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Abstract—In this paper we propose a novel Ultrasonic To-
mography method for pipeline flow field imaging, based on
Zernike polynomial series. Having intrusive multipath time-of-
flight ultrasonic measurements (difference in flight time and
speed of ultrasound) at the input, we provide at the output
tomograms of the fluid velocity components (axial, radial and
orthoradial velocity). Principally, by representing these velocities
as Zernike polynomial series, we reduce the tomography problem
to an ill-posed problem of finding the coefficients of the series,
relying on the acquired ultrasonic measurements. Thereupon, this
problem is treated by applying comparatively the Tikhonov reg-
ularization and the Quadratically constrained ℓ1 minimization.
In order to enhance the comparative analysis, we additionally
introduce sparsity, by employing the SVD based filtering in
selecting Zernike polynomials which are to be included in the
series. The first approach - Tikhonov regularization without
filtering, imposes as the most suitable one. The performances
are quantitatively tested by considering a residual norm and by
estimating the flow using the axial velocity tomogram. Finally, the
obtained results show the relative residual norm and the error
in flow estimation, respectively, ∼ 0.3% and ∼ 1.6% for the less
turbulent flow and, ∼ 0.5% and ∼ 1.8% for the turbulent one.
Additionally, a qualitative validation is performed by proximate
matching of the derived tomograms with a flow physical model.

I. INTRODUCTION

Ultrasonic flow metering (UFM) is considered to be one of

the most representative non-destructive testing (NDT) mea-

surement techniques for the pipeline flow estimation [1],

[2]. Transmission intrusive flowmeters are placed inside the

pipeline in order to measure the difference of the transit

time of ultrasonic pulses propagating in and against flow

direction. Typically, this allows calculating both the speed of

sound and the average fluid velocity [3]. The most important

constraint is the position of the UFM in the line with respect

to discontinuities [4]. However, measuring flow rates inside

a pipe flow with the classical time-of-flight method, based

on a single ultrasonic propagation path, raises the problem of
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precision and robustness with respect to flow and geometry

parameters [5], [6]. Thus, the improvement in measurement

accuracy had to be achieved through the integration of several

paths on different sections of flow, resulting in far better

performances with respect to the estimation of average fluid

velocity [7]. As a consequence, the multi-path ultrasonic

systems are increasingly appearing as industrial replacement

of classical single-path systems [8]. In moving the limits of the

range of ultrasonic flowmeters use, RADAR (RAdio Detection

And Ranging) tools such as matched filtering are used as well,

given that the wide-band signals are taken into consideration

[9].

However, the particular interest lies in estimating the flow

field in a cross or an oblique section of the pipeline. The

mean appearing as most suitable for this purpose is the

Ultrasonic Tomography (UT) [10]. Already used in several dif-

ferent domains, UT is ordinarily conceived as a reconstruction

method using iterative algebraic methods, spatial Fast Fourier

Transform (FFT), Zernike polynomials etc. [11], [12]. In this

paper, we propose the Ultrasonic Tomography method for the

flow field imaging, based on Zernike polynomials [13].

Zernike polynomials, a set of orthogonal basis functions

defined on a continuous unit circle, are firstly introduced by

Zernike in his phase contrast method, the improved version of

the knife-edge test [14]. In the context of tomography, they are

mostly used to describe the wavefront aberrations [15], [16],

[17], where they eventually exhibit even better performances

than Fourier transform [18].

By representing fluid velocity components as Zernike poly-

nomial series, we derive a method for obtaining corresponding

velocity tomograms using intrusive ultrasonic multipath time-

of-flight measurements. This approach reduces the ultrasonic

tomography to an ill-posed problem, defined by the acquired

measurements and the series of appropriate integrated Zernike

polynomials. The problem which assumes finding series coeffi-

cients, is treated by comparatively using the Tikhonov regular-

ization [19] and the Quadratically constrained ℓ1 minimization

[20]. Under certain constraints, the first method could be

treated as ℓ2 minimization. In order to enhance the comparative

analysis by additionally introducing sparsity, we employed, as

well, the SVD (Singular Value Decomposition) based filtering

in selecting polynomials which have to be integrated in the

series.

It appears that the most suitable mean is the Tikhonov reg-
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(a)

(b)

Fig. 1: Principle of ultrasonic flow measurement (time-of-flight method): (a)
schema [23], (b) fluid propagation velocity components.

ularization without filtering. The quantitative decision criteria

are the regularization relative residual norm and the compar-

ison of the flow measured by the reference electromagnetic

flowmeter with the one estimated using the derived axial

tomogram. The obtained results show the relative residual

norm and the average error in the flow estimation, respectively,

∼ 0.3% and ∼ 1.6% for the less turbulent flow (before

the elbow curvature) and, ∼ 0.5% and ∼ 1.8% for the

turbulent one (after the elbow curvature). Significantly lower

residual norm and bigger dynamic range in case of Tikhonov

regularization outcome even better flow estimation results

obtained by the Quadratically constrained ℓ1 minimization.

Qualitative validation is performed through the comparison

with the reference physical model of flow in a pipe with an

elbow curvature [21], [22].

The article is organized as follows: in Section II we pro-

vide a brief theoretical background by introducing the basic

principles of the intrusive ultrasonic time-of-flight flowmeter.

Further, section III, the core of the article, describes the

proposed method in details. In section IV we present the

results followed by the appropriate discussion and finally, we

conclude the article with section V.

II. ULTRASONIC MEASUREMENTS

This section aims to briefly provide few details concerning

basic principles of intrusive ultrasonic time-of-flight measure-

ments.

Short ultrasonic pulses propagating through the liquid flow-

ing in the pipeline, are emitted and received by piezoelectric

converters (piëzos) [23], placed in a longitudinal direction on

two opposite sides of a pipe with a certain offset (Fig. 1a). The

propagation of ultrasonic pulses is influenced by the pipeline

flow in the same manner as a canoe crossing diagonally a river:

propagation time (time-of-flight) will be shorter when crossing

in river flow direction than against it. These two propagation

times depend on the velocity of river flow and the velocity of

canoe. It is exactly equivalent for the ultrasonic time-of-flight

measurements with the fluid velocity and the sound speed. The

propagation times are to be calculated as [24]:

tAB =
|| ~AB||

c+ ~v · ~AB

|| ~AB||

≈ 1

c2
(c|| ~AB|| − ~v · ~AB), (1)

and

tBA =
|| ~BA||

c− ~v · ~BA

|| ~BA||

≈ 1

c2
(c|| ~BA||+ ~v · ~BA), (2)

with c being the average speed of sound and ~v the fluid

velocity vector. Given the non-uniform velocity distribution

in a pipeline, the difference between times-of-flight can be

further expressed as a line integral:

∆t = tBA − tAB = 2

∫

C

~v · d~s
c2

, (3)

where C is the domain of integration, representing a straight

line defined by vector ~AB. Although it depends on the type

of the liquid in the pipeline, the average speed of sound can

be found as:

c =
2|| ~AB||

tAB + tBA
. (4)

The velocity of the fluid propagating along the pipeline is

expressed as a vector:

~v =





~vr
~vo
~vε



 , (5)

composed of the radial (vr), orthoradial (vo) and axial (vε)

component. Therefore, finally, the fluid’s flow impacts the

ultrasound propagation through the difference in time flight

is:

∆t = 2

∫

C

~v · d~s
c2

(6)

=
2

c2

∫

C

(|~vε| cosαε + |~vr| cosαr + |~vo| cosαo)ds.

The derived equation are based on the plane wave as-

sumption, which represents a sort of simplification. The wave

propagation in the pipeline flow is generally far more complex

[25], [26]. The accuracy of a velocity estimation using time

flight measurements, depends on the fluid flow Reynolds

number and the mode of the ultrasonic wave, rather than

on the radius of the pipeline and the wave frequency [27].

The influence of the pipeline vibrations cannot be neglected,

neither [28].

Although the method derivation was motivated by the

existing set of intrusive measurements, the application of

the method is not by any means restricted to this kind of

measurements.
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(a) (b)

(c) (d)

Fig. 2: The paths of the ultrasound propagation (multiple measurements) in
the pipeline: (a) three-dimensional representation, (b) continuous cross

section, (c) continuous longitudinal section, (d) discrete longitudinal section.

III. ULTRASONIC TOMOGRAPHY METHOD

The velocity components in Eq. 6 are functions of distance

s (along the line C). Given the flowmeter configuration (Fig.

1b), if we assume that the velocity distribution doesn’t change

along the z direction, each s corresponds to a particular

point in the pipeline cross-section. Thus, a conversion to a

cylindrical coordinate system appears to be suitable. This way,

velocities themselves will be defined in a polar coordinate

system, which is even intuitive, given the defined purpose -

deriving the tomogram.

In suitable cylindrical coordinate system, Eq. 6 can be

rewritten in the following manner:

∆ti c
2
i

2
=

∫

C

|~vε| cosαi
εds+

∫

C

|~vr| cosαi
rds+ (7)

+

∫

C

|~vo| cosαi
ods =

=

∫

θ

∫

r

|~vε(θ, r)| cosαi
εdrdθ +

+

∫

θ

∫

r

|~vr(θ, r)| cosαi
rdrdθ +

+

∫

θ

∫

r

|~vo(θ, r)| cosαi
odrdθ i = 1, 2, ...N.

where N is the total number of measurements, or the ultra-

sound paths. This system of equations, coming from the mul-

tipath measurements is the only way to derive the tomogram.

Having classical, single-path measurement could lead to the

estimation of the average fluid velocity, but not the flow field.

This is obvious from the Eq. 6 which can not be, by any means,

solved in the context of deriving ~vε(s), ~vr(s) and ~vo(s). Even

if it was possible, we cannot derive the entire tomogram, but

simply velocities corresponding to one diameter of the pipeline

cross-section.

As it can be seen in Fig. 2, these multiple paths have to

be discretized along z in order to computationally solve the

double integrals in Eq. 7. However, this sort of system, in this

form, can not be solved neither. Therefore, in our method,

in order to be able to derive velocities in polar coordinates

(tomograms), we firstly represent each of them as the Zernike

polynomial expansion. That way, we reduce the problem to the

ill-posed problem of finding expansion coefficients for each of

the addends (velocities).

A. Zernike polynomials

Zernike polynomials represent a set of polynomials defined

on a unit circle [29] (Fig. 3). In polar coordinate system,

they are given as a product of radial polynomials and angular

functions, with the former being developed from the Jacobi

polynomials [30], and the latter being the basis functions for

the two-dimensional rotation group:

Zeven
j =

√
n+ 1Rm

n (r) sinmθ

Zodd
j =

√
n+ 1Rm

n (r) cosmθ

}

m 6= 0, (8)

Zj =
√
n+ 1R0

n(r), m = 0,

where radial polynomial is defined as:

Rm
n (r) =

(n−m)/2
∑

s=0

(−1)s(n− s)!

s!
(

n−m
2 − s

)

!
(

n+m
2 − s

)

!
rn−2s. (9)

The principal advantages of Zernike polynomials, in terms

of mathematical properties, are their orthogonality over the

continuous unit circle, and the fact that they represent a

complete set. Consequently, they can represent arbitrarily

complex continuous surfaces, given enough terms [31]. Due

to this, they are commonly used in a polynomial expansion of

an arbitrary wave front over a circular aperture [30]:

f(θ, r) =

n
∑

j=0

kjZj(θ, r), (10)

with f(θ, r) being the arbitrary function and kj the expansion

coefficient. Therefore, they appear to be a suitable representa-

tion of our velocity components. By replacing Eq. 10 in Eq. 7

we are able to express the acquired ultrasound measurements

as:

∆ti c
2
i

2
=

n
∑

j=0

aj

∫

θ

∫

r

Zj(θ, r) cosα
i
εdrdθ + (11)

+

n
∑

j=0

bj

∫

θ

∫

r

Zj(θ, r) cosα
i
rdrdθ +

+

n
∑

j=0

cj

∫

θ

∫

r

Zj(θ, r) cosα
i
odrdθ.

That allows us to define the system of equations in the

matrix form:

mi =
∆ti c

2
i

2
= T

a
i a

′ +T
b
ib

′ +T
c
ic

′, i = 1, 2, ...N, (12)
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Fig. 3: Zernike polynomials (Zj ): (a) Z2, (b) Z5, (c) Z8, (d) Z11, (e) Z14.

where a, b and c are the vectors containing the unknown

coefficients and T
a
i , Tb

i and T
c
i the rows of the transformation

matrices i.e. solutions of the previously defined integrals for

each j, where i is the index of measurement (N in total). m

is the vector of measurements. The discrete ill-posed problem

is finally defined as:

[

T
a

T
b

T
c
]





a
′

b
′

c
′



 = Tx = m. (13)

B. Tikhonov Regularization

In order to be able to reconstruct velocity distribution, we

ought to find coefficients x by solving discrete ill-posed prob-

lem [19] designated in Eq. 13. The useful and stable solution

of this problem is obtained through the regularization [32].

Certainly, the most common form of the regularization and

therefore the first applied method, is Tikhonov regularization

[33], [34], where the regularized solution xλ is defined as

a minimizer of the following weighted combination of the

residual norm and the side constraint:

xλ = argmin
(

||Tx−m||22 + λ2||L(x− x0)||22
)

, (14)

with λ being the regularization parameter, L the identity

matrix and x0 the vector of initial conditions. The regulariza-

tion parameter has significant impact on solution properties,

through controlling the weight of minimization of the side

constraint and the sensitivity of the solution with respect to

perturbations in T and m.

As it appears, the most utilized algorithm for the stated least

square problem (Eq. 14) is the one based on QR factorisation

[35]. However, we rather rely on the MATLAB toolbox

proposed by Hansen [36], [37], who chooses another approach,

based on Singular Value Decomposition (SVD) of the matrix

T:

T = UΣV
T =

n
∑

i=1

uiσiv
T
i . (15)

By assuming L = IN the regularized solution is given as:

x
reg =

n
∑

i=1

fi
u
T
i m

σi
vi, (16)

where fi are filter factors assuring that the addends corre-

sponding to the smaller singular values are filtered out. In

case of a Tikhonov regularization, they are defined as:

fi =
σ2
i

σ2
i + λ2

. (17)

The regularization parameter λ is determined using Gener-

alized Cross Validation (GCV) [38], by minimizing the GCV

function:

G =
||Tx

reg −m||22
(trace(IN −TT′))2

. (18)

C. Quadratically constrained ℓ1 minimization

The alternative approach assumes using the quadratically

constrained ℓ1 minimization [20], [39] in deriving unknown

Zernike coefficients. In this case, we search minimal value of

x satisfying the inequality:

1

2

(

||Tx−m||22 − ǫ2
)

≤ 0. (19)

The problem is reformulated as the second order cone

problem [40]:

min
x,u

∑

i

ui subject to x− u ≤ 0, (20)

−x− u ≤ 0
1

2

(

||Tx−m||22 − ǫ2
)

≤ 0,

where the first two inequalities assure that u is positive,

therefore that the cost-function is non-negative. The problem

is solved using the log-barrier method [41].

D. SVD based filtering of Zernike polynomials

The filtering is applied in deriving matrices T. The contri-

bution of Zernike polynomial to the integration is estimated

by applying the Singular Value Decomposition (SVD) to the

matrix T, after adding a new polynomial to the expansion (new

column). As the criterion we take a minimal singular value,

which is compared with the predefined threshold (t = 0.001).

This way, we obtain sparse Zernike representation of the

velocity.

This preprocessing is combined both with the Tikhonov

Regularization and the Quadratically constrained ℓ1 minimiza-

tion. However, given that the former can be equalized with ℓ2
minimization, in this case imposing ”more strict” sparsity of

the Zernike representation should influence the results more

than in case of ℓ1 minimization.
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(a) (b)

Fig. 4: Measurements configuration (δ = 1.5): (a) before the knee, (b) after the knee.

E. Velocity distribution reconstruction

Finally, knowing the expansion coefficients, velocity tomo-

grams are calculated using Zernike polynomial expansion:

̂|~vε(θ, r)| =
n
∑

j=0

a
reg
j Zj(θ, r), (21)

̂|~vr(θ, r)| =
n
∑

j=0

b
reg
j Zj(θ, r),

̂|~vo(θ, r)| =
n
∑

j=0

c
reg
j Zj(θ, r).

The results we present in the following section are based on

the polynomials expansion up to the order n = 13. This choice

is based on the empirical assertion that, in the considered case,

the inclusion of higher orders does not influence the obtained

tomograms.

IV. RESULTS

We applied the proposed method to the measurements

acquired using DFX MM US flowmeter [42] in a pipeline with

the radius R ≈ 100mm over a distance (z) of D ≈ 508mm.

Radius of curvature to pipeline diameter ratio is δ = 1.5.

Multipath measurements assume in this case N = 32 different

paths. Each of the paths is discretized in 1024 points.

The first set of measurements was acquired before the

elbow, where the propagating fluid can be considered as a

turbulent fully-developed flow, while the second set, taken

after the elbow, represent a turbulent disturbed flow (Fig. 4).

The quality of the proposed imaging method was analysed

with respect to two criteria:

• residual norm: indicator of the suitability of the employed

regularization/minimization method:

R =
||Tx−m||22

||m||22
. (22)

• flow: the volumetric flow rate, computed using derived

axial component:

Q =

∫

θ

∫

r

̂|~vε(θ, r)|rdrdθ. (23)

In Table I, we provide the quantitative results achieved with

four tested approaches: Tikhnov regularization and Quadrati-

cally constrained ℓ1 minimization, with and without filtering of

polynomials. The obtained velocity tomograms are presented

in Fig. 5 and 6.

The residual norm reflects the capability of the em-

ployed regularization/minimization method to face the ill-

possessedness of the problem. This parameter implies the error

in the Zernike polynomial expansion coefficients’ estimation.

It can be considered as the error in the reconstruction of time-

of-flight measurements, using derived tomograms.

The flow relative error (”flow error”) is calculated by

comparing the estimated flow (Eq. 23) to the one measured

using reference electromagnetic flowmeter [43].

As a mean of qualitative validation the obtained tomograms

are compared with the reference flow physical model (Fig.

7), as well [43]. This validation is reinforced through the

additional comparison with the computational fluid dynamics

(CFD) calculation for the pipeline characterised with the same

δ, provided in Fig. 18 in [22].

On one side, the relative residual norm indicates the su-

periority of the Tikhonov regularization method in facing

the ill-possessedness of the problem. On the other side, the

flow relative error shows that the more accurate estimation is

achieved with Quadratically constrained ℓ1 minimization.

Employed filtering does not improve the performances for

none of two approaches, with respect to both of the defined

criteria. It almost does not affect the flow estimation while

degrading the relative residual norm in the former case. In the

latter one, the results are virtually identical, which was the

reason for not illustrating them in Fig. 5 and 6.

However, significantly bigger dynamic range in case of the

Tikhonov regularization (Fig. 5 and 6), closer to the one

expected by a simulated flow physical model, imposes this

approach as the most appropriate choice for the proposed

method.

Very low magnitudes of the estimated radial and orthoradial

velocity tomograms lead to the eventual ambiguity with the
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Fig. 5: Tomograms of the dimensionless velocity for a fully-developed flow (before the elbow): (a) Tikhonov regularization without filtering, (b) Tikhonov
regularization with filtering, (c) Quadratically constrained ℓ1 minimization without filtering.

noise (Fig. 5 and 6), leaving the axial velocity tomogram as

the most relevant output in the proposed method.

Fig. 7: The comparison of the obtained tomograms with the longitudinal
section of the flow physical model (δ = 1.5) [43] (Q = 300m3/h).

The presented quantitative validation demonstrate the plau-

sibility of the proposed method in terms of capability to

represent the acquired measurements using ultrasonic tomo-

grams. Furthermore, the comparison with the simulated flow

physical model, qualitatively upholds the fidelity of the derived

tomograms.

V. CONCLUSION

This paper presents a method allowing the reconstruction

of a transverse flow field in a pipeline, using intrusive time-

of-flight ultrasonic measurements. Given the outputs, having

a form of velocities images, it genuinely represents one

Ultrasonic Tomography (UT) method. By introducing Zernike

polynomial expansions instead of velocity components, we re-

duced the UT problem to one ill-posed problem of finding the

coefficients of the expansion. Further, we have applied com-

paratively two approaches in treating this problem: Tikhonov

regularization and Quadratically constrained ℓ1 minimization.

Both of the approaches were eventually reinforced with the

SVD filtering of Zernike polynomials, as well. However, the

former one, without filtering, proved to be the most suitable

with respect to the performed validation, which assumed

both the relative residual norm and the flow estimation using

obtained tomograms. Finally, the obtained results in terms of

the average relative error indicate for a fully-developed flow

∼ 0.3% and ∼ 1.6% in residual norm and flow estimation

respectively, and ∼ 0.5% and ∼ 1.8% for a disturbed one.
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Fig. 6: Tomograms of the dimensionless velocity for a disturbed flow (after the elbow): (a) Tikhonov regularization without filtering, (b) Tikhonov
regularization with filtering, (c) Quadratically constrained ℓ1 minimization without filtering.

ACKNOWLEDGEMENTS

This work has been done as a part of the collaboration with
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l’aide d’un débitmètre ultrasonore 32 cordes,” EDF R&D, Tech. Rep.,
March 2013, (in French).

Nikola Besic (S’10) was born in Podgorica, Mon-
tenegro, in November 1987. He received the B.Sc.
degree in electrical engineering in 2009 from the
University of Montenegro and the M.Sc. degree
in optics and RF engineering in 2011 from the
Grenoble Institute of Technology (Phelma/Grenoble
INP). Currently, as a French Government fellow,
with the Grenoble-Image-sPeech-Signal-Automatics
Laboratory (GIPSA-lab) in Grenoble, he is jointly
pursuing the Doctorate degree in signal and image
processing, from the University of Grenoble, and the

Ph.D. degree in technical sciences, from the University of Montenegro.
His current research is mostly related to radar and optical remote sensing,

with a particular emphasis on the radar polarimetry and the remote sensing of
cryosphere. His research interests also include other signal and image process-
ing techniques, tightly bound to physics of electromagnetic and mechanical
waves.

Gabriel Vasile (S’06-M’07) received the M.Eng. de-
gree in electrical engineering and computer science
and the M.S. degree in image, shapes, and artificial
intelligence from the POLITEHNICA University,
Bucharest, Romania, in 2003 and 2004, respectively,
and the Ph.D. degree in signal and image processing
from the Savoie University, Annecy, France, in 2007.
From 2007 to 2008, he was a Postdoctoral Fellow
with the French Space Agency (CNES) and was
with the French Aerospace Laboratory (ONERA),
Palaiseau, France. In 2008, he joined the French

National Council for Scientific Research (CNRS), where he is currently a
Research Scientist and a member of the Grenoble Image Speech Signal
Automatics Laboratory, Grenoble, France.

He is author of more than 100 papers published in international journals
and conference proceedings. In 2008, he received the ”Bourse de la Vocation -
Prix des Neiges” to recognize his work in radar remote sensing for the benefit
of the Savoie and the Haute Savoie counties, France.

His current research interests include signal and image processing, radar
and acoustics remote sensing, polarimetry, interferometry, and tomography.

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, DOI:10.1109/TUFFC.2014.006515 (postprint) 9

Andrei Anghel (S’11) received the Engineers de-
gree (as valedictorian) and the Masters degree
(with the highest grade) in electronic engineering
and telecommunications from the University PO-
LITEHNICA of Bucharest, Bucharest, Romania, in
2010 and 2012, respectively.

He is currently working for a joint Ph.D. degree in
the field of radar signal processing from the Greno-
ble Institute of Technology, Grenoble, France and the
University POLITEHNICA of Bucharest, Bucharest,
Romania. Since 2012 he is Teaching Assistant at

the Faculty of Electronics, Telecommunications and Information Technology
within the University POLITEHNICA of Bucharest, Bucharest, Romania.
Between 2010-2011 he has worked in the field of metamaterial composite
right/left-handed (CRLH) antennas. In 2012 he pursued a research internship
at the Grenoble Image sPeech Signal Automatics Laboratory (GIPSA-Lab),
Grenoble, France on ground-based FMCW radar signal processing. His
current research interests include microwaves, radar and signal processing
with applications in infrastructure monitoring.

Mr. Anghel regularly acts as a Reviewer for the IET Electronics Letters
and the Progress in Electromagnetics Research (PIER) Journals. He received
two gold medals (in 2005 and 2006) at the International Physics Olympiads.

Teodor-Ion Petrut (M12) received the B.S. degree
in mechanical engineering from the Military Tech-
nical Academy, Bucharest, Romania, in 2010 and
the M.S. degree in mechanical engineering from
the University Politehnica, Bucharest, Romania, in
2012.

From 2010 to 2012, he was a R&D engineer
with the Military Technical Academy, Bucharest,
Romania. From 2012 to 2013 he attended numerous
internships with the Gipsa-lab Laboratory, Grenoble
Institute of Technology, France, and with the EDF

R&D Chatou, France, on Non-Destructive Testing research studies. He is
currently R&D engineer with the Gipsa-lab where his research interest is
mainly focusing on Non-Destructive Evaluation with ultrasounds in the field
of hydraulic monitoring and measurement.

Cornel Ioana received the Dipl.-Eng. degree in
electrical engineering from the Romanian Military
Technical Academy of Bucharest, Bucharest, Roma-
nia, in 1999 and the M.S. degree in telecommunica-
tion science and the Ph.D. degree in the electrical
engineering field, both from University of Brest,
Brest, France, in 2001 and 2003, respectively.

Between 1999 and 2001, he was active as a
Military Researcher in a research institute of the Ro-
manian Ministry of Defense (METRA), Bucharest,
Romania). Between 2003 and 2006, he worked as

Researcher and Development Engineer in ENSIETA, Brest, France. Since
2006, he is Associate Professor-Researcher with the Grenoble Institute of
Technology/GIPSA-lab, Grenoble, France. His current research activity deals
with the signal processing methods adapted to the natural phenomena. His
scientific interests are nonstationary signal processing, natural process char-
acterization, underwater systems, electronic warfare, and real-time systems.

Srdjan Stankovic was born 1964 in Montenegro. He
received the B.S. (Hons.) degree from the University
of Montenegro, in 1988, the M.S. degree from the
University of Zagreb, Croatia, in 1991, and the Ph.D.
degree from the University of Montenegro in 1993,
all in Electrical Engineering.

From 1988 to 1992, he worked in the Aluminum
Plant of Podgorica as a Research Assistant. In 1992
he joined the Faculty of Electrical Engineering,
University of Montenegro, where he is currently a
Full Professor. In the period 2007-2013 he served as

Dean of the Faculty of Electrical Engineering, University of Montenegro. His
interests are in signal processing, multimedia systems, and digital electronics.
He is a member of the Board of Directors in Montenegrin Broadcasting
Company since 2004. He was the President of the Board of Directors in
Montenegrin Broadcasting Company (2005-2006). In 1998 he spent a period
of time with the Department of Informatics at the Aristotle University in
Thessaloniki, supported by Greek IKY foundation. In the 1999-2000, he was
on leave at the Darmstadt University of Technology, with the Signal Theory
Group, supported by the Alexander von Humboldt Foundation. In 2002, he
spent three months at the Department of Computer Science, the University of
Applied Sciences Bonn-Rhein-Sieg, as an Alexander von Humboldt Fellow.
From 2004 to 2006, he stayed several times with the E3I2 Laboratory,
ENSIETA, Brest, France. From 2007 to 2010 he visited (one month research
stay) Centre for digital signal processing research at King’s College London,
Laboratory of mathematical methods in image processing, at Moscow State
University Lomonosov, as well as GIPSA Laboratory at INPG Grenoble. He
spent academic 2012/2013 with the Center for Advanced Communications at
the Villanova University, PA.

He has published a book ”Multimedia Signals and Systems” by Springer
and several textbooks on electronics devices (in Montenegrin). He published
about 80 journal papers. In 2010, he was the Lead Guest Editor of the
EURASIP Journal on Advances in Signal Processing for the special issue:
Time-frequency analysis and its applications to multimedia signals, as well
as the Guest Editor of the Signal Processing for special issue: Fourier related
transforms. He was the Lead Guest Editor of the IET Signal Processing for
the Special issue: Compressive Sensing and Robust Transforms, published in
2014.

From 2005 to 2009 Dr. Stankovic was serving as an Associate Editor of
the IEEE Transactions on Image Processing. He is a Senior member of the
IEEE. In 2011 he was awarded by the Ministry of Science in Montenegro as
the Leader of the Best Scientific Project in Montenegro.

Alexandre Girard received the Engineering degree
from the Ecole Centrale de Paris, Paris, France, in
2000 with a specialization in applied mathematics.

He worked in optimization and robust control for
power plants from 2000 to 2005 as a consultant. He
is currently a Research Engineer at Electricité de
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