
HAL Id: hal-01081104
https://hal.science/hal-01081104

Submitted on 7 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast approximately timed simulation
Vania Joloboff, Shenpeng Wang, Yangdong Deng

To cite this version:
Vania Joloboff, Shenpeng Wang, Yangdong Deng. Fast approximately timed simulation. WIT Trans-
actions on Information and Communication Technologies, 2015, WIT Transactions on Information
and Communication Technologies, 978-1-78466-054-3 (68), pp.756. �hal-01081104�

https://hal.science/hal-01081104
https://hal.archives-ouvertes.fr

Fast approximately timed simulation

V. Joloboff
1
, S.P. Wang

2
, Y.D. Deng

2

1
INRIA, East China Normal University, China and INRIA, France

2
Tsinghua University, Beijing, China

Abstract

In this paper we present a technique for fast approximately timed simulation of

software within a virtual prototyping framework. Our method performs a static

analysis of the program control flow graph to construct annotations of the

simulated program, combined with dynamic performance information. The static

analysis estimates execution time based on a target architecture model. The

delays introduced by instruction fetch and data cache misses are evaluated

dynamically. At the end of each block, static and dynamic information are

combined with branch target prediction to compute the total execution time of

the blocks. As a result, we can provide approximate performance estimates with

a high simulation speed that is still usable for software developers.

Keywords: virtual prototyping, virtual platform, performance estimation, cycle-

accurate simulation, approximately timed simulation, Instruction Set Simulation,

ISS, dynamic binary translation, hot path, computer architecture, processor

model, System-on-chi, pipelines, software.

 Introduction

Performance of embedded software is important and must meet the requirements.

Many embedded application developers use virtual prototyping framework

including a hardware simulator to run the application software over a virtual

platform. The simulation community has forged the terms Timeless, Loosely

Timed (LT), Approximately Timed (AT) and Cycle Accurate (CA) to

characterized simulators, although there is no formal definition of each category.

Timeless simulators are purely functional and do not provide any notion of

clock, LT simulators provide a notion of time, but the timing provided may be

fairly inaccurate, AT simulators are supposed to provide performance estimates

within a reasonable error margin and CA simulators (e.g. RTL level) are used to

simulate exactly digital circuits. There exists very fast Timeless or LT simulators

such as BOCHS[1], or QEMU[2] or SimSoC[3] that can run the application

software to validate its functionality and possibly test real time software using

timers. But such simulators do not provide good enough timings to evaluate the

software performance. On the other hand CA simulators are too slow to be used

by application software developers. The idea of Approximately Timed simulation

is to provide estimates that are as close as possible to the hardware performance,

but at a simulation speed that is still an order of magnitude faster. An Instruction-

Set Simulators (ISS) is typically used to emulate the behavior of the target on a

host machine to execute embedded running on the target processor. In this paper

we investigate an approach to provide a fast Approximately Timed ISS that

provides good precision estimates. It consists in developing a higher abstraction

model of the processor that still execute ISS instructions, but in parallel

maintains some architecture state to measure the delays introduced by cache

misses and pipe-line stalls, although the pipe-line is not really simulated.

 Related work

There has been much work done around Instruction-Set Simulation to reach high

simulation speed. Two popular instruments to describe higher abstraction level

of hardware models are SystemC [4] and Transaction Level Modeling [5, 6],

widely used in industry and academia and many efforts have been done to

improve Instruction-Set-Simulator (ISS) speed. Whereas the early ISS’s used

interpretive simulation [7], most recent ISS’s have used some kind of dynamic

binary (cached) translation to accelerate simulation [8, 9, 10, 11]. Regarding

performance estimate, given the slowness of CA simulation, attention has turned

towards sampling. With sampling, only a few chunks of code sequences are

selected and analyzed. Then statistical methods are used to generate performance

estimates. Popular representatives of sampling methods are Simpoint [12],

SMARTS [13] and EXPERT [14]. Sampling techniques can provide fairly

accurate performance prediction with a high probability but may also generate

very large data files. Another approach consists in statistical workload generation

and simulation after collecting data from one complete simulation [15, 16].

Because cache misses are the major performance bottlenecks, specific attention

has been devoted to cache performance and cache behavior prediction. For

example, statistical methods have been successfully used for cache analysis in

[17]. Yet another approach consists in doing compile time static analysis of the

code for predicting cache behavior [18] based on cache miss equations. This

method is very fast, but limited in the scope of programs that can be analyzed,

and of course requires access to the source program.

More recently, the approach of code annotation has been used, with several

variants and our method is affiliated to it as well. The idea consists in annotating

the basic blocks of the code back with additional performance or power

consumption data that is later used to compute non-functional properties. Such

static data is obtained from a model of the target platform in some way. It can be

obtained from intermediate compiler representation, or from the real target code

of the application [19, 20, 21]. The application code can then be either host

compiled [22] using an abstract RTOS [23], together with the back annotation, or

run into a virtual prototype, possibly combining both [24]. Purely static data

cannot encompass dynamic behaviour of the hardware, such as cache and branch

prediction. Our method consists in annotating the target code with information

statically obtained from the binary target application code, based upon an

abstract processor architectural model, and then execute that target code with an

ISS to obtain the dynamic information. Moreover, we consider an approximation

of that dynamic information in order to speed up simulation by introducing usage

of hot paths and by constructing tables of bounded size (linear with code size) to

store dynamically obtained information that will not need to be recomputed each

time. When the table has reached its maximum size, its contents are used

statically and are not recomputed.

 Approximately timed simulation

Our method is using full system simulation of the target program, with an ISS.

During the simulation, cache misses and hits are accurately detected and the

control flow graph (CFG) in basic blocks of the program is constructed. A static

analysis of the basic blocks is achieved for predicting their performance only

once. After that, the simulator collects the performance of the individual basic

block. Our work has started from the open source SimSoC Simulator [25] that

includes SystemC using the TLM standard for communications among

simulation models. SimSoC uses a dynamic translation schema whereby the code

to be executed is analyzed and the Control Flow Graph of the simulated program

is dynamically constructed. After some simulation time, a large part, if not all, of

the application basic blocks are stored into the cache. The SimSoC simulator as

released in open source is Loosely Timed, using a naïve approach: after

executing N instructions, the clock is increased by the time of executing these

instructions based on static configuration parameters. Our work has focused on

creating an Approximately Timed version of the Power architecture ISS,

leveraging off from the existing basic block structure.

Modern processors have complex architectures and can execute a certain

number of instructions per clock cycle. There are however several cases where

the instructions flow is disrupted, introducing delays in the computation. The

major causes of delays are because (i) there are cache misses (data or

instruction), or (ii) the pipe-line is stalled or (iii) there are wait states because of

communication with peripherals. The latter delays can be captured by TLM

transactions. In order to make an AT simulator, our idea is to simulate enough of

the processes causing the processor delays, yet we are not simulating the exact

hardware. We use instead a model with which the delays can be computed with

good approximation while maintaining fast simulation. Our method consists in

evaluating these delays with the following approach.

First, we approximate the delays created by the instruction cache misses. We

have implemented a cache simulator that does not simulate the specific hardware

cache in detail, but reproduces enough of the cache behavior to tell whether there

is a cache hit or miss. The instruction buffer is also simulated so that we can

compute whether or not the pipe line is fed with instructions. Second, we have

built a model of the architecture that makes it possible to evaluate delays without

reproducing in detail the hardware. Third, we evaluate with a high precision only

the most frequently executed code (the hot blocks), and use a lower precision for

the code that is rarely used (the cold blocks), and finally we rely on TLM

interface to obtain I/O delays. We perform a static analysis of basic blocks only

once to construct the annotations to the code, assuming that future execution of

these blocks will take the same number of cycles regarding the pipe line status.

Only the data cache hit/misses need to be analyzed dynamically. On average, a

program spends a lot of time to execute a small portion of its code, the hot paths.

Since accurate performance estimate is costly, an idea to speed up AT simulation

is to measure the time spent in infrequently used code (the cold blocks) with a

low precision, but fast to obtain, and conversely measure with a high precision

the hot blocks. The LT method is used for a block until it exceeds some

threshold, then performance estimation switches to the accurate method. This

introduces an additional error margin but accelerates simulation and the higher

error margin introduced on cold blocks is acceptable. As the threshold is a

configurable parameter, the developers can always obtain more accurate

simulation by setting the threshold to 1.

The main SimSoC simulator structure is maintained in the AT version. The

ISS still executes instructions on the basis of basic blocks and all of the

instructions of a block are executed in one step, but at the same time an

annotation is constructed. The instructions can be categorized into three

categories (a) those that may not stall the pipeline, or those that may, either

because they (b) have a dependency on missing data, or (c) influence the branch

prediction, which can only be the last instruction of the basic blocks. Therefore

we can perform a static analysis of a block to know where the pipe line would

stall and compute the delays, to annotate the block with this information. For

example, if the pipe-line has K-issues specialized for some instructions, it is

necessary to watch for the execution of the basic block once to see which

instructions will be parallelized and which instructions will inevitably stall. This

simulation does not need to reflect the full pipe line architecture, it is sufficient

to understand the dispatching of instructions into the pipe line issues and the

stalling factors. After one execution of a basic block, the timing is known and an

annotation is constructed.

Given the instruction cache size and cache line size of the target architecture,

one can to know whether there is a pre-fetch miss in a block. The simulator

checks at the entrance of each basic block whether or not there will be a fetch

miss inside that block. As many blocks are small compared to the (instruction)

cache line, there may be none. If there is a fetch miss, it is still necessary to

simulate the Instruction Buffer process as it has the effect to reduce cache miss

delays. Only if the instruction buffer becomes empty while the cache is refilled,

then it results into a delay, but in many cases, the instruction buffer process is

compensating for the cache miss. This is architecture dependent, as the

instruction buffer may be filled at different rates but this can be configured with

parameters. Simulating the interconnect behaviour to compute the fetch miss

would slow down simulation. However, one can approximate that a delay is

constant for all occurrences of a cache miss at a particular position in the basic

block. Hence, in long loops over a series of basic blocks, it is not necessary to re-

compute the delay each time. One can maintain for a basic block a table of fetch

miss delays that gets computed during the first occurrences of the loop, and later

re-used as constants. This table has a maximum size of the size of the basic

block... Note also that when a new cache line of N instructions is entered, then it

is not necessary to check for a fetch miss for the following N-1 instructions as it

is known to execute sequential instructions that already are in the cache.

A question is the state of the instruction buffer at the entrance of a basic block.

There are several possibilities, depending upon the branch prediction algorithm.

At the end of the previous basic block, a branch was taken or not. If the branch

prediction was wrong, the instruction buffer has been flushed. If the branch

prediction was correct, some architecture would have filled correctly the

instruction buffer, some others would flush anyway. In this work, we have not

considered modelling entirely the branch target prediction and we make the

pessimistic assumption that the instruction buffer is empty at the entrance of the

basic block. Our performance estimate in this case is worse than reality, which is

useful for worse case analysis. In practice, it does not add a considerable error

margin as this error only occurs when the branch prediction for not taken was

correct and there is a cache miss at the beginning of the block.

Many modern processors, including our case study processor, have a branch

prediction unit. These units serve two purposes, to calculate the effective address

of the branch in advance, and to fill the cache ahead of time with the appropriate

instructions. During simulation, the address of next instruction after the block is

known. Thus, one can check, using a model of the processor branch target

prediction, whether the predicted target is correct or not, and then possibly

compute how many cycles the branch instruction will take.

Regarding the data cache, it must remain fully dynamic as the cache behavior

is dynamic, and the application itself may dynamically reset cache options. The

SimSoC ISS knows from the target address map whether the address is a real

memory access or a mapped I/O. When it is real memory, it uses the Direct

Memory Interface (DMI) of the TLM standard to accelerate memory access. We

have added a cache algorithm that does not perform actual data caching, but

emulates enough of the cache behavior to compute whether there is a cache hit or

miss, in cache levels 1 or 2. Again, a pessimistic constant time delay is used for a

cache hit or miss at each level, so that the ISS does not need to issue memory

transactions and can keep using the DMI interface.

 Validation and performance measurements

For this experiment we have considered an embedded processor, namely a Power

Architecture EZ model. This processor has a pre-fetch instruction cache, a two

issues pipe line, a branch prediction unit, but the pipe line has a small number of

stages. The simulation is driven by the SimSoC framework. We have not been

able to run the SPEC benchmark programs used by other performance prediction

reports because these benchmarks need OS support to construct reporting files

not supported by SimSoC Embedded Linux simulator. We can however run open

source benchmarks like the libcrypto cryptographic library and various sorting

algorithms. Also we have constructed specific small tests to test special cases,

that our partner ST Microelectronics could run on their cycle accurate simulator

or real hardware, to help us validate our model. As a result, our current system

generates in general accurate performance estimation within the error that we

had set as our own goal. We have one error due to the fact that, in the current

implementation as of this writing, we have not modelled yet the store buffer and

this error shows up clearly in the specific benchmarks for store instructions. The

impact of running the performance models in addition to the full system

simulation has degraded performance, which was expected, but the performance

loss is an average of about 33%.

 Conclusion

We have presented here a Fast Approximately Timed method of embedded

systems simulation. We have added to an existing ISS an abstract model of a

processor so that it annotates each basic block with the number of cycles it will

take to execute it. This model includes a model of the pre-fetch system, a model

of the pipe line and a model of branch prediction. To construct the annotation; it

executes the block semantics in one short step, and simultaneously evaluates the

time to execute that block. On purpose, for the sake of simulation speed, our

model is not totally accurate. It purportedly makes approximations by using

constant values instead of issuing transactions to obtain a realistic and it does not

maintain micro architecture state across basic blocks. In addition, we have two

models, a simplified model and an approximate model. The simplified model is

used for cold paths in the code and the more complex, slower, approximate

model is used only for hot paths. We obtain an accurate timing only for the most

frequently executed code, but this code accounts for a large part of the

application timing. Because it uses static analysis of basic blocks to construct the

annotation, which is done a limited number of times, it results in reasonably fast

simulation, usable by software developers. We have measured our method to be

effective to simulate a Power EZ model. Resulting performance estimates are

within expectation. This method has the advantage of simplicity; no other

external tool is required. The performance estimation is delivered at the end of

the simulation session. The same tool can be used by software developers to

validate the functionality of application code within the full system simulation of

SimSoC framework and obtain performance estimates.

 Acknowledgements

We thank ST Microelectronics for their support in this project for comparing

simulation results with cycle accurate platforms.

 References

[1] Lawton K.P., “Bochs: A Portable PC Emulator for Unix/X”, in Linux

Journal, Volume 1996, Issue 29es, Article No. 7, 1996

[2] Bellard F., “QEMU, a Fast and Portable Dynamic Translator”, in the

USENIX Annual Technical Conference, Anaheim, CA, USA, p. 41-46,

2005.

[3] Helmstetter C., Joloboff V., "SimSoC: A SystemC/TLM integrated ISS for

full system simulation," in IEEE Asia Pacific Conference on Circuits and

Systems, APCCAS 2008, Macau, China, 2008.

[4] SystemC Language Reference Manual (IEEE Std 1666-2005), Open

SystemC Initiative,http://www.systemc.org/, 2005.

[5] Cai L., Gajski D., “Transaction level modeling: an overview,” in the 1st

IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis. CODES+ISSS ’03. New York, NY, USA: ACM, 2003.

[6] Donlin A., “Transaction level modeling: flows and use models,” in the 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis. CODES+ISSS ’04 New York, NY, 2004.

[7] Sutarwala S., Paulin P.G., Kumar .Y, “Insulin: An instruction set simulation

environment,” in CHDL ’93: 11th IFIP WG10.2 International Conference.

Amsterdam, North-Holland Publishing Co., pp. 369–376, 1993

[8] Reshadi M. , Mishra P. , and Dutt N. “Instruction set compiled simulation: a

technique for fast and flexible instruction set simulation,” in Design

Automation Conference, DAC'03, pp. 758–763, 2003.

[9] Nohl A., Braun G., Schliebusch O., Leupers R., Meyr H. and Hoffmann A.,

“A universal technique for fast and flexible instruction-set architecture

simulation,” in the 39th conference on Design automation, DAC’02. New

York, USA, pp. 22–27, 2002.

[10] Scott K., Kumar N., Velusamy S., Childers B., Davidson J.W. and Soffa

M.L., “Retargetable and reconfigurable software dynamic translation,” in

International Symposium on Code Generation and Optimization,

CGOAZ´03, 2003.

[11] Shi H., Wang Y., Guan H., and Liang A., “An intermediate language level

optimization framework for dynamic binary translation,” SIGPLAN Notices,

vol. 42, no. 5, pp. 3–9, 2007.

[12] Hamerly G., Perelman E., and Calder B.,“How to use simpoint to pick

simulation points,” SIGMETRICS Perf.. Eval. Rev., vol. 31, no. 4, pp. 25–30,

2004.

[13] Wunderlich R., Wenisch T., Falsafi B., and Hoe J., “Smarts: accelerating

microarchitecture simulation via rigorous statistical sampling” in

proceedings 30th Annual International Symposium on Computer

Architecture, ISCA'03, 2003.

[14] W. Liu and M. C. Huang, “Expert: expedited simulation exploiting program

 behavior repetition,” in the 18th annual international conference on

Supercomputing, ICS ’04. New York, USA., 2004.

http://www.systemc.org/

[15] Nussbaum S. and Smith J. E., “Modeling superscalar processors via

statistical simulation,” in International Conference on Parallel Architectures

and Compilation Techniques, pp. 15–24, 2001.

[16] Rao R., Oskin M. and Chong F., “Hlspower: Hybrid statistical modelling of

the superscalar power-performance design space,” in Procs. Of High

Performance Computing, HiPC 2002, LNCS, Springer, vol. 2552, pp. 620–

629, 2002.

[17] Berg E., Zeffer H., and Hagersten E., “A statistical multiprocessor cache

model,” in International Symposium on Performance Analysis of Systems

and Software, pp. 89–99, 2006.

[18] Vera X. and Xue J., “Let’s study whole-program cache behaviour

analytically,” in Proceedings of the 8th International Symposium on High-

Performance Computer Architecture, HPCA’02, Wash. DC, USA, 2002.

[19] Hwang Y., Abdi S., and Gajski D., “Cycle-approximate retargetable

performance estimation at the transaction level,” in the Conference on

Design, Automation and Test in Europe, DATE’08. NY, USA, pp. 3–8,

2008.

[20] Bouchhima A., Gerin P., and Petrot F., “Automatic instrumentation of

embedded software for high level hardware/software co-simulation,” in Asia

and South Pacific Design Automation Conference, pp. 546–551, 2009.

[21] Stattelmann S., Bringmann O., and Rosenstiel W., “Fast and accurate

source-level simulation of software timing considering complex code

optimizations,” in Proc. of the 48th Design Automation Conference, DAC

’11. New York, NY, USA, ACM,, pp. 486–491, 2011.

[22] Gerstlauer A., Chakravarty S., Kathuria M., and Razaghi P., “Abstract

system-level models for early performance and power exploration,” in Asia

and South Pacific Design Automation Conference, pp. 213–218, 2012.

[23] Krause M., Englert D., Bringmann O., and Rosenstiel W., “Combination of

instruction set simulation and abstract RTOS model execution for fast and

accurate target software evaluation,” in the 6
th

 IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS ’08, NY, USA, pp. 143–148, 2008.

[24] Gao L.,Karuri K., Kraemer S., Leupers R., Ascheid G., and Meyr H.,

“Multiprocessor performance estimation using hybrid simulation,” in Design

Automation Conference, DAC 2008, 2008.

[25] INRIA Gforge, “Simsoc open source software.” Available:

http://gforge.inria.fr/projects/simsoc.

