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ON FARRELL-TATE COHOMOLOGY OF SL2 OVER S-INTEGERS

ALEXANDER D. RAHM AND MATTHIAS WENDT

Abstract. In this paper, we provide number-theoretic formulas for Farrell-
Tate cohomology for SL2 over rings of S-integers in number fields. These
formulas describe group cohomology above the virtual cohomological dimen-
sion, and can be used to study some questions in homology of linear groups.

We expose three applications, to (I) detection questions, (II) the existence
of transfers, (III) cohomology of SL2 over number fields.

1. Introduction

The cohomology of arithmetic groups like SL2(OK,S) for OK,S a ring of S-
integers in a number field K has been long and intensively studied. In principle,
the cohomology groups can be computed from the action of SL2 on its associated
symmetric space, but actually carrying out this program involves a lot of questions
and difficulties from algebraic number theory.

In the case of a group Γ of finite virtual cohomological dimension (vcd), Farrell-
Tate cohomology provides a modification of group cohomology, which in a sense
describes the obstruction for Γ to be a Poincaré-duality group. The Farrell-Tate
cohomology of Γ can be described in terms of finite subgroups of Γ and their
normalizers, and hence is rather amenable to computation.

The goal of the present paper is to provide explicit formulas for the Farrell-Tate
cohomology of SL2 over rings of S-integers in number fields, with coefficients in
Fℓ, ℓ odd. In the case SL2(OK,S), the conjugacy classification of finite subgroups
is directly related to number-theoretic questions about (relative) class groups and
unit groups of S-integers in K and some of its cyclotomic extensions. In the special
cases of SL2 of imaginary quadratic number rings, such formulas have previously
been obtained by Rahm, building on work of Krämer, cf. [Rah13,Rah14], [Krä80].
Our general formulas still have the same structure as those in [Rah13] - the Farrell-
Tate cohomology decomposes as a direct sum over conjugacy classes of subgroups,
but the formulas for the direct summands are more complicated due to the fact that
the torsion subcomplexes can have arbitrarily large dimension. The main result is
the following, cf. Section 6. Let ζℓ be some primitive ℓ-th root of unity.

Theorem 1. Let K be a global field, let S be a non-empty finite set of places of K
containing the infinite places, and denote by OK,S the ring of S-integers in K. Let

ℓ be an odd prime different from the characteristic of K and assume ζℓ + ζ−1
ℓ ∈ K.

We denote by Ψℓ(T ) = T 2 − (ζℓ + ζ−1
ℓ )T + 1 the relevant quadratic factor of the

cyclotomic polynomial Φℓ(T ), K(Ψℓ) = K[T ]/Ψℓ(T ) the corresponding K-algebra,
by RK,S,ℓ = OK,S [T ]/(Ψℓ(T )) the corresponding order in K(Ψℓ), and by

Nm1 : R×
K,S,ℓ → O×

K,S and Nm0 : K̃0(RK,S,ℓ) → K̃0(OK,S).

the norm maps on class groups and unit groups for the finite extension RK,S,ℓ/OK,S.
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(1) Ĥ
•
(SL2(OK,S),Fℓ) 6= 0 if and only if ζℓ + ζ−1

ℓ ∈ K and the Steinitz class
detOK,S

(RK,S,ℓ) is contained in the image of the norm map Nm0.
(2) Assume the condition in (1) is satisfied. The set Cℓ of conjugacy classes of

order ℓ elements in SL2(OK,S) sits in an extension

1 → cokerNm1 → Cℓ → kerNm0 → 0.

The set Kℓ of conjugacy classes of order ℓ subgroups of SL2(OK,S) can be
identified with the quotient Kℓ = Cℓ/Gal(K(Ψℓ)/K). There is a direct sum
decomposition

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈Kℓ

Ĥ
•
(NSL2(OK,S)(Γ),Fℓ).

(3) If the class of Γ is not Gal(K(Ψℓ)/K)-invariant, then

NSL2(OK,S)(Γ)
∼= kerNm1 .

(4) If the class of Γ is Gal(K(Ψℓ)/K)-invariant, then there is an extension

0 → kerNm1 → NSL2(OK,S)(Γ) → Z/2Z → 1.

We recover as special cases the earlier results of Busch [Bus06]. For function fields
of curves over algebraically closed fields, there are similar formulas, cf. [Wen14a].

The restriction to odd torsion coefficients is necessary. Only under this assump-
tion, the formula has such a simple structure; for 2-torsion one has to take care
of the possible subgroups A4, S4 and A5 in PSL2. Moreover, for F2-coefficients,
there is a huge difference between the cohomology of SL2 and PSL2 - only the
cohomology of PSL2 has an easy description and the computation of cohomology
of SL2 depends on a lot more than just the finite subgroups. Some results can be
achieved, but the additional complications would only obscure the presentation of
the results.

The result is proved by following the obvious strategy: we let SL2(OK,S) act on
the associated symmetric space XK,S and determine the subspace of the quotient
SL2 \XK,S consisting of the points having a non-trivial ℓ-torsion stabilizer. Using
a little representation theory and a little number theory, this subcomplex can be
very explicitly described. The resulting information is precise enough to work out
the resulting isotropy spectral sequence.

The explicit formulas obtained allow to discuss a couple of questions concerning
cohomology of linear groups. For instance, the above result provides a computation
of group cohomology of SL2(OK,S) above the virtual cohomological dimension.

As a first application, we get explicit formulas for the ring structure on group
cohomology above the virtual cohomological dimension. This allows to discuss a
conjecture of Quillen, cf. [Qui71], recalled as Conjecture 6 in Section 7 below. The
following two results are proved in Sections 6 and 7, a further discussion of the
consequences for Quillen’s conjecture can be found in [RW14].

Theorem 2. Let K be a global field, let S be a non-empty finite set of places
of K containing the infinite places, and let ℓ be an odd prime different from the
characteristic of K. With the notation of Theorem 1, we have the following:

(1) The decomposition

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈K
Ĥ

•
(NSL2(OK,S)(Γ),Fℓ)

is compatible with the ring structure, i.e., the Farrell-Tate cohomology ring
of SL2(OK,S) is a restricted sum of the sub-rings for the normalizer sub-
groups NSL2(OK,S)(Γ).
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(2) If the class of Γ is not Gal(K(Ψℓ)/K)-invariant, there is an isomorphism
of graded rings

Ĥ
•
(NSL2(OK,S)(Γ),Z)(ℓ) ∼= Fℓ[a2, a

−1
2 ]⊗Fℓ

∧
(kerNm1) .

In particular, this is a free module over the subring Fℓ[a
2
2, a

−2
2 ].

(3) If the class of Γ is Gal(K(Ψℓ)/K)-invariant, there is an isomorphism of
graded rings

Ĥ
•
(NSL2(OK,S)(Γ),Z)(ℓ) ∼=

(
Fℓ[a2, a

−1
2 ]⊗Fℓ

∧
(kerNm1)

)Z/2

,

with the Z/2-action given by multiplication with −1 on a2 and kerNm1. In

particular, this is a free module over the subring Fℓ[a
2
2, a

−2
2 ] ∼= Ĥ

•
(D2ℓ,Z)(ℓ).

We elaborate on this in Section 7 by proving the following.

Theorem 3. With the notation of Theorem 3, the restriction map induced from
the inclusion SL2(OK,S) → SL2(C) maps the second Chern class c2 to the sum of
the elements a22 in all the components.

As a consequence, Quillen’s conjecture for SL2(OK,S) is true for Farrell-Tate
cohomology with Fℓ-coefficients for all K and S. This also implies that Quillen’s
conjecture is true for group cohomology with Fℓ-coefficients above the virtual coho-
mological dimension.

However, if the number of conjugacy classes of order ℓ-subgroups is greater than
two, the restriction map

H•(SL2(OK,S),Fℓ) → H•(T2(OK,S),Fℓ)

from SL2(OK,S) to the group T2(OK,S) of diagonal matrices is not injective.

It is also worthwhile pointing out that the failure of detection as in the previous
theorem, i.e., the non-injectivity of the restriction map

H•(SL2(OK,S),Fℓ) → H•(T2(OK,S),Fℓ)

implies the failure of the unstable Quillen-Lichtenbaum conjecture as formulated
in [AR13]. This follows from the work of Dwyer and Friedlander [DF94]. Function
field analogues of these statements will be discussed in [Wen14b].

Our results of Section 8 also allow to find examples for non-existence of transfers:

Theorem 4. Let L/K be a finite separable extension of global fields, let S be a

non-empty finite set of places of K containing the infinite places and let S̃ be a set
of places of L containing those lying over S. Let ℓ be an odd prime different from
the characteristic of K. The restriction map

Ĥ
•
(SL2(OL,S̃),Fℓ) → Ĥ

•
(SL2(OK,S),Fℓ)

induced from the natural ring homomorphism OK,S → OL,S̃ is compatible with the
decomposition of Theorem 1 and is completely described by

(1) the induced map on class groups

K̃0(RK,S,ℓ → K̃0(RL,S̃,ℓ)

(2) the induced map on unit groups R×
K,S,ℓ → R×

L,S̃,ℓ
.

Let K be a number field with ζℓ ∈ K, and assume that the class number of K is
prime to ℓ. Denoting by H the Hilbert class field of K, the restriction map

Ĥ
•
(SL2(OH),Fℓ) → Ĥ

•
(SL2(OK),Fℓ)

is not surjective. Therefore, this is an example of a finite étale morphism for which
it is not possible to define a transfer in the usual K-theoretic sense.
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The question of existence of transfers was raised implicitly in [Knu01, section 5.3];
other sources of obstructions to the existence of transfers can be found in [Wen14b].

Finally, we want to note that the precise description of Farrell-Tate cohomol-
ogy and the relevant restriction maps allows to consider the colimit of the groups

Ĥ
•
(SL2(OK,S),Fℓ), where S runs through the finite sets of places of K. Using

this, we investigate in Section 9 the behaviour of Mislin’s extension of Farrell-Tate
cohomology with respect to directed colimits:

Theorem 5.

(1) There are cases where Mislin’s extension of Farrell-Tate cohomology does
not commute with directed colimits. A simple example is given by the di-
rected system of groups SL2(Z[1/n]) with n ∈ N.

(2) The Friedlander-Milnor conjecture for SL2(Q) is equivalent to the question
if Mislin’s extension of Farrell-Tate cohomology commutes with the directed
colimit of SL2(OK,S), where K runs through all number fields and S runs
through all finite sets of places.

Similar results can be obtained for higher rank groups, although there are more
and more complications coming from the classification of finite subgroups. Away
from the order of the Weyl group, the subgroup classification is easier. A discussion
of the case SL3 will be done in the forthcoming paper [RW15].

Structure of the paper: We first recall group cohomology preliminaries in Sec-
tion 2. Then we discuss the conjugacy classification of finite subgroups as well as
their normalizers in Section 3. Section 4 then discusses the structure of the action
of SL2 on its associated symmetric space. This allows to completely describe the
ℓ-torsion subcomplex in Section 5. All this information is combined into formulas
for Farrell-Tate cohomology in Section 6. Then we discuss three applications of the
results, to (I) non-detection in Section 7, (II) the existence of transfers in Section 8
and (III) cohomology of SL2 over number fields in Section 9.

Acknowledgements: This work was started in August 2012 during a stay of the
second named author at the De Brún Center for Computational Algebra at NUI
Galway. We would like thank Guido Mislin for email correspondence concerning his
version of Tate cohomology, and Joël Belläıche for an enlightening MathOverflow
answer concerning group actions on Bruhat-Tits trees.

2. Preliminaries on group cohomology and Farrell-Tate cohomology

In this section, we recall the necessary definitions of group cohomology and
Farrell-Tate cohomology, introducing notations and results we will need in the se-
quel. One of the basic references is [Bro94].

2.1. Group cohomology. Group cohomology is defined as the right derived func-
tor of invariants Z[G] -mod → Z -mod : M 7→ MG. It can be defined algebraically
by taking a resolution P• → Z of Z by projective Z[G]-modules and setting

H•(G,M) := H•(HomG(P•,M)).

Alternatively, it can be defined topologically as the cohomology of the classifying
space BG with coefficients in the local system associated to M .

2.2. Farrell-Tate cohomology. We shortly recall the definition and basic prop-
erties of Farrell-Tate cohomology, cf. [Bro94, chapter X]. Farrell-Tate cohomology
is a completion of group cohomology defined for groups of finite virtual cohomo-
logical dimension (vcd). Note that for K a number field, the groups SL2(OK,S)
have virtual cohomological dimension 2r1 + 3r2 + #Sf − 1, where r1 and 2r2 are
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the numbers of real and complex embeddings of K, respectively, and #Sf is the
number of finite places in S.

For Γ a group with finite virtual cohomological dimension, a complete resolution
is the datum of

• an acyclic chain complex F• of projective Z[Γ]-modules,
• a projective resolution ǫ : P• → Z of Z over Z[Γ], and
• a chain map τ : F• → P• which is the identity in sufficiently high dimen-
sions.

The starting point of Farrell-Tate cohomology is the fact that groups of finite
virtual cohomological dimensions have complete resolutions.

Definition 2.1. Given a group Γ of finite virtual cohomological dimension, a com-
plete resolution (F•, P•, ǫ) and a Z[Γ]-module M , Farrell-Tate cohomology of Γ with
coefficients in M is defined by

Ĥ
•
(Γ,M) := H•(HomΓ(F•,M)).

The functors Ĥ
•
satisfy all the usual cohomological properties, cf. [Bro94, X.3.2],

and in fact Farrell-Tate cohomology can be seen as projective completion of group
cohomology, cf. [Mis94]. Important for our considerations is the fact [Bro94, X.3.4]
that there is a canonical map

H•(Γ,M) → Ĥ
•
(Γ,M)

which is an isomorphism above the virtual cohomological dimension.

2.3. Equivariant cohomology and the isotropy spectral sequence. We recall
some basic properties of equivariant cohomology and associated spectral sequences,
cf. [Bro94, section VII and X.4].

For a group G and a G-CW-complex X , one can define equivariant cohomology
by setting

H•
G(X,M) := H•(HomG(P•, C

•(X,M))).

where C•(X,M) is the complex of cochains in X with coefficients in M . If X
is contractible, then H•

G(X,M) ∼= H•(G,M). In that case, there is a spectral
sequence, cf. [Bro94, VII.7],

Ep,q
1 =

∏

σ∈Σp

Hq(Gσ,Mσ) ⇒ Hp+q
G (X,M) ∼= Hp+q(G,M),

where Σp denotes a set of representatives for the G-action on Cp(X). The first
differential is induced from the boundary map of the complex X , cf. [Bro94, VII.8]:

d1|Hq(Gσ,Mσ) :
⊕

τ⊆σ

Hq(Gτ ,Mτ ) → Hq(Gσ,Mσ).

If G is a group of finite virtual cohomological dimension and X is a finite-
dimensional G-CW-complex, one can define equivariant Farrell-Tate cohomology
analogously by setting

Ĥ
•
G(X,M) := H•(HomG(F•, C

•(X,M))),

where as above C•(X,M) is the complex of cochains in X with coefficients in
M and F• is a complete resolution of G. If X is contractible and proper, then

Ĥ
•
G(X,M) ∼= Ĥ

•
(G,M) and there is a spectral sequence as above, cf. [Bro94, X.4],

Ep,q
1 =

∏

σ∈Σp

Ĥ
q
(Gσ ,Mσ) ⇒ Ĥ

p+q

G (G,M),
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We will apply these statements in the case where the group G = SL2(OK,S) acts
on its associated symmetric space X = XK,S . In this situation, it is well-known
that X is a finite-dimensional G-CW-complex which is contractible and proper.

Finally, we recall a result that can be used to compute Farrell-Tate cohomology
at the prime ℓ for groups all whose elementary abelian ℓ-subgroups have rank ≤ 1.
Most of our paper is about making this formula more precise in the case of G =
SL2(OK,S), and comparing this formula to the spectral sequence for the G-action
on its associated symmetric space, cf. [Bro94, corollary X.7.4]:

Proposition 2.2. Let G be a group such that every elementary abelian ℓ-subgroup
of G has rank ≤ 1. Then

Ĥ
•
(G,Fℓ) ∼=

∏

E∈E
Ĥ

•
(NG(E),Fℓ),

where E is a set of representatives for conjugacy classs of subgroups of G of order ℓ.

2.4. Farrell-Tate cohomology of finite subgroups of SL2(C). We recall the
well-known formulas for group and Tate cohomology of cyclic and dihedral groups.
We restrict to the cohomology with odd torsion coefficients, as our main results
only use that case. The formulas below as well as corresponding formulas for the
cohomology with F2-coefficients can be found in [AM04]. Here, classes in square
brackets are polynomial generators and classes in parentheses are exterior classes;
the index of a class specifies its degree in the graded Fℓ-algebra.

• The cohomology ring for a cyclic group of order n with ℓ | n and ℓ odd is
given by the formula

H•(Z/nZ,Fℓ) ∼= Fℓ[a2](b1).

The corresponding Tate cohomology ring is Ĥ
•
(Z/nZ,Fℓ) ∼= Fℓ[a2, a

−1
2 ](b1).

Note that cohomology with integral coefficients gets rid of the exterior
algebra contribution which come from the universal coefficient formula.

• The cohomology ring for a dihedral group of order 2n with ℓ | n and ℓ odd
is given by the formula

H•(D2n,Fℓ) ∼= Fℓ[a4](b3).

The corresponding Tate cohomology ring is Ĥ
•
(D2n,Fℓ) ∼= Fℓ[a4, a

−1
4 ](b3).

• The inclusions D6 →֒ A4, D6 →֒ S4 and D6 →֒ A5 induce isomorphisms in
group cohomology with F3-coefficients.

• The inclusion D10 → A5 induces an isomorphism in group cohomology with
F5-coefficients.

3. Cyclic subgroups and their normalizers

In the following section, we recall the conjugacy classification of finite cyclic
subgroups in SL2 over rings of S-integers in global fields, with some necessary
augmentations. For a number field K, the general conjugacy classification of finite
subgroups of SL2(OK) is due to Krämer [Krä80]. Special cases for totally real fields
appeared before in the study of Hilbert modular groups, cf. [Pre68] and [Sch75]. A
more recent account of this can be found in [Mac06].

We will discuss here a generalization of these results to rings of S-integers in
number fields. Some of the necessary modifications for this have been considered
in [Bus06]. Similar results can be formulated for function fields in terms of vector
bundles, cf. [Wen14b].

We give a short outline of the classification results that will be discussed in the
section. Our exposition can be seen as a geometric formulation of the classification
result of Latimer-MacDuffee [LM33].
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3.1. Finite subgroups in PSL2(K). We first recall the classification of finite
subgroups of PSL2(K), K any field. We implicitly assume that the order of the finite
subgroup is prime to the characteristic of K. The classification over algebraically
closed fields is due to Klein. In the (slightly different) case of PGL2(K), K a general
field, the classification of finite subgroups can be found in [Bea10].

For K an algebraically closed field, in particular for K = C, Klein’s classification
provides an exact list of isomorphism types (as well as conjugacy classes) of finite
subgroups in PSL2(K): any finite subgroup of PSL2(C) is isomorphic to a cyclic
group Z/nZ, a dihedral group D2n, the tetrahedral group A4, the octahedral group
S4 or the icosahedral group A5.

Over an arbitrary field K, we have the following classification, cf. [Ser72, 2.5],
[Krä80, Teil II] or [Bea10, proposition 1.1 and theorem 4.2]. Denote by ζn some
primitive n-th root of unity.

Proposition 3.1. (i) PSL2(K) contains a cyclic group Z/nZ if and only if
ζn + ζ−1

n ∈ K.
(ii) PGL2(K) contains a dihedral group D2n if and only if ζn + ζ−1

n ∈ K. If ad-
ditionally the symbol

(
(ζ2n − ζ−1

2n )2,−1
)
is split, then also PSL2(K) contains

a dihedral group D2n.
(iii) PSL2(K) contains A4 if and only if −1 is a sum of squares, i.e., if the symbol

(−1,−1) is split.
(iv) PGL2(K) contains S4 if and only if −1 is a sum of two squares. If additionally√

2 ∈ K, then PSL2(K) contains S4.
(v) PSL2(K) contains A5 if and only if −1 is a sum of two squares and 5 is a

square.

This result is best proved by considering the Wedderburn decomposition of K[G]
and checking for (determinant one) two-dimensional representations among the
factors.

With the exception of Z/2Z and the dihedral groups, all finite subgroups in
PGL2(K) are conjugate whenever they are isomorphic. For the dihedral groupsDr,
there is a bijection between PGL2(K)-conjugacy classes and K×/((K×)2 · µr(K))
if ζr ∈ K, cf. [Bea10, theorem 4.2].

3.2. The basic constructions. We describe the basic correspondence between
ideal classes in extensions and conjugacy classes of finite-order elements. This cor-
respondence was already described by Latimer-MacDuffee [LM33], and later gener-
alized by Taussky and Bender. The following is a variation on [Ben67, theorem 1].

Proposition 3.2. Let A → B be an integral extension of integral domains, and
assume that [Frac(B) : Frac(A)] = 2. There is a bijective correspondence between
conjugacy classes of representations B → M2(A) and ideal classes of B having an
A-basis.

Proof. We only describe the two maps in the correspondence, for the rest of the
proof cf. [LM33], or [Con12] for a more modern exposition.

Let I ⊆ B be an ideal; we want to construct a representation ρ : B → M2(A).
Assume that I has an A-basis, and let {x1, x2} be one such. Any element b ∈ B
induces an endomorphism b : I → I : x 7→ b·x, and we set ρ(b) to be the representing
matrix of b in the chosen basis {x1, x2}. This clearly defines a ring homomorphism
ρ : B → M2(A).

Let ρ : B → M2(A) be a representation. Then ρ acts as endomorphisms of
Frac(A)2, making it a one-dimensional Frac(B)-vector space. The standard lat-
tice A2 ⊂ Frac(A)2 is then a finitely generated B-submodule of the above one-
dimensional Frac(B)-vector space Frac(A)2. Choosing an isomorphism to Frac(B)
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and taking the inverse of A2 under this isomorphism yields a fractional ideal in
Frac(B).

It can then be checked that these two assignments descend to a bijection between
conjugacy classes and ideal classes. �

The particular application we have in mind is the following: let A be an integral
domain, and let χ(T ) be the characteristic polynomial of a finite-order element
in GL2(A). Then there is a bijection between conjugacy classes of elements with
characteristic polynomial χ and ideal classes in the ring A[T ]/χ(T ). For example,
this applies to A[ζn] whenever [Frac(A)(ζn) : Frac(A)] ≤ 2.

To deal with conjugacy classes of finite order elements in SL2(OK,S), we have
to provide a slight modification of the above. The following result is implicit in
[Bus06, section 3].

Proposition 3.3. Let A be an integral domain, let x ∈ SL2(A) be an element of
finite order, and let χx(T ) be its characteristic polynomial. Set B = A[T ]/(χx(T )),
and denote by C the set of conjugacy classes of elements of SL2(A) with character-
istic polynomial χx(T ). Then there is an exact sequence

0 → coker
(
Nm1 : B× → A×) → C → ker

(
Nm0 : K̃0(B) → K̃0(A)

)
→ 0.

Proof. The proof proceeds as in [Bus06], by defining an oriented class group and
then following the argument outlined for GL2. This implies that the conjugacy
classes sit in an extension of the group of B-ideals with A-basis by the group of A-
orientations. The existence of a B-ideal with A-basis is guaranteed by the existence
of the element x, and the identification of the B-ideals with A-basis as relative class
group is discussed in the next subsection. �

Remark 3.4. Note that in the above proposition, we are classifying conjugacy
classes of elements of finite order in SL2. In Theorem 1 and our applications to
computation of Farrell-Tate cohomology, we want to enumerate conjugacy classes
of finite order subgroups. The difference is completely controlled by the action of
Gal(Frac(B)/Frac(A)) ∼= Z/2Z, as we will see below.

Remark 3.5. The cokernel of the norm-map on units can be described in terms
of the inert places of the extension B/A, cf. [Bus06, section 3.2].

3.3. Existence of free bases and relative class groups. Next, we provide
information on ideal classes having a free basis, cf. [Frö60].

First, recall that for A → B an integral extension of commutative rings, there

is a norm map on class groups Nm0 : K̃0(B) → K̃0(A). The kernel of NmB/A is

called the relative class group K̃0(B/A) of the extension B/A. An ideal I in B is
a projective A-module of rank n = [Frac(B) : Frac(A)], and

∧n
A I is a rank one

projective module. Its class in K̃0(A) is called the Steinitz class c(I) of I. The
relation between Steinitz class and norm is given by c(I) = c(B)NmB/A(I). The
square of the Steinitz class c(B) is the relative discriminant δB/A.

Proposition 3.6. Let A → B be an integral extension of commutative rings.

(1) There exists an ideal of B which has an A-basis if and only if

c(B) ∈ Im
(
NmB/A : K̃0(B) → K̃0(A)

)
.

In other words, the obstruction for the existence of a B-ideal with A-basis
lives in coker(Nm0).

(2) If there is an ideal of B which has an A-basis, then the ideal classes of

B-ideals with A-basis are classified by the relative class group K̃0(B/A).
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Remark 3.7. The cokernel of the norm map Nm0 : K̃0(B) → K̃0(A) is isomor-
phic to the Galois group of the maximal unramified intermediate extension. For a
degree 2 cyclotomic extension, this is trivial because these extensions ramify. In
particular, in these situations, there is always some B-ideal with A-basis.

It is possible to determine explicitly the class numbers of orders in global fields,
using Dedekind’s formula for class groups of orders, cf. [Ded30] or [Neu92, theorem
12.12]. We give a version adapted to our purposes, i.e., a version for degree 2
extensions which also works for S-class groups of orders in global fields.

Proposition 3.8. Let K be a global field, let S be a non-empty set of places con-
taining the infinite ones. Assume that K(ζℓ)/K is a degree 2 extension. Then we
have

#K̃0(OK,S [ζℓ]) =
#K̃0(OK(ζℓ),S̃

)

[O×
K(ζℓ),S̃

: OK,S [ζℓ]×]

#(OK(ζℓ),S̃
/f)×

#(OK,S [ζℓ]/f)×

where f is the conductor of the order OK,S [ζℓ] in OK(ζℓ),S̃
.

3.4. Automorphisms and normalizers. We also need to discuss the centralizers
and normalizers of elements of finite order in SL2(A) - the relevant data to compute
Farrell-Tate cohomology of SL2(A) is the Farrell-Tate cohomology of the centralizers
CΓ of finite cyclic subgroups Γ together with its action of the Weyl group NΓ/CΓ.
This also has been worked out in a special case in [Bus06], and we provide a slight
generalization:

Proposition 3.9. Let A be an integral domain, let x ∈ GL2(A) be an element of
finite order, and let χx(T ) be its characteristic polynomial. Set B = A[T ]/(χx(T )),
and fix a representation φ : B → M2(A).

(1) If m ∈ GL2(A) centralizes φ(T ), then m = φ(u) for some unit u ∈ B×.
(2) If additionally φ(T ) ∈ SL2(A), and m ∈ SL2(A) centralizes φ(T ), then

m = φ(u) for some unit u ∈ ker (Nm1 : B× → A×) of norm 1.
(3) For the Weyl group, we have

NSL2(A)(φ(T ))/CSL2(A)(φ(T )) ∼= StabGal(Frac(B)/Frac(A))(I),

where I is the ideal class corresponding to φ(T ).

Proof. If m centralizes φ(T ), it necessarily centralizes the whole image φ(B). As an
element in the algebraic group GL2(Frac(A)), it centralizes a maximal torus, and
therefore it has to be multiplication with a unit of B.

If an element normalizes φ(T ), it is contained in the normalizer of a maximal
torus when viewed as an element of the algebraic group GL2(Frac(A)). In particu-
lar, it normalizes the representation of B, so up to a central element it acts via the
Galois group Gal(Frac(B)/Frac(A)). Then necessarily, we have I ∼= Iσ, i.e., the
ideal class I is invariant under the action of Gal(Frac(B)/Frac(A)) ∼= Z/2Z. �

Corollary 3.10. In the situation of Proposition 3.9, a cyclic subgroup Γ of order
ℓ in SL2(A) is embeddable in a dihedral subgroup of SL2(A) precisely when the
associated ideal I(Γ) is invariant under the action of Gal(Frac(B)/Frac(A)).

The conjugacy classes of dihedral overgroups of Γ are in bijection with the number
of orientations of I−1 ⊗ Iσ, which in turn is in bijection with the group

ker
(
Nm1 : B× → A×)⊗Z Z/2

of square residues of norm 1 units.
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3.5. Explicit formulas. Finally, we can combine the previous results into explicit
formulas describing conjugacy classes of finite cyclic subgroups in SL2(A).

We start with the classification of finite cyclic subgroups in GL2(OK,S) with K
a global field. Let ι be the inversion involution on the Picard group.

Theorem 3.11. Let K be a global field, and fix a prime ℓ different from the char-
acteristic of K.

(1) Assume ζℓ ∈ K. Then the conjugacy classes [Γ] of ℓ-order subgroups in

GL2(OK,S) are in bijection with elements of K̃0(OK,S)/ι. Such a finite
group Γ is contained in a dihedral overgroup if and only if the correspond-

ing element I(Γ) in K̃0(OK,S) is Z/2-invariant; in that case, all dihedral
overgroups are conjugate. The normalizer of Γ in GL2(OK,S) is isomor-

phic to (O×
K,S)

2 ⋊ Z/2 if there is a dihedral overgroup, and isomorphic to

(O×
K,S)

2 otherwise.

(2) Assume ζℓ 6∈ K. Then the conjugacy classes [Γ] of ℓ-order subgroups in

GL2(OK,S) are classified by elements of K̃0(OK,S [ζℓ]/OK,S)Gal(K(ζℓ)/K).
Such a finite group Γ is contained in a dihedral overgroup if and only if

the corresponding element I(Γ) in K̃0(OK,S [ζℓ]/OK,S) is Z/2-invariant;
in that case, all dihedral overgroups are conjugate. The normalizer of Γ in
GL2(OK,S) is isomorphic to OK,S [ζℓ]

×⋊Z/2 if there is a dihedral overgroup,
and to OK,S [ζℓ]

× otherwise.

Proof. The correspondence between conjugacy classes and ideal classes is the one
of Proposition 3.2. In case(1), the norm map on class groups is

K̃0(OK,S)
2 ∼= K̃0(O2

K,S) → K̃0(OK,S) : (I,J ) 7→ I ⊗ J ,

hence its kernel is identified with K̃0(OK,S). Normalizer and centralizer are deter-
mined by Proposition 3.9. Passing from conjugacy of finite order elements (classified

by K̃0(OK,S)) to conjugacy of finite cyclic subgroups happens by dividing out the
action of Gal(K(ζℓ)/K) ∼= Z/2 on the kernel of the norm map; in case (1) this is
identified with the involution ι : I 7→ I−1. �

The following result, established by a similar argument, provides the classifica-
tion of finite cyclic subgroups in SL2(OK,S), with K a global field.

Theorem 3.12. Let K be a global field, and fix a prime ℓ different from the char-
acteristic of K.

(1) Assume ζℓ ∈ K. The conjugacy classes of ℓ-order subgroups in SL2(OK,S)

are in bijection with elements of K̃0(OK,S)/ι. Such a finite group Γ is
contained in a dihedral overgroup if and only if the corresponding element

I(Γ) in K̃0(OK,S) is Z/2-invariant. The normalizer of Γ in SL2(OK,S) is
isomorphic to O×

K,S ⋊Z/2 if there is a dihedral overgroup, and isomorphic

to O×
K,S otherwise.

(2) Assume ζℓ 6∈ K. The group Cℓ of conjugacy classes of elements of order ℓ
is subject to the extension

0 → coker
(
Nm1 : OK,S [ζℓ]

× → O×
K,S

)
→ Cℓ →

→ ker
(
Nm0 : K̃0(OK,S [ζℓ]) → K̃0(OK,S)

)
→ 0.

The group Cℓ inherits a Gal(K(ζℓ)/K)-action from K̃0(OK,S [ζℓ]). The con-
jugacy classes Kℓ of subgroups of order ℓ in SL2(OK,S) are classified by
elements of the quotient Kℓ = Cℓ/Gal(K(ζℓ)/K).



ON FARRELL-TATE COHOMOLOGY OF SL2 OVER S-INTEGERS 11

A finite group Γ with [Γ] ∈ K is contained in a dihedral overgroup if and
only if the corresponding element I(Γ) in K is Gal(K(ζℓ)/K)-invariant.
The normalizer of Γ in SL2(OK,S) is isomorphic to

ker
(
Nm1 : OK,S [ζℓ]

× → OK,S

)
⋊ Z/2

if there is a dihedral overgroup, and to ker (Nm1 : OK,S [ζℓ]
× → OK,S) oth-

erwise.

Proof. In case (1), there are no orientation issues because the norm map
(O×

K,S)
2 → O×

K,S : (a1, a2) 7→ a1a2 is surjective. The rest is a combination of

Proposition 3.3 and Proposition 3.9 as before. In case (2), the Galois action on K
is the natural one, in particular, it is trivial on the cokernel of Nm1. �

Remark 3.13. See also [Wen14a] for similar results concerning SL2(K[C]) with C
a smooth affine curve over an algebraically closed field K.

Remark 3.14. The above results are more or less immediate generalizations of the
classification in [Bus06]. The relation to the classification results of Prestel [Pre68],
Schneider [Sch75], Krämer [Krä80] or Maclachlan [Mac06] is a bit more subtle to
discuss. We restrict ourselves to mention the two major differences: one is due to the
fact that the cited works consider the more general situation of possibly non-split
quaternion algebras (instead of M2(A) considered here). The second difference is
that the cited works provide much more elaborate formulas for the orders of relative
class groups, where we are basically stopping at Proposition 3.3 and Proposition 3.8.
For our applications to computations of Farrell-Tate cohomology we do not need
the actual numbers, but the more conceptual explanations provided by the results
above.

4. Recollections on the action of SL2 on the symmetric space

We will typically denote by K a global field, by S a non-empty finite set of places
of K containing all the infinite places. The corresponding ring of S-integers is de-
noted by OK,S . We will be interested in the Farrell-Tate cohomology of SL2(OK,S).
For the later development, we recall some basic facts on symmetric spaces and finite
subgroups in SL2.

4.1. Recollection on symmetric spaces. For each of the places v ∈ S, we have
a corresponding completion Kv which is isomorphic to R, C or a non-archimedean
local field K/Qp or K/Fq((T )).

We recall the usual choices for maximal compact subgroups in the corresponding
Lie groups SL2(Kv). For v real, a maximal compact subgroup of SL2(R) is SO(2).
For v complex, a maximal compact subgroup of SL2(C) is SU(2). For v finite, a
maximal compact subgroup of SL2(Kv) is SL2(Ov).

The set of maximal compact subgroups in the Lie group SL2(Kv) forms a
symmetric space of non-compact type. For v real, this is the upper half-plane
H ∼= SL2(R)/ SO(2) which is a Riemannian manifold of dimension 2. For v com-
plex, this is the complex upper half-space SL2(C)/ SU(2), a Riemannian manifold of
dimension 3. For v finite, this is the Bruhat-Tits tree SL2(Kv)/ SL2(Ov) associated
to the non-archimedean valuation v. This fails to be a manifold, it is a branched
tree, with branching given as follows. The link of any vertex of this tree can be
identified with the discrete set P1(Fq), where Fq is the residue field at the place v.

We introduce notation for the product of these symmetric spaces, the products
being taken over the real, complex and finite places of K, respectively:

XK,S =
∏

v real

SL2(R)/ SO(2)×
∏

v complex

SL2(C)/ SU(2)×
∏

v finite

SL2(Kv)/ SL2(Ov).
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The diagonal embedding SL2(OK,S) →֒
∏

v∈S SL2(Kv) induces an action of
SL2(OK,S) on the symmetric space XK,S. This action is properly discontinu-
ous, in particular with finite stabilizers, and it factors through a faithful action
of PSL2(OK,S).

The symmetric space XK,S is a CAT(0)-space, in particular it is contractible.
Therefore, the Borel isotropy spectral sequence can be used to obtain information
on group homology of SL2(OK,S) from its action on XK,S .

4.2. Recollections on linear and projective representations. Now we con-
sider the local structure of the quotient SL2(OK,S)\XK,S . In particular, we want to
know the topological structure of the quotient in the neighbourhood of points which
have non-trivial isotropy. Since SL2(OK,S) acts isometrically on the CAT(0)-space
XK,S , it suffices to understand the action of the stabilizer Γx on the tangent space
TxXK,S . The latter can be understood using representation theory.

We make a case distinction, depending on the type of the place.

Proposition 4.1. Let v be a real place, let Γ be a finite subgroup of SL2(R) fixing
a point x ∈ SL2(R)/ SO(2). Then Γ is cyclic.

The matrix (
cosφ − sinφ
sinφ cosφ

)
, φ =

2πl

n
, 0 < l < n

in SO(2) acts on the tangent space of [1] ∈ SL2(R)/ SO(2) as the representation
χ2,2φ - the 2-dimensional representation rotating with double speed.

Proof. Any finite subgroup Γ of SL2(R) has to preserve a quadratic form, and hence
is conjugate to a subgroup of SO(2). But this means that Γ has a 2-dimensional,
faithful, orientation-preserving, orthogonal representation. The only possible such
groups are cyclic. For the description of the action, we can assume that Γ is
a subgroup of the standard SO(2) inside SL2(R), and hence fixes the class of 1
in SL2(R)/ SO(2). The tangent space at 1 of SL2(R) is the Lie algebra sl2(R).
The subspace k of the tangent space corresponding to the subgroup SO(2) can be
identified with the skew-symmetric trace-less matrices in sl2(R). We can choose
the subspace p of symmetric trace-less matrices in sl2(R) as representative for the
tangent space of SL2(R)/ SO(2). After making these identifications, the group
SO(2) acts on the tangent space of its fixed point [1] ∈ SL2(R)/ SO(2) as the
adjoint representation on p.

In the adjoint representation, the action of

(
cosφ − sinφ
sinφ cosφ

)
∈ SO(2) on the

symmetric trace-less matrices p has trace 2 cos(2φ), i.e., the adjoint representation
of SO(2) on p is the 2-dimensional representation which rotates with double speed.
As we are interested in groups Γ of odd order, this is an irreducible representation
with trivial fixed space. �

Proposition 4.2. Let v be a complex place, let Γ be a finite subgroup of SU(2).

(1) If Γ is cyclic of order n, it is conjugate to the subgroup generated by the
matrix diag(ζn, ζ

−1
n ) for some primitive n-th root of unity ζn. The corre-

sponding representation of Γ on the tangent space of 1 ∈ SL2(C)/ SU(2)
has trace ζ2n + ζ−2

n + 1.
(2) If Γ ∼= D2n is dihedral, then its representation on the tangent space of

1 ∈ SL2(C)/ SU(2) is the direct sum of the sign representation and the two-
dimensional representation where the cyclic group acts with trace ζ2n + ζ−2

n .

In particular, the fixed space of the subgroup Γ is a line. If Γ is a dihedral group,
then the normal cyclic subgroup fixes this line pointwise; and the action of the
quotient Z/2 on this line is by reflection at the origin.
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Proof. Analogously to the real case, we can assume that Γ is a subgroup of the
standard SU(2) inside SL2(C), and hence fixes the class of 1 in SL2(C)/ SU(2).
The tangent space at 1 of SL2(C) is the Lie algebra sl2(C). The subspace k of
the tangent space corresponding to the subgroup SU(2) can be identified with the
skew-hermitian trace-less matrices in sl2(C). We can choose the subspace p of
hermitian trace-less matrices in sl2(C) as representative for the tangent space of
SL2(C)/ SU(2). After making these identifications, the group SU(2) acts on the
tangent space of its fixed point [1] ∈ SL2(C)/ SU(2) as the adjoint representation
on p.

A diagonal matrix diag(λ1, λ2) ∈ SU(2) acts via the adjoint representation of

SU(2) on p with trace λ1

λ2
+ λ2

λ1
+ 1. The statements for cyclic and dihedral groups

follow. �

For the finite places where no tangent space is available, we can use the classi-
fication of automorphisms of trees to describe the action in a neighbourhood of a
fixed point.

Proposition 4.3. Let Kv be a non-archimedean local field; denote by Ov its val-
uation ring and by kv its residue field. Let g be an element of SL2(Ov) of odd
order n. Assume that n is coprime to the characteristic of Kv. Then we have the
following cases for the action of g on the link of 1 ∈ SL2(Kv)/ SL2(Ov), which can
be identified with P1(kv):

(1) The real case: if n is prime to char kv and ζn 6∈ Kv, then the element g
is conjugate to one in the non-split torus and hence does not have a fixed
point on P1(kv).

(2) The complex case: if n is prime to char kv and ζn ∈ Kv, then the element
g is conjugate to one in the split torus and hence has two fixed points on
P1(kv).

(3) The bad case: if char kv|n, then the residue of the matrix in SL2(kv) is con-
jugate to a strictly upper triangular matrix. If this strictly upper triangular
matrix is non-trivial, it has exactly one fixed point on P1(kv). It may also
be trivial in which case everything is fixed.

Proof. Assume first that n is prime to charkv. If ζn ∈ Kv, then there exists a
unique conjugacy class of cyclic subgroups of order n in PSL2(Kv). In particular,
g is diagonalizable and fixes exactly the standard apartment. Conversely, if g
has a non-isolated fixed point, then it fixes a non-trivial 1-simplex and must be
conjugate in PSL2(Kv) to an upper triangular matrix. Because of the characteristic
assumption, it must be diagonalizable, which implies ζn ∈ Kv. This implies cases
(1) and (2).

Case (3) is clear from the classification of subgroups of SL2(Fq) and the explicit
description of the action of SL2(Ov) on the link of 1 by Möbius transformations. �

Corollary 4.4. Let Kv be a non-archimedean local field, and denote by Ov its
valuation ring and by kv its residue field. Let g be an element of SL2(Ov) of
order n. Assume that n is coprime to the characteristic of Kv.

(1) In the real case, g has an isolated fixed point on the Bruhat-Tits tree.
(2) In the complex case, g fixes a whole apartment of the Bruhat-Tits tree.
(3) In the bad case, g fixes a whole subtree containing exactly two ends of the

Bruhat-Tits tree.

Proof. (1) and (2) are immediate from the Proposition 4.3. We only need to discuss
the third case. The boundary of the building can be identified with P1(Kv); the
element g acts via Möbius transformations on this projective line, and an element
of finite order has two fixed points.
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The fixed set is connected. More generally, let X be a CAT(0)-space and let G
be a group acting isometrically on X . If g ∈ G is an element of finite order, then
its fixed set is connected: any two points of X are connected by a unique geodesic
because X is CAT(0). If x, y ∈ Xg, then the unique geodesic connecting x and
y also has to be fixed set-wise because the group action is isometric. But then
the geodesic also has to be fixed point-wise because the distances of points on the
geodesic has to be preserved by the action.

This implies the claims. �

Remark 4.5. The precise structure of the fixed set of the finite order element in
the bad case is described in [BC14]. We thank Joël Belläıche for pointing this out in
his answer to MathOverflow question 171589 “Fixed set of order p automorphism
of Bruhat-Tits tree”.

5. On the structure of ℓ-torsion subcomplexes

This section recalls basic facts about ℓ-torsion subcomplexes and how they can
be used to describe Farrell-Tate cohomology, cf. [Rah13, Rah14]. We also give
an explicit description of ℓ-torsion subcomplexes for SL2 over rings of S-integers
in global fields. This generalizes the Bianchi group formulas of [Rah13]. We will
assume throughout that ℓ is a prime different from the characteristic of the global
field K.

We recall the definition of the ℓ-torsion subspace:

Definition 5.1. Let K be a global field, let S be a finite set of places containing
the infinite ones. The ℓ-torsion subspace of XK,S is the subspace consisting of those
x ∈ XK,S which are fixed by some element gx ∈ SL2(OK,S) of order ℓ. The ℓ-torsion

subspace is denoted by X
(ℓ)
K,S .

As a piece of notation, we will, for each individual place v ∈ S, define X
(ℓ)
v as

the set of those x ∈ Xv fixed by some order ℓ element g ∈ SL2(OK,S).
Our main goal is a description of the structure of this subspace, and how it

influences the Farrell-Tate cohomology of SL2(OK,S). First of all, the following
lemma is fairly clear from the definition:

Lemma 5.2. Let K be a number field, let S be a finite set of places containing
the infinite ones. Then the action of SL2(OK,S) on XK,S restricts to the subspace

X
(ℓ)
K,S.

We denote by A(ℓ)
K,S the complex of elementary abelian ℓ-subgroups of the group

SL2(OK,S), as in [Bro94]. We will compare the ℓ-torsion subcomplex to the complex
of elementary abelian subgroups.

5.1. Connected components. We first investigate the structure and number of
connected components of the ℓ-torsion complex resp. its quotient.

Lemma 5.3. Let K be a global field, let S be a finite set of places containing
the infinite ones, and let g ∈ SL2(OK,S) be an element of finite order. The fixed

space (XK,S)
〈g〉 is a totally geodesic subspace whose dimension equals the number

of complex archimedean places together with the complex and bad non-archimedean
places. Moreover, the fixed space has a product decomposition

X
〈g〉
K,S

∼=
∏

v∈S

X〈g〉
v ,

and the product decomposition is compatible with the action of SL2(OK,S).
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Proof. For the archimedean places, the dimension of the torsion subcomplex can be
determined from the action of 〈g〉 on the tangent space. If x ∈ XK,S is a fixed point,
then the dimension of the ℓ-torsion subcomplex at x equals the maximal dimension
of a subspace of TxXK,S fixed by an element g ∈ Stabx SL2(OK,S). From the
definition of XK,S as a product, we have a direct sum decomposition of tangent
spaces to the archimedean symmetric spaces

⊕

r1

Vreal ⊕
⊕

r2

Vcomplex.

We can determine the dimension of the torsion subcomplex by looking at the
representations of finite stabilizers on the tangent spaces of fixed points, cf. Propo-
sition 4.1 and Proposition 4.2. The representations of the finite stabilizers are direct
sums of representations for the real and the complex places. For each of these rep-
resentations, every element acts as rotation. The dimension of the corresponding
fixed set is then 0 for the real places and 1 for the complex places.

Similarly, we can deal with the non-archimedean places, cf. Proposition 4.3.
The real case corresponds to isolated fixed points and thus does not contribute
to the dimension of the fixed space (XK,S)

〈g〉. The complex case contributes one
dimension, coming from the fixed apartment. The bad case also contributes one
dimension, coming from the tree thickening of the geodesic connecting the two fixed
points on P1(Kv). This proves the claim. �

Remark 5.4. We are making strong use of the fact that SL2(OK,S) acts iso-
metrically on a CAT(0)-space, which implies a close link between the infinitesimal
structure (the representation of the finite stabilizer group on the tangent space) and
the global structure (the totally geodesic subspace fixed by the stabilizer group).

Because of this, the dimension of X
(ℓ)
K,S can be read off from the dimension of the

fixed part of the tangent space.

Lemma 5.5. Let K be a global field, let S be a nonempty finite set of places con-
taining the infinite ones, and let ℓ be an odd prime different from the characteristic
of K. There is a bijection

π0

(
SL2(OK,S)\X(ℓ)

K,S

) ∼=−→ π0

(
SL2(OK,S)\A(ℓ)

K,S

)
.

Proof. We first define the map. For this, let x ∈ X
(ℓ)
K,S . Then there exists a

subgroup of order ℓ which fixes x. Any two such subgroups are contained in a finite
subgroup, because the stabilizer of x is finite. As ℓ is odd, the classification of finite
subgroups of SL2(C) implies that all order ℓ subgroups of SL2(OK,S) fixing x have
to be conjugate, even equal. Call Γx the respective ℓ-subgroup. The map then
sends the connected component containing x to its stabilizer group Γx. As argued
in the proof of Corollary 4.4, the fixed point set of Γx is connected; and any point
y in this set has all of its order ℓ isotropy matrices contained in Γx. Therefore, the

fixed point set of Γx is a whole connected component of X
(ℓ)
K,S , which makes the

map well-defined.
The map is evidently surjective, because a finite group acting on a CAT(0)-space

has a fixed point.
For injectivity, consider two subgroups 〈g1〉 and 〈g2〉 of order ℓ. If these groups

are conjugate, then the conjugating matrix induces a map X
〈g1〉
K,S → X

〈g2〉
K,S , and there-

fore the two totally geodesic subspaces will lie in the same connected component in
SL2(OK,S)\XK,S. �
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5.2. Actions on connected components and quotients.

Proposition 5.6. Let K be a global field, let S be a nonempty finite set of places
containing the infinite places and let ℓ be an odd prime different from the char-
acteristic of K. Let g be an element in SL2(OK,S) of order ℓ, and let Wg be the
totally geodesic subspace fixed by g. If h ∈ SL2(OK,S) sends Wg to itself, then
h ∈ NSL2(OK,S)(〈g〉).

Proof. As the fixed points of dihedral groups in SL2(OK,S) cannot occupy the whole
geodesic subspace Wg, there exists x ∈ Wg with only cyclic stabilizer 〈g〉. Then
h〈g〉h−1 is the stabilizer of hx; and hx ∈ Wg implies h〈g〉h−1 = 〈g〉. �

Corollary 5.7. Let K be a global field, let S be a nonempty finite set of places
containing the infinite places and let ℓ be an odd prime different from the charac-
teristic of K. Denote by Kℓ the set of conjugacy classes of subgroups of SL2(OK,S)
of order ℓ. There is a decomposition

X
(ℓ)
K,S

∼=
⊔

Γ∈Kℓ


 ⊔

SL2(OK,S)/NSL2(OK,S )(Γ)

XΓ
K,S


 .

and the map X
(ℓ)
K,S → A(ℓ)

K,S sending the fixed space XΓ
K,S of Γ ∈ Cℓ to Γ induces an

isomorphism on SL2(OK,S)-equivariant homology.

Proof. The bijection on connected components of the quotient by the SL2-action
has been established in Lemma 5.5. The same argument in fact shows that mapping

a component of X
(ℓ)
K,S to the subgroup fixing it induces a bijection of connected com-

ponents of X
(ℓ)
K,S and A(ℓ)

K,S . Each component XΓ
K,S is a totally geodesic subspace,

and hence contractible.
Now let XΓ

K,S be a component fixed by the cyclic subgroup Γ. The normalizer

NSL2(OK,S)(Γ) acts with finite stabilizers on XΓ
K,S , and the stabilizer groups contain-

ing Γ are cyclic or dihedral groups. There is a maximal cyclic subgroup stabilizing
XΓ

K,S pointwise, call it Γ̃. Then the group NSL2(OK,S)(Γ)/Γ̃ acts on XΓ
K,S , and from

our study of the local geometry of the action of finite subgroups, we know that the
stabilizers of the latter action have order 2 (coming from the dihedral groups). As
2 is assumed prime to ℓ, the projection XΓ

K,S → pt then induces an isomorphism

of NSL2(OK,S)(Γ)/Γ̃-equivariant homology with Fℓ-coefficients. But since XΓ
K,S is

stabilized pointwise by Γ̃, the Hochschild-Serre spectral sequence implies that the
projection XΓ

K,S → pt also induces an isomorphism of NSL2(OK,S)(Γ)-equivariant
homology with Fℓ-coefficients. This is what we wanted to prove. �

Remark 5.8. The above result provides a precise relation between the ℓ-torsion
subcomplex and the complex of elementary abelian ℓ-groups, in an ℓ-rank 1 case.
As a result, we see that for computation of Farrell-Tate cohomology at the prime
ℓ, we can either use the ℓ-torsion subcomplex, or Brown’s formula

Ĥ
•
(SL2(OK,S),Z)(ℓ) ∼=

⊕

[Γ≤SL2],Γ cyclic

Ĥ
•
(CSL2(Γ),Z)

NSL2
(Γ)/CSL2

(Γ)

(ℓ) ,

where the sum on the right is indexed by conjugacy classes of finite cyclic subgroups
Γ in SL2(OK,S). However, the ℓ-torsion subcomplex still seems a bit nicer to
perform the computations because it breaks up the structure of the normalizer a
bit further.
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6. Formulas for Farrell-Tate cohomology

This section will deal with a proof of Theorem 1, the number-theoretic formula
for Farrell-Tate cohomology of SL2(OK,S).

The first thing to note is that the results of Section 5 imply that the Farrell-

Tate cohomology Ĥ
•
(SL2(OK,S),Fℓ) is non-trivial if and only if there exists a cyclic

subgroup of SL2(OK,S) of order ℓ. Part (1) of Theorem 1 is then a consequence of
Proposition 3.3 and Proposition 3.6.

Part (2) of Theorem 1 follows directly from Lemma 5.5, Theorem 3.12 and Propo-
sition 5.6.

The description of the relevant normalizers for parts (3) and (4) of Theorem 1
can be found in Theorem 3.12 resp. Proposition 3.9.

Then to prove Theorem 2, we provide the actual computation of the Farrell-Tate
cohomology of the normalizers.

I) First, we consider the case of cyclic subgroups whose conjugacy class is not
Galois invariant. In this case, the normalizer equals the centralizer and is isomorphic
to the kernel of the norm map on units. As a group, the normalizer is then of the
form Z/n×Zr for suitable n and r, by Dirichlet’s unit theorem. The computation
of the relevant Farrell-Tate cohomology is straightforward:

Proposition 6.1. Let A = Z/n× Zr, and let ℓ be an odd prime with ℓ | n. Then,
with b1, x1, . . . , xr denoting classes in degree 1 and a2 a class of degree 2, we have

Ĥ
•
(A,Fℓ) ∼= Ĥ

•
(Z/n,Fℓ)⊗Fℓ

•∧
Fr
ℓ
∼= Fℓ[a2, a

−1
2 ](b1, x1, . . . , xr).

Proof. We begin with a computation of group cohomology. In this case, the
Künneth formula implies

H•(A,Fℓ) ∼= H•(Z/n,Fℓ)⊗Fℓ
H•(Zr ,Fℓ).

But H•(Zr,Fℓ) ∼=
∧•

Fr
ℓ , again by iterated application of the Künneth formula.

Therefore, the first isomorphism claimed above is true with group cohomology
instead of Farrell-Tate cohomology.

Now group cohomology and Farrell-Tate cohomology agree above the virtual
cohomological dimension, which in this case is r. Moreover, the only finite subgroup
of A is Z/n, and hence by [Bro94, theorem X.6.7] the group A has periodic Farrell-
Tate cohomology. The latter in particular means that there is an integer d such

that Ĥ
i
(A,Fℓ) ∼= Ĥ

i+d
(A,Fℓ) for all i. These two assertions imply that the formula

we obtained for group cohomology above is also true for Farrell-Tate cohomology.
The second isomorphism then just combines the first isomorphism with the for-

mula for the cyclic groups discussed earlier. �

This proves Theorem 2.(2).

II) Secondly, we discuss the case where the cyclic subgroup is Galois invariant.
Recall from Theorem 3.12 that the group structure in this case is kerNm1 ⋊Z/2Z,
where the action of Z/2Z ∼= Gal(K(ζℓ)/K) on kerNm1 is the natural Galois action.

Proposition 6.2. The Hochschild-Serre spectral sequence associated to the semi-
direct product kerNm1 ⋊Z/2Z degenerates and yields an isomorphism

Ĥ
•
(kerNm1 ⋊Z/2Z,Fℓ) ∼= Ĥ

•
(kerNm1,Fℓ)

Z/2Z.

The Gal(K(ζℓ)/K)-action on kerNm1 is by multiplication with −1. The invariant

classes are then given by a⊗2i
2 tensor the even exterior powers plus a

⊗(2i+1)
2 tensor

the odd exterior powers.
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This proves Theorem 2.(3); and parts (2) and (3) of Theorem 2 together yield
its part (1).

Remark 6.3. Our result provides an SL2-analogue of the computations of Anton
[Ant99].

7. Application I: non-detection

In this section, we want to discuss some consequences of our computations for
a conjecture of Quillen, cf. [Qui71, p. 591]. In particular, we are going to prove
Theorem 3.

Conjecture 6 (Quillen). Let ℓ be a prime number. Let K be a number field with
ζℓ ∈ K, and S a finite set of places containing the infinite places and the places
over ℓ. Then the natural inclusion OK,S →֒ C makes H•(GLn(OK,S),Fℓ) a free
module over the cohomology ring H•

cts(GLn(C),Fℓ).

The range of validity of the conjecture has not yet been decided. Positive cases
in which the conjecture has been established are n = ℓ = 2 by Mitchell [Mit92],
n = 3, ℓ = 2 by Henn [Hen99], and n = 2, ℓ = 3 by Anton [Ant99].

On the other hand, cases where the Quillen conjecture is known to be false can
all be traced to [HLS95, remark on p. 51], which shows that Quillen’s conjecture
for GLn(Z[1/2]) implies that the restriction map

H•(GLn(Z[1/2]),F2) → H•(Tn(Z[1/2]),F2)

from GLn(Z[1/2]) to the subgroup Tn(Z[1/2]) of diagonal matrices is injective.
Non-injectivity of the restriction map has been shown by Dwyer [Dwy98] for n ≥ 32
and ℓ = 2. Dwyer’s bound was subsequently improved by Henn and Lannes to
n ≥ 14. At the prime ℓ = 3, Anton proved non-injectivity for n ≥ 27, cf. [Ant99].

Using our Farrell-Tate cohomology computations, we can discuss these conjec-
tures - or better, weaker versions - in the case n = 2. For the Quillen conjecture,
we can determine precisely the module structure above the virtual cohomological
dimension; this allows to relate the Quillen conjecture for SL2 to statements about
Steinberg homology.

Proposition 7.1. Let G = Z/ℓ× Zn.

(1) Denoting by b1, x1, . . . , xn exterior classes of degree 1 , and by a2 a polyno-
mial class of degree 2, the cohomology ring

H•(G,Fℓ) ∼= Fℓ[a2](b1, x1, . . . , xn)

is a free module of rank 2n+2 over the subring Fℓ[a
2
2].

(2) Let Z/2 act via multiplication by −1 on all the generators. The invariant
ring H•(G,Fℓ)

Z/2 is a free module of rank 2n+1 over the subring Fℓ[a
2
2].

Proof. (1) is clear from the explicit formula given in Proposition 6.1; and 2n+2 is
the rank obtained from the basis consisting of all the wedge products of the set
{a2, b1, x1, . . . , xn}.
(2) follows from this, the invariant ring is additively generated by a

⊗(2i+1)
2 tensor

the odd degree part of
∧
(b1, x1, . . . , xn) and a

⊗(2i)
2 tensor the even degree part of∧

(b1, x1, . . . , xn). �

These statements now allow to formulate the following result, which we would like
to see as a version of the Quillen conjecture for SL2 above the virtual cohomological
dimension. Recall that H•

cts(SL2(C),Fℓ) ∼= Fℓ[c2] is generated by the second Chern
class c2 (which is a class in degree 4). This is the subring over which we have to
express H•(SL2(OK,S),Fℓ) as a free module for the Quillen conjecture.
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Theorem 7.2. Let ℓ be an odd prime number. Let K be a number field, and let S
be a finite set of places containing the infinite places. Let G = SL2(OK,S). In the
splitting of Theorem 1,

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈K
Ĥ

•
(NG(Γ),Fℓ),

denote by n1 the number of components where NG(Γ) is abelian, and by n2 the
number of components where it is not. For each component group NG(Γ), denote by
aΓ the second Chern class of the standard representation of Γ (which is a polynomial
class in degree 4). Denote by r the rank of the relative unit group of OK,S [ζℓ]/OK,S.
Then the restriction map induced by the natural inclusion OK,S →֒ C is given as
follows:

Fℓ[c2] → H•(SL2(OK,S),Fℓ) → Ĥ
•
(SL2(OK,S),Fℓ) : c2 7→

∑

[Γ]∈K
aΓ,

and Ĥ
•
(SL2(OK,S),Fℓ) is a free module of rank 2r+1(2n1 + n2) over the Laurent

polynomial subring generated by the image of c2.

Proof. All the subgroups Γ become conjugate in SL2(C) and the same is true for
the centralizers CG(Γ). The restriction map for all groups NG(Γ) then has to map
c2 to the second Chern class of the standard representation of the cyclic or dihedral
group, which is the element aΓ. The image of the restriction map is then the
diagonal subring generated by

∑
aΓ. By Proposition 7.1, the cohomology ring is

free as a module over this subring with the specified rank. �

Corollary 7.3. Let K be a number field, let S be a finite set of places containing
the infinite ones, and let ℓ be an odd prime.

(1) The Quillen conjecture holds for group cohomology H•(SL2(OK,S),Fℓ) above
the virtual cohomological dimension.

(2) (A suitable reformulation of) The Quillen conjecture holds for Farrell-Tate

cohomology Ĥ
•
(SL2(OK,S),Fℓ).

Remark 7.4. As a result, we can reformulate the Quillen conjecture for group coho-
mology as a relation between Farrell-Tate cohomology and the Steinberg homology

H•(SL2(OK,S), St
SL2(OK,S) ⊗Fℓ). Vanishing of Steinberg homology guarantees the

Quillen conjecture; however, it is possible that the Quillen conjecture is true even
with non-vanishing Steinberg homology. The Quillen conjecture fails whenever the
map

H•(SL2(OK,S),Fℓ) → Ĥ
•
(SL2(OK,S),Fℓ)

is not injective. Then there exist elements in group cohomology which - after
multiplication with some power of the second Chern class - become trivial.

Next, we can discuss the detection questions. Using our explicit computations,
we can easily find examples where the cohomology of SL2(OK,S) cannot be detected
on the diagonal matrices. The following general result, deducing non-detection from
non-triviality of suitable class groups, is very much in the spirit of Dwyer’s disproof
of detection for GL32(Z[1/2]).

Proposition 7.5. Let ℓ be an odd prime number. Let K be a number field with
ζℓ ∈ K, and let S be a finite set of places containing the infinite places. Assume

that the class group K̃0(OK,S) has more than 2 elements. Then the restriction map

Ĥ
•
(SL2(OK,S),Fℓ) → Ĥ

•
(T2(OK,S),Fℓ)

from SL2(OK,S) to the diagonal matrices T2(OK,S) is not injective.
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Proof. Under the assumptions of the proposition, Theorem 3.12(1) implies that the
splitting of Theorem 1 becomes

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈K̃0(OK,S)/ι

Ĥ
•
(NG(Γ),Fℓ).

The group NG(Γ) is the normalizer in G = SL2(OK,S) of the order ℓ subgroup

representing [Γ]. Recall that the Farrell-Tate cohomology Ĥ
•
(NG(Γ)) is obtained

by making the cohomology rings from Proposition 7.1 periodic for a2; in particular,
all exterior products with an odd number of factors live in odd degree, products
with even number of factors live in even degree. In both cases, half of the elements
is invariant under multiplication with −1. For the trivial ideal class, we have a

contribution of half the rank of Ĥ
•
(T2(OK,S),Fℓ). Under the assumption on the

class group, we either (at least) have two further ι-invariant ideal classes or a ι-orbit.

In either case, the resulting direct summands in
⊕

[Γ]∈K̃0(OK,S)/ι Ĥ
•
(NG(Γ),Fℓ)

yield a further contribution equal to the rank of Ĥ
•
(T2(OK,S),Fℓ). Therefore, the

restriction map cannot be injective because the rank of the source is bigger than
the rank of the target. �

Remark 7.6. There are other cases in which non-detection results can be estab-
lished. The above proposition is one of the easier ones to formulate, the cases where
ζℓ 6∈ K need some more complicated conditions.

Probably, the above result could be improved by showing that the only summand
with a non-trivial restriction map is one corresponding to the trivial ideal class.

Example 7.7. Let K = Q(ζ23) and S = {(23)}∪S∞. The S-class group of K has
order 3. The induced morphism

Ĥ
•
(SL2(OK,S),F23) → Ĥ

•
(T2(OK,S),F23)

is not injective - the source has two copies of the cohomology of a dihedral extension
of O×

K,S , but the target has only one copy of the cohomology of OK,S . �

Example 7.8. There are infinitely many counterexamples to detection at the
prime 3.

Let m be a positive square-free integer such that m ≡ 1 mod 3. In this case,
the prime 3 is inert in the extension Q(

√
−m)/Q and ramified in Q(ζ3)/Q. In

particular, there is only one place of Q(
√−m, ζ3) lying over the place v3 of Q,

and this place is ramified in the extension Q(
√
−m, ζ3)/Q(

√
−m). The extension

Q(
√
−m, ζ3)/Q(

√
−m) being ramified, the induced map on class groups must be

injective, by class field theory. Moreover, as noted above, (3) remains a prime ideal
in OQ(

√
−m,ζ3). Therefore, the class group of OQ(

√
−m,ζ3)[1/3] is isomorphic to the

class group of OQ(
√
−m,ζ3).

We conclude that the size of the class group of OQ(
√
−m) is a lower bound for

the size of the class group of OQ(
√
−m,ζ3)[1/3]. It is well-known that the only rings

OQ(
√
−m) with trivial class groups occur for m = 1, 2, 3, 7, 19, 43, 67, 163. Moreover,

there are infinitely many S-integer rings of the form OQ(
√
−m,ζ3)[1/3] whose class

group has more than two elements. Each such ring R gives an example where the
restriction map

H•(GL2(R),F3) → H•(T2(R),F3)

fails to be injective, but for which the Quillen conjecture is true above the virtual
cohomological dimension. �

The question for unstable analogues of the Quillen-Lichtenbaum conjecture was
implicit in [DF94], and was raised explicitly in [AR13]. The results of [DF94] show
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that the unstable Quillen-Lichtenbaum conjecture in the situation of linear groups
over S-integers implies detection. The failure of detection as in Proposition 7.5
and Example 7.7 also implies the failure of the unstable Quillen-Lichtenbaum con-
jecture. The above results and their consequences for the Quillen conjecture are
further discussed in [RW14].

8. Application II: on the existence of transfers

Next, we are interested in the existence of transfer maps in Farrell-Tate coho-
mology as well as group cohomology. Transfers in the cohomology of linear groups
have been suggested as one way of establishing the Friedlander-Milnor conjecture
in [Knu01, section 5.3]. In this section, we show examples that demonstrate the im-
possibility of defining transfers on group (co-)homology with reasonable properties.
In particular, we are going to prove Theorem 4. The general setup in this section
will be the following:

Let L/K be a degree n extension of global fields, let S be a set of

places of K and denote by S̃ the set of places of L lying over S.
Let ℓ be a prime different from the characteristic of K.

8.1. Definition of transfer maps. We first recall various relevant notions of
transfers. For a finite covering p : E → B of CW-complexes, there is a transfer map
trp : H•(B) → H•(E) such that the respective composition is multiplication with
the degree: trp ◦ p• = deg p. There are similar transfer maps for cohomology. More
generally, the Becker-Gottlieb transfer provides a wrong-way stable map Σ∞B →
Σ∞E which induces the transfer on cohomology theories. This can be applied to
group (co-)homology to recover the classical definition of transfer: for H ⊂ G a
finite-index subgroup of a group G and a G-module M , there are transfer maps

trGH : H•(G,M) → H•(H,M) and CorGH : H•(H,M) → H•(G,M),

such that the following respective equalities hold where i : H → G denotes the
inclusion of the subgroup:

i• ◦ trGH = [G : H ] and CorGH ◦ i• = [G : H ]

These can be obtained from the (usual or Becker-Gottlieb) transfer applied to the
finite covering BH → BG.

Similar transfer maps can be considered in algebraic K-theory: for a finite flat
map f : X → Y of schemes, there is a K-theory transfer trf : K•(X) → K•(Y ) such
that the composition is the multiplication with the degree: trf ◦f∗ = deg f . There
are a number of generalizations of this concept. We use one of the simpler ones,
cf. [Knu01, section 5.3]: an abelian group-valued functor F : Schop → Ab is said to
admit transfers if for any finite flat morphism f : X → Y there is a homomorphism
trf : F(X) → F(Y ) such that we have trf ◦F(f) = deg f .

We can apply this definition to group homology: for fixed i ∈ N, we have a
functor on the category of smooth affine k-schemes

Hi(SL2(−),Z/ℓ) : Smop
aff /k → Ab : Spec k[X ] 7→ Hi(SL2(k[X ]),Z/ℓ).

One can ask a similar question for cohomology, i.e., if for any finite flat map
f : Spec k[X ] → Spec k[Y ] of affine schemes there is a transfer homomorphism
trf : H•(SL2(k[Y ]),Z/ℓ) → H•(SL2(k[X ]),Z/ℓ) such that the composition is mul-
tiplication with the degree: H•(f) ◦ trf = deg f . It is an implicit question in
the discussion of [Knu01, section 5.3] if group homology functors as above can be
equipped with transfers. To quote Knudson, cf. p.134 of loc.cit.: ”Unfortunately,
there appears to be no way to equip these functors with transfer maps.” In the
following section, we want to make this precise: we will compute the restriction
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maps in Farrell-Tate cohomology, and from these computations it will be obvious
that it is not possible to define transfer maps satisfying the degree condition. Sim-
ilar counterexamples for function fields can be deduced from the computations of
[Wen14a]; counterexamples of a different type are discussed in [Wen14b].

8.2. Description of restriction maps. The next step is an explicit description
of the restriction morphisms

Ĥ
•
(SL2(OL,S̃),Fℓ) → Ĥ

•
(SL2(OK,S),Fℓ).

Recall from Section 6, that we have a splitting of Farrell-Tate cohomology

Ĥ
•
(SL2(OK,S),Fℓ) ∼=

⊕

[Γ]∈K
Ĥ

•
(NG(Γ),Fℓ),

where the set K is given by the quotient of an oriented relative class group modulo
the Galois action, and the group NG(Γ) is the normalizer of the order ℓ subgroup
Γ < G = SL2(OK,S). There are two types of components: if Γ is not contained
in a dihedral group, then NG(Γ) is abelian, determined by a relative unit group.
Otherwise, NG(Γ) is non-abelian and it is a semidirect product of a relative unit
group with an Z/2Z acting via inversion.

In the extension of number rings OK,S → OL,S̃, the following things can happen:

(C 1) Several non-conjugate cyclic subgroups of order ℓ in SL2(OK,S) can become
conjugate in SL2(OL,S̃).

(C 2) A cyclic group which is not contained in a dihedral group in SL2(OK,S)
acquires a dihedral overgroup in SL2(OL,S̃).

(C 3) There appear several new cyclic subgroups of order ℓ in SL2(OL,S̃) which are

not conjugate to subgroups coming from SL2(OK,S).

Now we can discuss the restriction maps on Farrell-Tate cohomology in these
three cases. The straightforward proof of the following proposition is left to the
reader.

Proposition 8.1. Fix an odd prime ℓ. Let K be a global field of characteristic
different from ℓ, let S be a non-empty finite set of places containing the infinite
ones. Let L/K be a finite separable extension of K, and let S̃ be a finite set of
places containing those places lying over S.

(C 1) Assume that exactly the classes [Γ1], . . . , [Γm] ∈ K(K) become identified to a
single component [Γ] ∈ K(L). Then the restriction map

Ĥ
•
(NSL2(OL,S̃

)(Γ),Fℓ) →
⊕

[Γi]

Ĥ
•
(NSL2(OK,S)(Γi),Fℓ)

is the sum of the natural maps induced from the inclusions
NSL2(OK,S)(Γi) → NSL2(OL,S̃

)(Γ).

(C 2) Assume that a cyclic group representing the class [Γ] ∈ K(K) is not contained
in a dihedral group over K, but is contained in a dihedral group over L. Then
the restriction map

Ĥ
•
(NSL2(OL,S̃

)(Γ),Fℓ) → Ĥ
•
(NSL2(OK,S)(Γ),Fℓ)

is given by the natural inclusion of fixed points.
(C 3) The restriction map is trivial on the new components of K(L).
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8.3. Non-existence of transfers.

Theorem 8.2. The functor “Farrell-Tate cohomology of SL2” given by

A 7→ Ĥ
•
(SL2(A),Fℓ)

does not admit transfers. More precisely, there exists a finite flat morphism of
commutative rings φ : A → B such that for no morphism

tr : Ĥ
•
(SL2(A),Fℓ) → Ĥ

•
(SL2(B),Fℓ)

we have φ• ◦ tr = deg φ.

Proof. Let A → B be any extension OK,S → OL,S̃ of degree prime to ℓ such that

situation (C 1) occurs.
For example, we can take OK with non-trivial class group, L the Hilbert class

field for OK and ℓ prime to [L : K]. Let m be the number of classes of order ℓ
subgroups which become conjugate to Γ. By Proposition 8.1, the restriction map
is

Ĥ
•
(NSL2(OL,S̃

)(Γ),Fℓ) →
m⊕

i=1

Ĥ
•
(NSL2(OK,S)(Γi),Fℓ).

The composition φ• ◦ tr cannot be surjective, because the restriction map has its
image contained in the diagonal subring. By the previous choice of ℓ and [L : K],
multiplication with the degree [L : K] will have full rank. Therefore, the two maps
cannot be equal, no matter how we choose tr. �

Example 8.3. To give a specific example, consider K = Q(ζ23). Its class number
is 3, and its group of units is Z10 × Z/46. Therefore, we have

Ĥ
•
(SL2(OQ(ζ23)),F23) ∼= Ĥ

•
(Z10 × Z/46,F23)⊕̃Ĥ

•
(Z10 × Z/46,F23)

〈−1〉

i.e., the Farrell-Tate cohomology SL2(OQ(ζ23)) is given by the restricted sum of
one copy of the Farrell-Tate cohomology of the unit group and one copy of the
−1-invariants of Farrell-Tate cohomology. Note that we have 2 summands because
this is the cardinality of the quotient of the class group Z/3 modulo the inversion
involution. The Hilbert class field of Q(ζ23) is a degree 3 unramified extension

H/Q(ζ23) such that the restriction map K̃0(OQ(ζ23)) → K̃0(H) is the trivial map.
In particular, the restriction map on Farrell-Tate cohomology will factor through
the diagonal map

Ĥ
•
(T2(OH)⋊ Z/2,F23) → Ĥ

•
(Z10 × Z/46,F23)⊕̃Ĥ

•
(Z10 × Z/46,F23)

〈−1〉

No matter how the transfer map

Ĥ
•
(SL2(OQ(ζ23)),F23) → Ĥ

•
(SL2(OH),F23)

is defined, the composition with the restriction map will not be multiplication with 3

on Ĥ
•
(SL2(OQ(ζ23)): multiplication with 3 is invertible in F23, but there are many

classes which are not in the image of the composition. �

Remark 8.4. Similarly, the situation (C 2) obstructs transfers because the in-
clusion of fixed points is not surjective. The situation (C 3) does not obstruct
transfers.

Corollary 8.5. The functor “group cohomology of SL2”, which is given by
A 7→ H•(SL2(A),Fℓ), does not admit transfers.

Proof. Farrell-Tate and group cohomology agree above the virtual cohomological
dimension, which for SL2 over S-integers is finite. In the degrees above the vcd,
the argument of Theorem 8.2 also applies to group cohomology. �
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9. Application III: cohomology of SL2 over number fields

Using the previous formulas for Farrell-Tate cohomology and restriction maps
from Section 6, we can now compute the colimit of the Farrell-Tate cohomology
groups over all possible finite sets of places. This could be interpreted as “Farrell-
Tate cohomology of SL2 over global fields”. The quotes are necessary as Farrell-Tate
cohomology is only defined for groups of finite virtual cohomological dimension. The
goal of this section is to prove Theorem 5.

9.1. Recollection on Mislin-Tate cohomology. In [Mis94], Mislin has defined
an extension of Farrell-Tate cohomology to arbitrary groups. The basic idea behind
the definitions in [Mis94] is to use satellites of group cohomology to kill projectives
in the derived category of Z[G]-modules, and obtain a completed cohomology, cf.
[Mis94, section 2]. For groups of finite virtual cohomological dimension, Mislin’s
version of Tate cohomology agrees with Farrell-Tate cohomology, cf. [Mis94, lemma
3.1]. Moreover, Mislin shows that for K a number field and G = GLn(K), his
version of Tate cohomology can be identified with group homology, cf. [Mis94,
theorem 3.2].

9.2. Colimit computations.

Theorem 9.1. Let K be a number field, and let ℓ be an odd prime. We have the
following three cases:

(1) If ζℓ + ζ−1
ℓ 6∈ K, then

lim
S⊇S∞,finite

Ĥ
•
(SL2(OK,S),Fℓ) = 0.

(2) If ζℓ + ζ−1
ℓ ∈ K and the symbol ((ζℓ − ζ−1

ℓ )2,−1) is non-trivial, then

lim
S⊇S∞,finite

Ĥ
•
(SL2(OK,S),Fℓ) ∼= H•(T(K),Fℓ),

where T(K) denotes the K-points of a maximal torus in SL2.
(3) If ζℓ + ζ−1

ℓ ∈ K and the symbol ((ζℓ − ζ−1
ℓ )2,−1) is trivial, then

lim
S⊇S∞,finite

Ĥ
•
(SL2(OK,S),Fℓ) ∼= H•(N(K),Fℓ),

where N(K) denotes the K-points of the normalizer of a maximal torus in
SL2.

Corollary 9.2. There are cases where Mislin’s version of Farrell-Tate cohomology
does not commute with filtered colimits.

Proof. By results of Krämer [Krä80, Satz 13.3.i], the group PSL2(K) contains a
dihedral group D2n if and only if the symbol ((ζ2n − ζ−1

2n )2,−1) splits.
For K = Q, we have ζ3 + ζ−1

3 ∈ Q, hence PSL2(Q) contains a cyclic group of

order 3. On the other hand, ((ζ6 − ζ−1
6 )2,−1) = (−3,−1) = −1, hence PSL2(Q)

does not contain a dihedral group of order 6. By the above results, we have

lim
S⊇S∞,finite

Ĥ
•
(SL2(OQ,S),F3) = H•(Q×,F3).

In particular, the limit of Farrell-Tate cohomology groups in degree 1 is

lim
S⊇S∞,finite

Ĥ
1
(SL2(OQ,S),F3) = H1(Q×,F3) ∼= HomF3(Q

×/(Q×)3,F3),

which is an infinite-dimensional F3-vector space. However, by [Mis94, theorem 3.2]
there is an isomorphism

Ĥ
1
(SL2(Q),F3) ∼= H1(SL2(Q),F3),
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and the latter is trivial. Therefore, Mislin’s version of Farrell-Tate cohomology does
not commute with directed colimits. �

For an extension of number fields L/K, we can precisely describe the induced
morphism on the colimit of the Farrell-Tate homology - it is induced by the inclu-
sion K× →֒ L×. Again taking a colimit, we arrive at the following “Farrell-Tate
cohomology of SL2(Q)”:

Corollary 9.3. Let K be a number field and ℓ be an odd prime. We fix an algebraic
closure Q of Q. Then we have

lim
Q⊇L⊇Q,S⊇S∞

Ĥ
•
(SL2(OL,S),Fℓ) ∼= H•(N(Q),Fℓ),

where S runs through the sets of places of L containing the infinite places, and
N(Q) denotes the Q-points of the normalizer of a maximal torus of SL2.

Finally, we want to explain how these colimits over Farrell-Tate cohomology
groups allow to provide a reformulation of the Friedlander-Milnor conjecture. For
a discussion of the Friedlander-Milnor conjecture, we refer to [Knu01, chapter 5].
Recall that Milnor’s form of what is now called the Friedlander-Milnor conjec-
ture predicts that for a complex Lie group G, the natural change-of-topology map
H•

cts(G,Fℓ) → H•(Gδ,Fℓ) is an isomorphism, where the source is continuous co-
homology of the Lie group G with the analytic topology, and Gδ is the group
with the discrete topology. On the other hand, Friedlander’s generalized isomor-
phism conjecture predicts that for each algebraically closed field K of characteristic
different from ℓ and each linear algebraic group G over K, another natural change-
of-topology map H•

ét(BGK ,Fℓ) → H•(BG(K),Fℓ) is an isomorphism. From the
rigidity property of étale cohomology, it follows that the Friedlander-Milnor con-
jecture for SL2 over Q is equivalent to the natural restriction map

H•
cts(SL2(C),Fℓ) → H•(SL2(Q),Fℓ)

being an isomorphism. Note that the continuous cohomology

H•
cts(SL2(C),Fℓ) ∼= Fℓ[c2]

is a polynomial ring generated by the second Chern class. Therefore, the Friedlander-
Milnor conjecture for SL2 over Q can be reformulated as the claim that

Ĥ
•
(SL2(Q),Fℓ) ∼= Fℓ[c2].

Combined with our computations of Farrell-Tate cohomology, we can reformulate
the Friedlander-Milnor conjecture for SL2 over Q as the requirement that group
cohomology and “Farrell-Tate cohomology” of SL2(Q) are isomorphic:

Corollary 9.4. In particular, the Friedlander-Milnor conjecture for SL2 over Q

with Fℓ-coefficients is equivalent to both of the two following statements:

(1) The colimit of homology groups of Steinberg modules vanishes:

lim
Q⊇L⊇Q,S⊇S∞

H•(SL2(OL,S), St2(OL,S);Fℓ) = 0.

where as above S runs through the finite sets of places of L containing the
infinite places.

(2) Mislin’s version of Farrell-Tate cohomology commutes with the filtered co-
limit over the intermediate fields Q/L/Q and their finite sets S of places.
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Proof. We denote by µℓ∞ the group of ℓ-power roots of unity in Q. The group

Q
×
/µℓ∞ is uniquely ℓ-divisible. In particular, the inclusion µℓ∞ ⊆ Q

×
induces an

isomorphism

Hq(N(Q),Fℓ) ∼= Hq(µℓ∞ ⋊ Z/2,Fℓ) ∼=
{

Fℓ, q ≡ 0 mod 4,
0, otherwise,

which is what is predicted by the Friedlander-Milnor conjecture.
Let G = SL2(OL,S). To prove Assertion (1), we take the filtered colimit of the

long exact sequence

· · · → Ĥ
•−1

(G) → Hn−•(G, StG) → H•(G) → Ĥ
•
(G) → · · ·

Group cohomology commutes with the filtered colimit, and by the above, the
Friedlander-Milnor conjecture is equivalent to the fact that the colimit of the mor-

phisms H•(SL2(OK,S) → Ĥ
•
(G) is an isomorphism. Since filtered colimits are exact

for Fℓ-vector spaces, the claim follows.
Assertion (2) follows similarly. By [Mis94, theorem 3.2], Mislin-Tate cohomology

of SL2(K) agrees with group cohomology, so the Friedlander-Milnor conjecture is
equivalent to the commutation of Farrell-Tate cohomology with the filtered colimit.

�

Remark 9.5. Note that our computations of Farrell-Tate cohomology above im-
ply that “Farrell-Tate cohomology of SL2(Q)” is in fact detected on the normal-
izer of the maximal torus. This relates our result above to another reformula-
tion of the Friedlander-Milnor conjecture: [Knu01, corollary 5.2.10] shows that the
Friedlander-Milnor conjecture is equivalent to group cohomology being detected on
the normalizer, cf. also the related discussion in [Wen14a].
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New York, 1930 (German). MR0237282 (38 #5572)

[DF94] William G. Dwyer and Eric M. Friedlander, Topological models for arithmetic, Topology
33 (1994), no. 1, 1–24, DOI 10.1016/0040-9383(94)90032-9. MR1259512 (95h:19004)

http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/matrixconj.pdf


ON FARRELL-TATE COHOMOLOGY OF SL2 OVER S-INTEGERS 27

[Dwy98] W. G. Dwyer, Exotic cohomology for GLn(Z[1/2]), Proc. Amer. Math. Soc. 126 (1998),
no. 7, 2159–2167, DOI 10.1090/S0002-9939-98-04279-8. MR1443381 (2000a:57092)
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