (A.1)-(A.3) for some b ∈ (0, h) can be characterized by
three types of equations: equations in the static phase Z < b, equations in
the flowing phase Z > b, and relations through the interface Z = b.

1. Interface jump relations. Assuming that U does not jump through the
interface (this is mandatory when viscosity is present), i.e.

U(t, Z) → 0, as Z → b(t)+, (A.7)

the ”+” meaning that the limit is taken by above, the equation (A.1)
yields the property that ΣXZ does not jump through the interface Z =
b(t). We shall denote its value by (ΣXZ)b(t), or simply (ΣXZ)b. Then
the relation (A.6) and the assumption (A.4) imply that κ sgn(∂ZU)
does not jump through the interface (if ν = 0 it is obvious, and in the
case ν > 0, use that the relation (A.6) gives a Lipschitz continuous
dependency of ∂ZU in terms of ΣXZ). We shall call its value at the
interface κbsb. Taking the limit from the flowing zone yields indeed
that sb = ±1 is the sign of the shear ∂ZU in the flowing zone. From
(A.6) again, we get by difference that ν∂ZU is also continuous through
the interface. We conclude that

ν∂ZU → 0 as Z → b(t) + . (A.8)

Moreover, we have the relation (ΣXZ)b = κbsb.

2. Equation in the static phase. There, call s(t, Z) = sgn(∂ZU). Then
(A.6) gives that

ΣXZ = κs for 0 < Z < b. (A.9)
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But (A.1) with the value of ΣXZ at b given by (ΣXZ)b = κbsb yields

ΣXZ = κbsb − (b − Z)Φ for 0 < Z < b. (A.10)

It remains then to state with (A.9), (A.10) that |s| ≤ 1. With (A.9) it
is equivalent to write κ − sbΣXZ ≥ 0 and κ + sbΣXZ ≥ 0. Using the
expression (A.10) of ΣXZ , we are led to

κ(t, Z) − sb

(
κbsb − (b − Z)Φ

)
≥ 0 for 0 < Z < b,

κ(t, Z) + sb

(
κbsb − (b − Z)Φ

)
≥ 0 for 0 < Z < b.

(A.11)

Since κ ≥ 0, the second inequality holds as soon as

sbΦ ≤ 0, (A.12)

a condition that we shall assume to hold. With (A.10) it implies that
sbΣXZ > 0 for Z < b, and with (A.9) that sbs > 0 for Z < b. According
to the assumption (A.5), the left-hand side of the first line of (A.11) is
convex with respect to Z. Since it vanishes at Z = b, we have to write
that the derivative with respect to Z at b is nonpositive, which leads
to

(∂Zκ)b − sbΦ ≤ 0, (A.13)

or equivalently with (A.12),

−(∂Zκ)b ≥ |Φ| . (A.14)

Note that the convexity assumption (A.5) could be replaced by the
weaker one which is that the function κ(Z) is above its tangent at b.

3. Equation in the flowing phase. Knowing that there

sb∂ZU > 0 for Z > b, (A.15)

the relation (A.6) in the flowing zone Z > b gives ΣXZ = ν∂ZU + κsb.
Plugging this in (A.1) yields

∂tU + Φ − sb∂Zκ − ∂Z(ν∂ZU) = 0 for Z > b, (A.16)

while the boundary condition (A.2) becomes with (A.4)

ν∂ZU = 0 at Z = h. (A.17)

The system is completed with the boundary conditions at the interface
(A.7), (A.8).
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The conclusion of the previous analysis is that given sb = ±1 the sign of
the shear, and assuming (A.12), (A.4), (A.5), the problem of finding a so-
lution U(t, X, Z) defined for 0 < Z < h(t, X) to (A.1)-(A.3) is equivalent
to finding a solution U(t, X, Z) defined for b(t, X) < Z < h(t, X) to (A.16)
with (A.15) satisfying the boundary conditions (A.17), (A.7), (A.8), and the
static equilibrium condition (A.14) must hold.

Note that as is proved above, if (A.14) is violated, one cannot find a stress
satisfying the equations in the static zone. The interpretation is that in this
situation, the solution to (A.1)-(A.2), if it exists, has no static phase.

The interesting property in the final formulation in the flowing phase is
that we have three boundary conditions (A.17), (A.7), (A.8) (respectively
one condition if ν = 0) for a parabolic (respectively hyperbolic) problem,
thus one extra condition than expected. This extra condition determines
implicitly the dynamics of the static/flowing interface b(t, X).
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