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Abstract 

In this paper we present a technique for fast approximately timed simulation of 

software within a virtual prototyping framework. Our method performs a static 

analysis of the program control flow graph to construct annotations of the 

simulated program, combined with dynamic performance information. The static 

analysis estimates execution time based on a target architecture model. The 

delays introduced by instruction fetch and data cache misses are evaluated 

dynamically. At the end of each block, static and dynamic information are 

combined with branch target prediction to compute the total execution time of 

the blocks. As a result, we can provide approximate performance estimates with 

a high simulation speed that is still usable for software developers. 
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 Introduction 

Performance of embedded software is important and must meet the requirements.  

Many embedded application developers use virtual prototyping framework 

including a hardware simulator to run the application software over a virtual 

platform. The simulation community has forged the terms Timeless, Loosely 

Timed (LT), Approximately Timed (AT) and Cycle Accurate (CA) to 

characterized simulators, although there is no formal definition of each category. 

Timeless simulators are purely functional and do not provide any notion of 

clock, LT simulators provide a notion of time, but the timing provided may be 

fairly inaccurate, AT simulators are supposed to provide performance estimates 

within a reasonable error margin and CA simulators (e.g. RTL level) are used to 



simulate exactly digital circuits. There exists very fast Timeless or LT simulators 

such as BOCHS[1], or QEMU[2] or SimSoC[3] that can run the application 

software to validate its functionality and possibly test real time software using 

timers. But such simulators do not provide good enough timings to evaluate the 

software performance. On the other hand CA simulators are too slow to be used 

by application software developers. The idea of Approximately Timed simulation 

is to provide estimates that are as close as possible to the hardware performance, 

but at a simulation speed that is still an order of magnitude faster. An Instruction-

Set Simulators (ISS) is typically used to emulate the behavior of the target on a 

host machine to execute embedded running on the target processor. In this paper 

we investigate an approach to provide a fast Approximately Timed ISS that 

provides good precision estimates. It consists in developing a higher abstraction 

model of the processor that still execute ISS instructions, but in parallel 

maintains some architecture state to measure the delays introduced by cache 

misses and pipe-line stalls, although the pipe-line is not really simulated. 

 Related work 

There has been much work done around Instruction-Set Simulation to reach high 

simulation speed. Two popular instruments to describe higher abstraction level 

of hardware models are SystemC [4] and Transaction Level Modeling [5, 6], 

widely used in industry and academia and many efforts have been done to 

improve Instruction-Set-Simulator (ISS) speed. Whereas the early ISS’s used 

interpretive simulation [7], most recent ISS’s have used some kind of dynamic 

binary (cached) translation to accelerate simulation [8, 9, 10, 11]. Regarding 

performance estimate, given the slowness of CA simulation, attention has turned 

towards sampling. With sampling, only a few chunks of code sequences are 

selected and analyzed. Then statistical methods are used to generate performance 

estimates. Popular representatives of sampling methods are Simpoint [12], 

SMARTS [13] and EXPERT [14]. Sampling techniques can provide fairly 

accurate performance prediction with a high probability but may also generate 

very large data files. Another approach consists in statistical workload generation 

and simulation after collecting data from one complete simulation [15, 16]. 

Because cache misses are the major performance bottlenecks, specific attention 

has been devoted to cache performance and cache behavior prediction. For 

example, statistical methods have been successfully used for cache analysis in 

[17]. Yet another approach consists in doing compile time static analysis of the 

code for predicting cache behavior [18] based on cache miss equations. This 

method is very fast, but limited in the scope of programs that can be analyzed, 

and of course requires access to the source program. 

More recently, the approach of code annotation has been used, with several 

variants and our method is affiliated to it as well. The idea consists in annotating 

the basic blocks of the code back with additional performance or power 

consumption data that is later used to compute non-functional properties. Such 

static data is obtained from a model of the target platform in some way. It can be 

obtained from intermediate compiler representation, or from the real target code 



of the application [19, 20, 21]. The application code can then be either host 

compiled [22] using an abstract RTOS [23], together with the back annotation, or 

run into a virtual prototype, possibly combining both [24]. Purely static data 

cannot encompass dynamic behaviour of the hardware, such as cache and branch 

prediction. Our method consists in annotating the target code with information 

statically obtained from the binary target application code, based upon an 

abstract processor architectural model, and then execute that target code with an 

ISS to obtain the dynamic information. Moreover, we consider an approximation 

of that dynamic information in order to speed up simulation by introducing usage 

of hot paths and by constructing tables of bounded size (linear with code size) to 

store dynamically obtained information that will not need to be recomputed each 

time. When the table has reached its maximum size, its contents are used 

statically and are not recomputed. 

 Approximately timed simulation 

Our method is using full system simulation of the target program, with an ISS. 

During the simulation, cache misses and hits are accurately detected and the 

control flow graph (CFG) in basic blocks of the program is constructed. A static 

analysis of the basic blocks is achieved for predicting their performance only 

once. After that, the simulator collects the performance of the individual basic 

block. Our work has started from the open source SimSoC Simulator [25] that 

includes SystemC using the TLM standard for communications among 

simulation models. SimSoC uses a dynamic translation schema whereby the code 

to be executed is analyzed and the Control Flow Graph of the simulated program 

is dynamically constructed. After some simulation time, a large part, if not all, of 

the application basic blocks are stored into the cache. The SimSoC simulator as 

released in open source is Loosely Timed, using a naïve approach: after 

executing N instructions, the clock is increased by the time of executing these 

instructions based on static configuration parameters. Our work has focused on 

creating an Approximately Timed version of the Power architecture ISS, 

leveraging off from the existing basic block structure. 

Modern processors have complex architectures and can execute a certain 

number of instructions per clock cycle. There are however several cases where 

the instructions flow is disrupted, introducing delays in the computation. The 

major causes of delays are because (i) there are cache misses (data or 

instruction), or (ii) the pipe-line is stalled or (iii) there are wait states because of 

communication with peripherals. The latter delays can be captured by TLM 

transactions. In order to make an AT simulator, our idea is to simulate enough of 

the processes causing the processor delays, yet we are not simulating the exact 

hardware. We use instead a model with which the delays can be computed with 

good approximation while maintaining fast simulation. Our method consists in 

evaluating these delays with the following approach.  

First, we approximate the delays created by the instruction cache misses. We 

have implemented a cache simulator that does not simulate the specific hardware 

cache in detail, but reproduces enough of the cache behavior to tell whether there 



is a cache hit or miss. The instruction buffer is also simulated so that we can 

compute whether or not the pipe line is fed with instructions. Second, we have 

built a model of the architecture that makes it possible to evaluate delays without 

reproducing in detail the hardware. Third, we evaluate with a high precision only 

the most frequently executed code (the hot blocks), and use a lower precision for 

the code that is rarely used (the cold blocks), and finally we rely on TLM 

interface to obtain I/O delays. We perform a static analysis of basic blocks only 

once to construct the annotations to the code, assuming that future execution of 

these blocks will take the same number of cycles regarding the pipe line status. 

Only the data cache hit/misses need to be analyzed dynamically. On average, a 

program spends a lot of time to execute a small portion of its code, the hot paths. 

Since accurate performance estimate is costly, an idea to speed up AT simulation 

is to measure the time spent in infrequently used code (the cold blocks) with a 

low precision, but fast to obtain, and conversely measure with a high precision 

the hot blocks. The LT method is used for a block until it exceeds some 

threshold, then performance estimation switches to the accurate method. This 

introduces an additional error margin but accelerates simulation and the higher 

error margin introduced on cold blocks is acceptable. As the threshold is a 

configurable parameter, the developers can always obtain more accurate 

simulation by setting the threshold to 1. 

The main SimSoC simulator structure is maintained in the AT version. The 

ISS still executes instructions on the basis of basic blocks and all of the 

instructions of a block are executed in one step, but at the same time an 

annotation is constructed. The instructions can be categorized into three 

categories (a) those that may not stall the pipeline, or those that may, either 

because they (b) have a dependency on missing data, or (c) influence the branch 

prediction, which can  only be the last instruction of the basic blocks. Therefore 

we can perform a static analysis of a block to know where the pipe line would 

stall and compute the delays, to annotate the block with this information. For 

example, if the pipe-line has K-issues specialized for some instructions, it is 

necessary to watch for the execution of the basic block once to see which 

instructions will be parallelized and which instructions will inevitably stall. This 

simulation does not need to reflect the full pipe line architecture, it is sufficient 

to understand the dispatching of instructions into the pipe line issues and the 

stalling factors. After one execution of a basic block, the timing is known and an 

annotation is constructed. 

Given the instruction cache size and cache line size of the target architecture, 

one can to know whether there is a pre-fetch miss in a block. The simulator 

checks at the entrance of each basic block whether or not there will be a fetch 

miss inside that block. As many blocks are small compared to the (instruction) 

cache line, there may be none. If there is a fetch miss, it is still necessary to 

simulate the Instruction Buffer process as it has the effect to reduce cache miss 

delays. Only if the instruction buffer becomes empty while the cache is refilled, 

then it results into a delay, but in many cases, the instruction buffer process is 

compensating for the cache miss. This is architecture dependent, as the 

instruction buffer may be filled at different rates but this can be configured with 



parameters. Simulating the interconnect behaviour to compute the fetch miss 

would slow down simulation. However, one can approximate that a delay is 

constant for all occurrences of a cache miss at a particular position in the basic 

block. Hence, in long loops over a series of basic blocks, it is not necessary to re-

compute the delay each time. One can maintain for a basic block a table of fetch 

miss delays that gets computed during the first occurrences of the loop, and later 

re-used as constants. This table has a maximum size of the size of the basic 

block... Note also that when a new cache line of N instructions is entered, then it 

is not necessary to check for a fetch miss for the following N-1 instructions as it 

is known to execute sequential instructions that already are in the cache.  

A question is the state of the instruction buffer at the entrance of a basic block. 

There are several possibilities, depending upon the branch prediction algorithm. 

At the end of the previous basic block, a branch was taken or not. If the branch 

prediction was wrong, the instruction buffer has been flushed. If the branch 

prediction was correct, some architecture would have filled correctly the 

instruction buffer, some others would flush anyway. In this work, we have not 

considered modelling entirely the branch target prediction and we make the 

pessimistic assumption that the instruction buffer is empty at the entrance of the 

basic block. Our performance estimate in this case is worse than reality, which is 

useful for worse case analysis. In practice, it does not add a considerable error 

margin as this error only occurs when the branch prediction for not taken was 

correct and there is a cache miss at the beginning of the block. 

Many modern processors, including our case study processor, have a branch 

prediction unit. These units serve two purposes, to calculate the effective address 

of the branch in advance, and to fill the cache ahead of time with the appropriate 

instructions. During simulation, the address of next instruction after the block is 

known. Thus, one can check, using a model of the processor branch target 

prediction, whether the predicted target is correct or not, and then possibly 

compute how many cycles the branch instruction will take. 

Regarding the data cache, it must remain fully dynamic as the cache behavior 

is dynamic, and the application itself may dynamically reset cache options. The 

SimSoC ISS knows from the target address map whether the address is a real 

memory access or a mapped I/O. When it is real memory, it uses the Direct 

Memory Interface (DMI) of the TLM standard to accelerate memory access. We 

have added a cache algorithm that does not perform actual data caching, but 

emulates enough of the cache behavior to compute whether there is a cache hit or 

miss, in cache levels 1 or 2. Again, a pessimistic constant time delay is used for a 

cache hit or miss at each level, so that the ISS does not need to issue memory 

transactions and can keep using the DMI interface. 

 Validation and performance measurements 

For this experiment we have considered an embedded processor, namely a Power 

Architecture EZ model. This processor has a pre-fetch instruction cache, a two 

issues pipe line, a branch prediction unit, but the pipe line has a small number of 

stages. The simulation is driven by the SimSoC framework. We have not been 



able to run the SPEC benchmark programs used by other performance prediction 

reports because these benchmarks need OS support to construct reporting files 

not supported by SimSoC Embedded Linux simulator. We can however run open 

source benchmarks like the libcrypto cryptographic library and various sorting 

algorithms. Also we have constructed specific small tests to test special cases, 

that our partner ST Microelectronics could run on their cycle accurate simulator 

or real hardware, to help us validate our model. As a result, our current system 

generates in general accurate performance estimation within the error that we 

had set as our own goal. We have one error due to the fact that, in the current 

implementation as of this writing, we have not modelled yet the store buffer and 

this error shows up clearly in the specific benchmarks for store instructions. The 

impact of running the performance models in addition to the full system 

simulation has degraded performance, which was expected, but the performance 

loss is an average of about 33%.  

 Conclusion 

We have presented here a Fast Approximately Timed method of embedded 

systems simulation. We have added to an existing ISS an abstract model of a 

processor so that it annotates each basic block with the number of cycles it will 

take to execute it. This model includes a model of the pre-fetch system, a model 

of the pipe line and a model of branch prediction. To construct the annotation; it 

executes the block semantics in one short step, and simultaneously evaluates the 

time to execute that block. On purpose, for the sake of simulation speed, our 

model is not totally accurate. It purportedly makes approximations by using 

constant values instead of issuing transactions to obtain a realistic and it does not 

maintain micro architecture state across basic blocks. In addition, we have two 

models, a simplified model and an approximate model. The simplified model is 

used for cold paths in the code and the more complex, slower, approximate 

model is used only for hot paths. We obtain an accurate timing only for the most 

frequently executed code, but this code accounts for a large part of the 

application timing. Because it uses static analysis of basic blocks to construct the 

annotation, which is done a limited number of times, it results in reasonably fast 

simulation, usable by software developers. We have measured our method to be 

effective to simulate a Power EZ model. Resulting performance estimates are 

within expectation. This method has the advantage of simplicity; no other 

external tool is required. The performance estimation is delivered at the end of 

the simulation session. The same tool can be used by software developers to 

validate the functionality of application code within the full system simulation of 

SimSoC framework and obtain performance estimates.  
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