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Regression is a popular way of studying the relationship between a response variable y and its explanatory variable x, a p-dimensional vector. Quite often, a parametric model is used to guide the analysis. When the model is parsimonious, standard estimation techniques such as the maximum likelihood or the least squares method have proved to be successful. In most applications, however, any parametric model is at best an approximation to the true one, and the search for an adequate model is not easy. When there are no persuasive models available, nonparametric regression techniques emerge as promising alternatives that offer the needed flexibility in modeling. A common theme of nonparametric regression is the idea of local smoothing, which explores only the continuity or differentiability property of the true regression function. The success of local smoothing hinges on the presence of sufficiently many data points around each point of interest in the design space to provide adequate information. For one-dimensional problems, many smoothing techniques are available. As the dimension of x increases, however, the total number of observations needed for local smoothing grows exponentially. Unless one has a huge sample, standard methods, such as kernel estimates or nearest-neighbor estimates, break down quickly because of the sparseness of the data points in any region of interest. To challenge the curse of dimensionality, one hope that statisticians may capitalize on is that interesting features of high-dimensional data are retrievable from low-dimensional projections. For regression problems, the following model describes such an ideal situation:

y = f (β ′ 1 x, β ′ 2 x, . . . , β ′ K x, ǫ).
Here the β's are unknown vectors, ǫ is independent of x, and f is an arbitrary unknown function. When this model holds, the projection of the p-dimensional explanatory variable x onto the K dimensional subspace, (β ′ 1 x, β ′ 2 x, . . . , β ′ K x) captures all the information about y. When K is small, one may achieve the goal of data reduction by estimating the β's efficiently. For convenience, we shall refer to any linear combination of the β's as an effective dimension-reduction (e.d.r.) direction, and to the linear space B generated by the β's as the e.d.r. space. The main focus is on the estimation of the e.d.r. directions, leaving questions such as how to estimate main features of f for further investigation. Intuitively speaking, after estimating the e.d.r. directions, standard smoothing techniques can be more successful because the dimension has been lowered. On the other hand, during the exploratory stage of data analysis, one often wants to view the data directly. Many graphical tools are available but plotting y against every combination of x within a reasonable amount of time is impossible. So, to use the scatterplot-matrix techniques, one often focus on coordinate variables only. Likewise, 3D rotating plots can handle only one two-dimensional projection of x at a time (the third dimension is reserved for y). Therefore, to take full advantage of modem graphical tools, guidance on how to select the projection directions is clearly called for. A good estimate of the e.d.r. directions can lead to a good view of the data. Our method of estimating the e.d.r. directions is based on the idea of inverse regression. Instead of regressing y against x (forward regression) directly, x is regressed against y (inverse regression). The immediate benefit for exchanging the roles of y and x is that one can overcome the dimensionality problem. This comes out because inverse regression can be carried out by regressing each coordinate of x against y. Thus, one essentiallys deal with a one-dimension to one-dimension regression problem, rather than the high-dimensional forward regression. As y varies, E(x|y) draws a curve, called the inverse regression curve. This curve typically hovers around a K-dimensional affine subspace. At one extreme, the inverse regression curve actually falls into a K-dimensional affine subspace determined by the e.d.r. directions. If x is standardized x to have mean 0 and the identity covariance, then this subspace coincides with the e.d.r. space. Exploring the simplicity of inverse regression, a simple algorithm is proposed, called sliced inverse regression (SIR), for estimating the e.d.r. directions. After standardizing x, SIR proceeds with a crude estimate of the inverse regression curve E(x|y), which is the slice mean of x after slicing the range of y into several intervals and partitioning the whole data into several slices according to the y value. A principal component analysis is then applied to these slice means of x, locating the most important K-dimensional subspace for tracking the inverse regression curve E(x|y). The output of SIR is these components after an affine re-transformation back to the original scale. Besides offering estimates of e.d.r. directions, the outputs of SIR are themselves interesting descriptive statistics containing useful information about the inverse regression curve. As a sharp contrast to most nonparametric techniques that require intensive computation, SIR is very simple to implement. Moreover, the sampling property of SIR is easy to understand, another advantage over other methods. Thus it is possible to assess the effectiveness of SIR by using the companion output eigenvalues at the principal component analysis step. These eigenvalues provide valuable information for assessing the number of components in the data. Finally, selection of the number of slices for SIR is less crucial than selection of the smoothing parameter for typical nonparametric regression problems. In view of these virtues, however, SIR is not intended to replace other computer-intensive methods. Rather it can be used as a simple tool to aid other methods; for instance, it provides a good initial estimate for many methods based on the forward regression viewpoint.