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Abstract

Given a meromorphic linear differential system with several levels,
we prove that the Borel transforms of its highest level’s reduced formal
solutions are summable-resurgent and we give a complete description
of all their singularities. Then, as an application and under some con-
venient hypothesis on the geometric configuration of singular points,
we state formulz to express some highest level’s Stokes multipliers of
the initial system in terms of connection constants in the Borel plane,
generalizing thus formulee already displayed by M. Loday-Richaud and
the author for systems with a single level. As an illustration, we de-
velop three examples.

Keywords. Linear differential system, multisummability, Stokes phe-
nomenon, Stokes multipliers, resurgence, singularities, connection constants
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1 Introduction

All along the article, we are given a positive integer r > 1 and a linear
differential system (in short, a differential system or a system) of dimension
n > 2 with meromorphic coefficients of order r + 1 at the origin 0 € C of the
form

ay
(A) ;c”l% =A(z)Y , A(z) € M,(C{z}), A(0)#0
together with a formal fundamental solution Y (z) = F(z)zLe?/2) at 0

where



o F(z) € GL,(C[[z]][z7Y]) is an invertible matrix with formal mero-
morphic entries in x,

J
o [ = @Lj with J an integer > 2 and L; := A;I,,, + Ju,; I,,, denotes
j=1
the identity matrix of size n; and

0 1 0

oy =
: -1
L0 -~~~ - 0

is an irreductible Jordan block of size n;,

J

1 1

=) = @q; (=) L, with the ¢;(1/x)’s polynomials of maximal

- <JJ> je}lqy (x) s W e ¢;(1/z)’s polynomials of maxima
degree equal to r with respect to 1/z.

For very general system (A), the ¢;(1/x)’s may be polynomials in a frac-
tional power in 1/x. However, they can always be changed into polynomials
in the variable 1/z itself by means of an adequate finite algebraic extension
x — x¥, v > 1, of the variable x; henceforth, we suppose, without loss of
generality, that the ¢;(1/x)’s read as

1 Qiy Qi a; 1 1
o(L) =t B L]
x T x x r |

for all 7 =1, ..., J. In addition, we suppose

(C1) F(z) € M,(C[[z]]) is a formal power series in x satisfying
F(z) = I, + O(z"),

(C2) the eigenvalues \; satisfy 0 < Re(\;) < 1lforall j=1,...J,
(C3) Ay =0and ¢; =0.

Recall that these conditions are not restrictive since they can always be ful-
filled by means of a convenient meromorphic gauge transformation Y
T(x)x e /2y where T(z) has explicit computable polynomial entries
in z and 1/x (cf. [4]). Recall also that conditions (C1) and (C2) guarantee



the unicity of F (x) as formal series solutions of the homological system asso-
ciated with system (A) (cf. [4]); condition (C3) is for notational convenience.

Under the hypothesis that system (A) has the unique level r > 1 (see
definition 2.1 below for the exact definition of levels), M. Loday-Richaud
and the author proved in [14] (case r = 1) and [24] (case r > 2) that the
formal Borel transforms F¥(r) of the r-reduced series F"(t), u =0,...,r—1
and t = 2", of F(z) (= the sub-series of terms r by r of F(z)) are summable-
resurgent; then, they displayed exact formula relating the Stokes multipliers
of F(z) and the so-called connection constants given, in the Borel plane, by
some convenient analytic continuations of the F(r) at their various sin-
gular points, providing thus an efficient tool for the numerical calculation of
the Stokes-Ramis matrices associated with Y (z).

These two results were generalized later by the author in [23] to the first
(= lowest) level r; of any meromorphic linear differential system with several

levels by considering the ri-reduced series of F(z).

In the present paper, we suppose that system (A) has multi-levels, say
ry < .. < 71pqg < 71p with p > 2. Our aim is to extend the results above
to the highest level r,. To this end, we proceed in a similar way as [24] by
considering the r,-reduced system (A) associated with system (A) to which
the r,-reduced series of F(x) are intimitely related (see [12] for instance).

The organization of the paper is as follows. In section 2, we briefly recall
some basic definitions and properties about the multisummation theory we
are needed in the sequel. In particular, we recall the factorization theorem
of the Stokes-Ramis matrices due to M. Loday-Richaud and J.-P. Ramis
([11,21,22]) and its link with a convenient generalized multisummability. In
section 3, we introduce the r,-reduced system (A) associated with system
(A) and we give some relations between its formal solutions and the highest
level’s Stokes multipliers of F (). Then, by adapting the method developed
in [24], we prove in section 4 the summable-resurgence of the formal Borel
transforms of the r,-reduced series of F(z) (section 4.3, theorem 4.9) and
we give a complete description of all their singularities (section 4.4, theorem
4.24). This we use in section 5 to state, in the case of a Special Geometric
Configuration of singular points, some highest level’s connection-to-Stokes
formule which generalize, for highest level’s Stokes multipliers of system
(A), formulee already given in [14,23,24]. As an illustration of all the results
of this article, we develop in section 6 three examples.

In the whole paper, we denote by



e C the Riemann surface of the logarithm,

e O(V) the space of analytic functions on an open set V' of C or (N:; in

particular, O(C) (resp. O(C)) denotes the space of entire functions on

all C (resp. C),

e O := C{t} the set of germs of analytic functions at 0 € C and O the set
of germs of analytic functions at 0 € C; recall that one has a natural
injection O — O.

2 Multisummability and Stokes phenomenon

In this section, we recall, for the convenience of the reader, some basic defin-
itions and results of the summation theory.

2.1 Levels and anti-Stokes directions

Split the matrix F(z) into J column-blocks fitting to the Jordan block-
structure of L (for £ = 1,..., J, the matrix F'**(z) has n, columns):

Fo) = [F(@) F*2(x) - F(@)].

< Levels. Given a pair (g;,g,) of polynomials of ¢) such that ¢; # g, we

denote | .
QG ,
(45 — ae) (;) ==, to <:BW) , aje# 0.

Definition 2.1 (Levels) We call

o levels of system (A) associated with F(z) (in short, levels of F(z)) all
the degrees r,, for j,¢ =1, ..., J such that ¢; — ¢, # 0;

o levels of system (A) associated with F*'(z), ¢ € {1,...,J} (in short,
levels of F*‘(x)) all the degrees r;, for j = 1,..., J such that ¢; —q, # 0.

Note that, according to the normalizations of system (A), all the levels
are integers. One sometimes refers to this case as the unramified case.

Let us now denote by R := {r; < ... < r,} with p > 1, the set of all

the levels of F'(z). We have r; > 1 and 7, < r the rank of system (A).
Actually, if r, < r, all the polynomials ¢;, j =1, ..., J, have the same degree



r and the terms of highest degree coincide; one then reduces this case to the
case r, = r by means of a change of unknown vector of the form Y = Ze?(1/2)
with a convenient polynomial ¢(1/z) € z7!C[z~!]. Recall that such a change
does not affect levels or Stokes-Ramis matrices of system (A).

As we said in section 1, we suppose from now on that p > 2, i.e., sys-
tem (A) has at least two levels; otherwise, system (A) has the unique level
ry =r, = r and we refer to [14,24].

Let us also denote by R := {rg) << 7“,(,?} with p, > 1, the set
of all the levels of F*(z), ¢ = 1,...,J. We clearly have R(®) C R, 7«9 >1
and r\) = r, = r. Note that R) may be the singleton R = {r}, i.e.,
F*!(z) may have the unique level . Note also that, since condition (C3)
above implies ¢; = 0, the set R of all the levels of the first column-block
F *1(x) of F (x), is actually the set of all the degrees of polynomials g; # 0.

4 Anti-Stokes directions. We are now able to define the anti-Stokes dir-
ections (= the singular directions) of system (A).

Definition 2.2 (Anti-Stokes directions) We call

e anti-Stokes direction of system (A) associated with polynomial q; —qe 7
0 (in short, anti-Stokes direction of q¢; — g, # 0) any direction along
which the exponential e(%~9%)(1/%) has maximal decay, i.e., any direction
0 = arg(a,e)/Tje modé—: along which —a;¢/x"7¢ is real negative; when

;¢ = 11, such a direction is said to be of k' level (or of level ry,);

e anti-Stokes direction of system (A) associated with F(z) (in short, anti-

Stokes direction of F(z)) any anti-Stokes direction of polynomials ¢ —
q Z0for j,0=1,..,J;

e anti-Stokes direction of system (A) associated with F**(z), ¢ € {1, ..., J},
(in short, anti-Stokes direction of F*‘(x)) any anti-Stokes direction of
polynomials ¢; — g, 0 for j =1,...,J.

Note that a given anti-Stokes direction may be of several levels. Note
also that the denomination “anti-Stokes directions” is not universal; indeed,
such directions are called sometimes “Stokes directions”.

Definition 2.3 (Stokes values) Let k € {1,...,p}. We call

o k' level’s Stokes values (or of level ry,) of system (A) associated with
F(z) (in short, k™ level’s Stokes values of F(z)) all the a;, generating
the k' level’s anti-Stokes directions of F'(z);



o k' level’s Stokes values (or of level ry,) of system (A) associated with
Ft(x), £ € {1,..., J}, (in short, k' level’s Stokes values of F**(z)) all
the a4, j = 1,..., J, generating the k™ level’s anti-Stokes directions of
F(z).

Note that, as anti-Stokes directions, Stokes values may be of several levels.

2.2 Multisummability

Recall that a formal power series h(t) € C[[t]] is said to be Borel-Laplace sum-
mable of level k > 0 (or simply k-Borel-Laplace summable or k-summable)
in a direction 6 € R/27Z if the following two conditions are satisfied:

1. the formal Borel transform Bi(h)(7) of level k of h(t) is convergent
(i.e., h(t) is 1/k-Gevrey),

2. its sum can be analytically continued in a function sm;g(Bk(ﬁ))(T) !
on a sector bisected by 6 with an exponential growth of order < k at
infinity.

Then, the k-sum Sk;g(%) (t) of h(t) in the direction 6 is given by

Sk:0 (%) = Ek;&(soo;e (Bk (TL)))

and thus defined an analytic function 1/k-Gevrey asymptotic to hona germ
of sector with vertex 0, bisected by 6 and opening larger than m/k 2.

The notation L, denotes the Laplace transformation of level & in direc-
tion ¢. For precise definitions and properties of operators By and Ly, we
refer, for instance, to [19].

The summation of several levels k := (k; < ... < k;), s > 2, is more com-
plicated. It was investigated in great details by many authors and several
equivalent definitions based on various methods such as asymptotic, cohomo-
logy, integral operators, ... were given. See for instance [1-3,6,11,15,19]. In
this section, we focus on two of them —the so-called accelero-summation and
iterated Laplace method— which “extend” the Borel-Laplace summation.

LCompare with the notation s..9(Bx, (h)) of definition 2.6 below.
2When opening is < 27, the sector can be seen as a sector of C\{0}; otherwise, it must
be considered as sector of C.



<4 Accelero-summation. Historically, this approach was the first able to
solve the problem of multisummation. First introduced by J. Ecalle in a very
general setting applying to series solutions of non-linear equations and more
general functional equations, it was adapted by J. Martinet and J.-P. Ramis
in [19] to the case of solutions of linear differential equations. The method
proceeds by recursion on increasing levels and each step is performed with
the use of special integral operators called accelerators or Ecalle’s accelerat-
ors.

Let Ay o denote the accelerator of levels 0 < k£ < k' in direction
6 € R/27Z. (see, for instance, [19] for its precise definition and properties).
Recall however that L., applies to any function with exponential growth of
order < k at infinity in direction 6 and Ay i, applies to any function with
exponential growth of order < &’ := k’'k/(k’ — k) at infinity in direction 6.

Definition 2.4 ([19, Def. 2, p. 343]) Let s > 2 and k := (k1 < ... < ky)
a s-tuple of positive real numbers. Denote

kjrik;

—————for j=1,....,s — 1 and K, := k.
Bk

/ij =

A formal power series h(t) € C[[t]] is called k-summable in a direction 6 €
R/27Z if the following two conditions are satisfied:

1. the formal Borel transformation By, (h)(7) of level k; is convergent and
its sum can be analytically continued along # in a function Bkl;e(%) (1)
on a sector bisected by 6 with an exponential growth of order < k; at
infinity,

2. for j = 2, ..., 5, the functions h;,s recursively defined by

hjso := Ak s _1:0h-150 , hip := Biyo(h)

J

can be analytically continued along ¢ in a function, still denoted by /.,
on a sector bisected by ¢ with an exponential growth of order < k; at
infinity.

Then, the k-sum syo(h)(t) of h(t) in the direction 6 is given by

s0(h) = L0 Ak, ko 10 Abs s :0Brs0(h)

and thus defined an analytic function 1/k;-Gevrey asymptotic to hona germ
of sector bisected by 0 and opening larger than 7 /ks.



Remark 2.5 If k' := (K} < ... <k,)and k := (k; < ... < ks) with1 < &' < s
satisfy {1, ..., k., } C {ki,..., ks}, then K’-summability implies k-summability;

furthermore, the two sums s;/.,4(h) and sy(h) coincide.

< Iterated Laplace method. This method is due to W. Balser. It pro-
ceeds, unlike the accelero-summation, by recursion on decreasing levels and is
based on the fact that a convenient formal Borel transformation of a formal
series is itself (multi)-summable. Definition 2.6 below makes explicit this
method:

Definition 2.6 ([1]) Let s > 2 and k := (k1 < ... < ks) a s-tuple of positive
real numbers. Denote

ksk;
ks — k;

Kj = forj=1,...,s — 1.

A formal power series h(t) € C[[t]] is called k-summable in a direction 6 €
R/27Z if the following two conditions are satisfied:

1. the formal Borel transformation By, (h) of level kg is k-summable in the
direction 0 with k1= (k1 < ... < Ks_1),

2. its k-sum S,.9(Bk,(h)) can be analytically continued along ¢ in a func-

tion, still denoted s,.9(By,(h)), on a sector bisected by ¢ with an expo-
nential growth of order < k; at infinity.

Then, the k-sum Sh;e(}z)(t) of h(t) in the direction 6 is defined by

si0(h) = Lig0(s0(Br, (h))).

Remark 2.7 One can show that the two k-sums given by definitions 2.4 and
2.6 coincide (see, for instance, [13]).

Lemma 2.8 below, which will be us useful later, relates the two methods
of summation above by making explicit the sum s,.(By,(g)) in terms of
accelerators.

Lemma 2.8 With notations as above,

55;9(8165 (h)) = Aks,ksfﬁe'"Ak27k1;68k1§9(h)'

Let us now turn to the formal factor series F(z) of }7(:1:)



< Multisummability of F(z). One has the following theorem:
Theorem 2.9 ([3,6,11,15,19])

1. Let 0 € R/277Z be a non anti-Stokes direction of F(z). N
Letr = (r; < ... <r1p_1 <) be the p-tuple of all the levels of F(x).

Then, F(x) is r-summable in the direction 6.

2. More precisely, let £ € {1,...,J}, 0 € R/27Z a non anti-Stokes dir-
ection of F**(z) and r¥ := (rg) <. < 7"](3?_1 < 1) the p-tuple of all
the levels of F*(x).

Then, F*(z) is r®-summable in the direction 0.

We are now able to define the sum of Y (z): let § € R/27Z be a non anti-
Stokes direction of F () and a choice of an argument of 6, say its principal
determination 6% €] — 27,0] 3. Then, the sum Yy(z) of Y (z) in direction 0
is given by

Yo(2) := 500 () (1) Yo- (),

where Yj.- (%) is the actual analytic function Yp.g-(z) := 12?1/ defined by
the choice arg(z) close to 6* (denoted below by arg(x) ~ 0*).

2.3 Stokes phenomenon and Stokes-Ramis matrices

Let 6 € R/277Z be an anti-Stokes direction of F(z) and Sp0- (F) and s£;9+(f)
the two lateral sums of F'(x) at 6 respectively obtained as analytic continu-

ations of s,.9_p(F) and s,.6,,(F) to a sector with vertex 0, bisected by # and
opening 7 /r. Note that such analytic continuations exist without ambiguity

when 7 is small enough.

< Stokes phenomenon. The Stokes phenomenon of system (A) stems
from the fact that the sums s,.p- (F) and sz;9+(f ) of F(z) are not analytic
continuations from each other in general. This defect of analyticity is quan-
tified by the collection of Stokes-Ramis automorphisms Ste+ : Yo+ —— Y-
for all the anti-Stokes directions 6 € R/27Z of F(z), where Yy+ denote the
sums of Y (z) defined, for arg(z) ~ 6*, by Ype (z) := Sy-0+ (F)(z) Yo, ().

3 Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 < arg(z = 1/x) < 27 of the principal determination at infinity, we
suggest to choose —27 < arg(z) < 0 as principal determination about 0.
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< Stokes-Ramis matrices. The Stokes-Ramis matrices* are then defined
as matrix representations of the Sty«’s in GL,,(C):

Definition 2.10 (Stokes-Ramis matrix) One calls Stokes-Ramis matric

associated with Y (x) in direction 6 the matrix of Stg« in the basis Yy+. We
still denote it by Stgy«; it is uniquely determined by the relation

Yy-(2) = Y+ (2)Stee  for arg(x) ~ 6*.

Let us now split Stg« = [StJ] into blocks fitting to the Jordan block-
structure of L (for j,¢ =1, ..., J, the matrix Stgf has size n; x ng). Then,
0 0  if § is not an anti-Stokes direction of ¢; — ¢
When 6 is an anti-Stokes direction of ¢; — ¢, the entries of Stgf are called
Stokes multipliers of F*‘(x) in direction 0.

< Factorization of Stokes-Ramis matrices. The factorization of Stg-
by levels was first proved by J.-P. Ramis in [21,22] by using the factorization
theorem of F (x); a quite different proof based on Stokes cocycles and mainly
algebraic was given later by M. Loday-Richaud in [11].

Theorem 2.11 (Factorization of Stg«, [11,21,22]) With notations as above,
the Stokes-Ramis matrixz Stg« can be written as

Stgr = Stige...Styge . Stier = [Sty.] € GL,(C)
where, for all k =1,...,p,

St { Ly ifj=t¢

K0T 1 0 if 0 is not an anti-Stokes direction of q; — qo or 150 # T,

Definition 2.12 (k™" level’s Stokes multipliers) Let k € {1, ..., p}.

1. The matrix St is called k" level’s Stokes-Ramis matriz (or Stokes-

Ramis matriz of level ry,) associated with Y () in direction 6.

4In the literature, a Stokes matrix has a more general meaning where one allows to
compare any two asymptotic solutions whose domains of definition overlap. According to
the custom initiated by J.-P. Ramis [22] in the spirit of Stokes’ work, we exclude this case
here. We consider only matrices providing the transition between the sums on each side
of a same anti-Stokes direction.



11

2. When 0 is an anti-Stokes direction of ¢; — ¢, and r;, = ry, the entries
of St%* are called k' level’s Stokes multipliers (or Stokes multipliers

of level 1,) of F**(z) in direction 0.

Recall that the lowest level’s (= first level’s) Stokes multipliers of St{ig*
coincide with the Stokes multipliers of Stg;f.

Recall also that, in the present paper, we are interested in the highest
level’s (= p'™ level’s) Stokes multipliers of St%*. To this end, we need to

introduce the notion of multisummability along a path (0, ) with a direction
6 € R/277Z and a p-tuple € = (e, ..., ) with ; = +1 (see [19]).

2.4 Generalized multisummability

The notion of multisummability along a path (6,¢), which is based on the
accelero-summation (see definition 2.4), is given in the following definition:

Definition 2.13 ([19, Def. 3, p. 351]) Let s > 2and k := (k1 < ... < ky)
a s-tuple of positive real numbers.

Let 0 € R/27Z be a direction and h(t) € C][[t]] a k-summable formal series
in every direction ¢’ €]0 — 1,0 + n[\{f#} with n > 0 small enough.

Let ¢ := (g1, ...,65) with g; € {—1,+1} foralli =1, ..., s.

One says that h(t) is k-summable along the path (6, ¢) if

(2.1) ﬁks;gss Aks,ks_l;essfl ...Ak2,k1;961 Bk1;951 (h)

exists. Then, the function (2.1) thus defined is analytic on a germ of sector
with vertex 0 and bisected by 6; it is called the sum of h(x) along the path
(0,e). We denote it by syg.(h).

Remark 2.14 Laplace operator Ly, -5, accelerators Akj L1kje5 and sum

By, .01 (h) are defined in the same way as the sums s,.+(F) (cf. section
2.3 above). Furthermore, to make sense in expression (2.1), the analytic con-
tinuations of the sums Ay 1 g% (...) for j =1,..., s are, of course, along the
direction ¢+,

Back to F(z), we have the following theorem:

Theorem 2.15 ([19, Thm. 9, p. 366]) Let 0 € R/27Z be an anti-Stokes
direction of F(x). Let € = (e1,...,ep) with e; € {—1,+1} foralli=1,...,p.
Then, F(z) is r-summable along the path (0,¢).
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As in theorem 2.9, a more precise statement can be given for each column-
block F*‘(z) of F(z).

For 6 and ¢ as in theorem 2.15, we defined the sum Yp . (x) of Y (z) along
the path (6,¢) by

Yo () := 8p0.(F)(x)Ype(x) for arg(z) ~ 0"

Note that for ¢ = (—1,...,—1) = — (resp. ¢ = (+1,...,+1) = +), the sums
Yy and Yp- (resp. Yp 4 and Yj+) coincide.

The comparison between sums Yy . and Yy o for different ¢ and ¢’ yields a
generalized Stokes phenomenon: given € # €', there exists a unique invertible
matrix St52 € GL,(C) such that

(2.2) Yo (z) = Ybé/(ﬂf)st%f, for arg(z) ~ 6.
Note that St,," = St. the Stokes-Ramis matrix associated with Y (z) in the
direction #. More generally, a convenient choice of € and &’ allows us to obtain
all the k™ level’s Stokes-Ramis matrices Sty.g+ for k = 1,...,p. Theorem 2.16
below precises this point in the case of the highest level’s Stokes-Ramis matrix
St,.e« (recall that the aim of this paper is the calculation of this one).

Theorem 2.16 ([19, Thm. 9, p. 366]) Let 0 € R/27Z be an anti-Stokes
direction of F(z).

Lete =(—1,....,—1) and & = (—1,...,—1,+1) with a “+1” only at index p.
Then, St%’fl = St,.p« the highest level’s Stokes-Ramis matrixz associated with
Y (z) in direction 6.

Theorem 2.16 will be us useful in next section 3.2 below.

3 Setting the problem

Any of the J column-blocks F*¥(z), ¢ =1, ...,.J, of F(z) associated with the
Jordan block-structure of L can be positioned at the first place by means of
a convenient permutation P on the columns of ?(x) Furthermore, the same
permutation P acting on the rows of }7(56) also allows to keep initial nor-
malizations of }7(1:), precisely, the new formal fundamental solution P?(x)P
reads

PY (z)P = PF(z)Pz" PPl RQUMP with PF(2)P = I, + O(x").
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Consequently, without loss of generality, we can restrict our study to the first

column-block F*!(z), which we denote below by f(z). Note that the size of
f(z)is n xny: f(z) € My, (Cllz]]).

The goal of this paper is double:

L. prove a summable-resurgence theorem for the formal Borel transforms
F¥(7) of the r-reduced series fI"(t),u = 0,....,r — 1, of f(x),

2. display explicit and exact formulee relating the highest level’s Stokes
multipliers st)’5. := Stij;l* of f(x) and the connection constants given
by some convenient analytic continuations of the f*(7)’s at their vari-
ous singular points.

Recall that the formal series f[(t) are intimitely related to the classical
method of rank reduction and are uniquely determined by the relation

@)= FO@) +af W@y + .+ 27 @),

Before starting the calculations, let us begin by recalling some general
results on the rank reduction.

3.1 Rank reduction

For the convenience of the reader, we briefly recall in this section some results
on the rank reduction, such as the r-reduced system associated with system
(A) and the structure of the r-reduced formal fundamental solution associated
with }7(33), which will be used in next section 4. For more details, we refer,
for instance, to [12].

< r-reduced system. The method of rank reduction is a procedure allow-
ing to associate with system (A) a system with meromorphic entries, rank 1
and having as formal fundamental solution the matrix

f/(tl/r) f/(ptl/r) ?(pr—ltl/r)
B (tl/r)—li}(tl/r) (ptl/r)—li}(ptl/r) (pr—ltl/r)—li}(pr—ltl/r)
Y(t) = . , .
(tl/r)—(r—.l)f/(tl/r) (ptl/r)—(r—.l)?(ptl/r) (pr_ltl/r)_(T_.l)?(pr_ltl/T)
with p := e~27/"_ also called r-reduced formal fundamental solution associ-

ated with ?(:c) It is well-known that this problem admits a unique solution:
the so-called r-reduced system
dYy

(A) rt2% =AY
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associated with system (A), where A(t) € M,,(C{t}) is the rn x rn-analytic

matrix defined by

[ Al A
All (t) Al (t)
At) = : :
are)
with A%(t), ...,

has, by construction, levels < 1.

tAl (1)

: r—1
AL APy
Al AP

A=1(¢) the r-reduced series of A(x). Note that system (A)

Let us now precise the structure of the r-reduced formal fundamental

solution Y ().

< r-reduced formal fundamental solution.

As before, we denote by

FO@), ..., FI-1() the r-reduced series of F (z). Then, the r-reduced formal
fundamental solution Y(t) reads as Y (¢) = F(t) Yo(t) where

[ FO()
FU(¢)

f‘[r—l] (Zf)

and

(t%)/\oe@o(t)
_ (t%)Aler(t)
Yo(t) =

(t1)Ar-1eQ0®)  (p7)Ar-1Q10)

with, for all K =0,....,r — 1,

1

tFIr=1(¢) tFU(t) ]
F() :
FO(t) tFIr-1()
Filt)  FU() |
(ptr)Aoe@® (pr—Ler )hoeQr-1(t)
(pt%)Alte(t) (}07“—125%)/\16@7«—1@)

(prflt%)Ar—l eQr—l(t)

J
Qk(t) = Q (W) s Ak = L — k’]n = @A]‘,k s Ang = Lj — k’]n]
7j=1

Note that initial condition F(z) = I,, + O(z") implies F(t) = I,,, + O();
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note also that the matrix of the first ny columns of F(t) is the matrix

Fo)
(3.1) F(t) =

formed by the r-reduced series of f(z). Thereby, it is equivalent to work with
the r-reduced series f " (t) of with f (¢). In the rest of the article, we make

the choice to work with f (¢) rather than with each F(t). Of course, all the
results which will be stated for f(¢) wil be immediately transposable to the

FUys.

To end this section, let us give some classical results about the multisum-
mability of the formal factor series F'(t) € M,,,(C][[t]]).

< Multisummability of F(£). Let 6 € R/27Z be a non anti-Stokes dir-
ection of F'(z). Then, the r-summability of F'(x) in direction 6 (cf. theorem
2.9) implies the r-summability of F'(t) in direction 0 := rf with

r=(rMm<..<r,1<1) , 7= %
More precisely, split
F(x) = [Fei(t) F2(t) - For(1)]
into 7 column-blocks F**(t) of size rn x n; then, each
Ijﬂcw(t) _ [f"?”’l(t) fp.;u,Q(t) f\o;’u,](t)}

into J column-blocks f”;”’e(t) of size rn x n, according to the Jordan block-

0)

structure of matrix L. Then, for all v =1, ..., 7, f‘"“’g(t) is 7(¥-summable in

direction 0 with

0 = (rﬁ’f) <. < r](oi)fl <1) 'r'g»é) =J

In the same way, the r-summability of F (x) along a path (0,¢g) (cf. the-
orem 2.15) implies the r-summability of F'(t) along the path (8,¢); the sum
Yo (t) of Y(t) along the path (8,¢) is defined similarly as the sum Yp.(z).



16

Notation 3.1 In the sequel, we shall use the following notations:

e Given a matrix M of size m x rn with m > 1, we split M into column-
blocks in the same way as F'(t):

— M is first split into r column-blocks M*", v = 1,...,r, of size mxn
according to the block-structure of matrix Y(t),

— each M*?" is then split into J column-blocks M*%* ¢ =1, ..., J, of
size m x ny according to the Jordan block-structure of matrix L.

e We shall also use a row-blocks splitting:

— Given a matrix M of size n x m with m > 1, we split M into
J row-blocks M7*, j = 1,...,J, of size n; X m according to the
Jordan block-structure of matrix L,

— Given a matrix M of size rn x m with m > 1, we first split M
into r row-blocks M**, u =1, ...,7, of size n X m according to the
block-structure of matrix Y (t); then, each M** into J row-blocks
M™7® of size nj x m as above.

Let us now turn to the study of the highest level’s Stokes multipliers of
the first ny columns f(z) of F'(x).

3.2 Highest level’s Stokes multipliers and rank reduc-
tion

As we said at the beginning of section 3, we restrict our study to the highest
level’s Stokes multipliers st’?5 21+ of the first column-block f(z) of F(x).

According to the normalization ¢; = 0 and definitions 2.2-2.3, the highest
level’s anti-Stokes directions of f(z) are all the directions of maximal decay
of exponentials e% /%) with polynomials q; of degree r, i.e., all the collections
of the r directions 0y, 61, ..., 0,_1 € R/277Z regularly distribued around the
origin * = 0 which are given by the r'" roots of the nonzero highest level’s
Stokes values a;, # 0 of f(z). For such a collection (6y),

e we denote 0 := rfy (hence, 8 = rf, for any k) and
Qo :={ajr # 0 ; arg(a;,) = 0}

the set of all the highest level’s Stokes values of f(z) generating (6,);
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e we choose as principal determination 65 €| — 2, 0] of 6, the argument

*(a;, 2k
= arg ?(na], ) - TW , arg*(a;,) €] — 2m, 0],

in order that the 0;’s satisfy
—2m <O, <..<07<65<0.

In particular, identity (2.2) and theorem 2.16 imply that the Stokes-
Ramis matrice St,+ are uniquely determined, for all k = 0,...,r — 1,
by relations

Yo (p'z) = Yek,é’@kl’)Stp;G,; for arg(z) = 65 and p = e 27/".

By definition of rank reduction, direction € is a highest level’s anti-Stokes
direction (i.e., an anti-Stokes direction of level 1) of f(¢). Then, section 3.1
above and [12, Prop. 4.2] imply the following proposition:

Proposition 3.2 Let ¢ and €' as in theorem 2.16. Then,

r—1
(3.2) Yg,g(t) = Ygé/(t) (@Stp;gz) fOT’ arg(t) ~ 0*.
k=0

Let us now write the Stokes-Ramis matrices St,, or 10 the form Stp;gz =

I, + Cpr (we have C? g* = St]’a* if j # ¢ and 0 otherwise). Identity (3.2)
has the followmg “addltlve” form

3£;9,§(1N7‘)(t) - Sr;e,g’(f?)(t) = Sri6.¢ (F ) Yoo+ ( (@Op 0*) Yoo+ )™

where Yo.e+(t)! is the matrix

(tfi)Age—Qo(t) (t*%)Ale_QO(t) (tii) T 1€—Q0(t)
1| (pt7)toe@® (pt=r)Me@® o () @O
r : : :
(71 Yoem @O (ol b L (i@l

Hence, in restriction to the first n; columns, the identity

(3.3) Sr:0.e(f)(t) = Sr0.e(F)(t) = sp0.e (F) ()M e+ (t)
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where M p.+(t) is the rn x nj-matrix defined by

<
[aary

S|

(pkt%) Jou— 18t;> ;* (Pkt%)_‘]”l e%(1/(PFE ) if ajr € Qpo

MYI*(t) = 0

p;0*

e
I

otherwise

o

forallu=1,..,rand j =1,..., J. Recall that A;, 1 = L; — (u—1)I,,.

As we said in section 3.1.3, f(t) is r(M-summable with

(1)
@ ._ (D 1) M ._
ro=(rp <o<r, <1) ,r = . —, ;> 1L
In particular, f(t) is 1-summable when p; = 1 and multi-summable other-
wise. Then, applying remark 2.5, lemma 2.8 and definition 2.13, this brings
us to the following result:

Lemma 3.3 Let ¢ and ¢’ as in theorem 2.16. Then, the sums Sp.o.(f)(t)
and Sy (f)(t) read as the Laplace integrals

{ smo(F)(0) = Lig-(Fo)() 7 )

=Ly g- K s
2(F)(0) = Lig+ (For)) o,

where f = Bl(_?) and where p is defined by

/\

o0 ifp=1
W= 1 1 1 ri! rit . :
£ (pg )7 "'7p1(71)—1)7 p; : = ’ (1) = ’ (1) prl > 2
J

Hence, according to identity (3.3), the following proposition:
Proposition 3.4 Let &' as in theorem 2.16. Then, for arg(t) ~ 6*,

(3-4) (Lio- — L1o+)(F o)) = smo.0 (F) ()M g0 (1)

where the matriz M ,.+(t) is given by relations above.

Note that relation (3.4) characterizes all the highest level’s Stokes mul-
tipliers of f(x) in terms of function fo (7). This function (in fact, a more
general function) is studied in great details in next section 4. In particular,
we prove that it is summable-resurgent and we give a description of all its
singularities.
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4 Summable-resurgence and singularities

In this section, we fix a non anti-Stokes direction 6 € R/277Z of F(z) and we
set, as before, 8 := rf. According to the properties of (multi)-summability
of formal series F*(t) previously given, we can define, as in lemma 3.3, the
functions Fy*" := 82(5);9(F.;v’€) where F** := B;(F**‘) and where p() is
defined by

00 ifpp=1
0 ._ A0 0
p = ¢ ¢ ¢ . .
- (pg )7 "'7p](9[)—1)7 Pg) = 1 ’ 0 = ! © if pp > 2

Recall that p, denotes the number of levels of F *(x). Recall also that
F3"" is analytic on a disc centered at 0 € C when p, = 1 (indeed, F**(t)
is 1-summable, hence, 1-Gevrey) and is analytic on a sector with vertex 0,

bisected by € and opening larger than 7/ p;i)_l = ﬂ(r—r;i)_l) / 7“1(0?_1 otherwise.

_ The aim of this section is to study the analytic continuations of f.g =
F;l’l outside its domain of definition V(fg). In particular, we shall prove
that fg(T) is summable-resurgent (theorem 4.9) and we shall give a complete
description of all its singularities in the Borel plane (theorem 4.24)°. To this
end, we shall proceed similarly as in [24]: we first reduce system (A) into
a convenient scalar linear differential equation with polynomial coefficients
(section 4.2 below); then, we compare fg with some “solutions” (precisely
actual or micro-solutions) of its Borel transformed equation.

Before starting the calculations, let us begin by recalling some classical
results about the Borel transformation, both formal and functional versions.

4.1 Borel transformation

< Formal Borel transformation. Let us begin by some recalls about the
formal Borel transformation:

SEven if these two results are obtained for fg, they can be obviously extended to the
other column-blocks F;””e. Indeed, when v = 1, the block F*1¢(t) is formed, for all
¢ €{2,...,J}, by the r-reduced series of F*(z) (compare with the definition of f (£)) and,
to normalize F*(z) as f(x), one has just to multiply by z=>¢e~9(1/2)  As for the blocks
f‘;;v’é with v € {2, ...,7}, it clearly results from the definition of F(t) that they have same

. e;l,l
properties as F g™,
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1. The formal Borel transformation

Zamtm — h = dag + Zam —

m>0 m>1

is an isomorphism from the C-differential algebra (C[[t]],+,-,#*4) to
the C-differential algebra (6C @ C[[7]],+,*,7-) that Changes ordinary
product - into convolution product * and derlvatlon t2 ; into multlphc—

ation by 7. It also changes multlphca,tlon by = into der1vat1on 4 In
particular, it changes derivation 4 dtk into df,;rll (7"“#) for any k > 1.

2. If h(t) € O is analytic at the origin 0 € C, then /E(T) defines an entire
function on all C with exponential growth of order < 1 at infinity:

h(t) € O<(C).

< Borel transformation. Let us now consider the functional version of
the Borel transformation. It is given, in each direction § € R/27Z, by the
integral
1 dt
Bi.o(h(t = — h t)e™/t=
L)) = 5 | WD
where 7y denotes the image by ¢t — 1/t of a Hankel contour directed by
direction # and oriented positively®. Note that, using Hankel’s formula for

the inverse of gamma function, we obtain

7_m—l

Bio(t™) (1) = m for all m > 1 and 6

(hence, the coherence with the definition of the formal Borel transformation)
and, more generally,
A-1

I'(A)

Bio(tM) (1) = for all A € C\(—N) and 6.

Note also that the Borel transform Bj.4(h(t)) may be integrable or not at 0:
-1/2

VT

The operator B,y applies to any function with subexponential growth at

81;9(751/2)(7') = whereas 31;9(1571/2)(7') — _2\/;773/2

the origin 0 € C (in fact, to a more general class of functions defined near

60Observe that we need a contour that ends at 0 since the functions we consider are
studied near the origin; if we worked at infinity, we would use a Hankel contour itself.
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0; see, for instance, [18] for exact conditions). Recall that such a function
h(t) € O satisfies

|l\imo |t| In(|h(t)|) = O uniformly on any bounded sector with vertex 0.
t|—

Let O<®*® denote the space of all the functions with subexponential growth
at 0. For example,

e any power t*, A € C, of ¢; hence, any analytic function h(t) € O,

e any power (Int)™, m > 1, of the logarithm,

e any exponential exp(P(t~'/")) with P(t) polynomial in ¢ of degree < r
belong to O<e®_ Classical lemma 4.1 gives us some properties of Bj.g.
Lemma 4.1 Let 0 € R/277Z and h,hy, hs € O<exp, Then,

1. Big(h) := h is holomorphic on all C with exponential growth of order
< 1 on any bounded sector of infinity: h(t) € O=1(C).

2. Bi,p satisfies the same properties of By :

dh ~ 1 dﬁ
R [ I N
° Bl;g (t t) Th and 81,9 (th) ,

o Big(hihe) = 1 % hy when hy and hy are integrable at 0.

w/t

3. Bi,p changes exponential e=“/" with w € C* into the translation by w.

Note that, when h(t) € O, point 1 coincides with the second recall given
at the beginning of this section. Note also that the convolution product x
does not make sense when h; or h, are not integrable at 0. To consider such
a case, we need to “extend” the definition of By (see section 4.4 below).

4.2 System (A) vs scalar differential equation

The cyclic vector lemma due to P. Deligne ([7, Lemme II.1.3]) and the al-
gebrisation theorem of G. Birkhoff (see [5] or [27, Thm. 3.3.1]) say us that
there exists a meromorphic gauge transformation Y = M (t)Z, M(t) €
GL,(C{t}[t71]), which changes system (A) into a system (MA) which is a
companion form of a scalar linear differential equation with polynomial coef-
ficients. Furthermore, multiplying the formal solutions of this equation by
a convenient power of ¢ if needed, we can always suppose that system (MA)
has for formal fundamental solution a matrix of the form

(41)  Z({t) = G1)Yo(t) with G(t) := M ' (t)F(t) € M,,(C[[t]]).
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Remark 4.2 Given v € {1,...,7} and ¢ € {1, ..., J}, the two column-blocks
F*4(t) and G*"*(t) are related by the relation F*"4(t) = M (t)G**(t).
Thereby, they have same properties of (multi)-summability. In particular,
writing M (t) on the form

M(t) =Y " 4 M'(t) with N >1, a, € C and M'(t) € O,

identity f (t) = M (t)G*"(t) implies, after Borel transformation, the follow-
ing fundamental identity which will be us useful in the sequel

N N dma;;l,l 1 ~1d
(42) fg(T) = mZZIOéde—m + M x GB, )

where M/(T) € O=}(C) and where @;171 = 33(1);9(62”1’1) € O(Vo(Fo)).

Let us now denote by Dy(t) = 0 the equation associated with (MA). Tt
clearly has order rn and levels < 1 at the origin (levels of D are levels of

system (A)). Denote also by @O(D) the space of formal solutions of D at

0. A basis of E\O/ZO(D) is obvious given by relation (4.1). More precisely, we
have the following lemma:

Lemma 4.3 (Basis 0f~§o/l0(D)) Denote by g**(t) € C|[t] the entry at
row 1 and column q of G*V(t). Then,

E\OJZO(D) =vect(zVH(t); v=1,....1m, L=1,....,J, ¢q=1,...,n),

where z"%4(t) is defined for all v, { and q by

T q
zoba(t) = eqe(l/(p”*tl/r))Zzp(v—l)(ke—uﬂ)gu,&p(t)tw w.

(g—p)!

u=1p=1

The following result is a direct consequence of lemma 4.3 and of the fact
that, by definition of a companion system, the first column-block of Z(¢)

reads as

21,1,1 ’51,1,2 zl,l,nl
d:‘z’l,l,l d:‘z’l,l,Q dzl,l,nl
dt dt dt
drnfl’gl,l,l drnflzl,l,Q drnfl’gl,l,rn
dtrn—l dtrn—l dtrn—l
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In particular, it says us that all the entries of é‘?l’l(t) are expressed in terms
of formal series g'19(t)’s with ¢ = 1,...,ny

Corollary 4.4 Let g € {1,...,n1} and m € {0,...,rn — 1}.
Then, the (m + 1)™ entry of the ¢ column of G”l’l( ) reads

1,1,q m k q+p(k —q +p>! dm—k'gl,l,p
dtm + Z Z rqutquerH dtm—k

p=lk=q—p

(4.3)

with the classical convention (7]?) =0ifm<k.

Remark 4.5 According to formula (4.3) above, the second entry of the ¢'
column of G*!! is

d§1,1,1 d§1,1,q ?]1,1,(171
ifg=1 d
7 if q an 7 + -

if ¢ > 2.

Consequently, since G € C[[t]], corollary 4.4 shows in particular that, for
ny > 2, we have gh14(t) € tC[[t]] for all ¢ € {1,...,ny — 1}.

Corollary 4.4 and the study of the Borel transforms of the zv:49(t)’s will
allow us to investigate in next sections 4.3 and 4.4 the analytic continuations
and the singularities of G;l’l; hence, according to relation (4.2), the analytic

continuations and the singularities of fg.

4.3 Summable-resurgence theorem
4.3.1 Main result
Recall that p; > 1 denotes the number of levels of f(m) Recall also that fg

is analytic on a domain Vo(fg) which is:

e (Case p; = 1: an open disc centered at 0 € C (indeed, f is 1-summable,
hence, 1-Gevrey),

e Case p; > 2: an open sector with Vertex 0 E C, bisected by 6 and
opening larger than 7/ p](jll)_1 =m(r— rpl D/t rpl 1 (see definition 2.4).

Summable-resurgence theorem 4.9 below tells us that fg can be analytic-
ally continued outside V4(fg) on all a convenient Riemann surface; in par-
ticular, it says us that the only singular points of fg belong to the set
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Q, :={aj, ; j =1,..,J} of all the highest level’s Stokes values of f(z).

Note that, according to the possible two choices of domain Vo(fg), we need
definitions of resurgence and summable-resurgence more general than those
used in [14,23,24]. Indeed, all the functions considered in these papers were
analytic at the origin 0 € C, whereas our functions are potentially singular
at 0, possibly with multivalued analytic continuation around O.

The adequate Riemann surface on which fg lives is one of the follow-
ing two surfaces:

e the Riemann surface Rgq, defined as (the termined end of) all homotopy
classes in C\£2, of path issuing from 0 and bypassing all points of €2,;
only homotopically trivial paths are allowed to turn back to 0,

e the universal cover ﬁnp = m of C\2,.

Note that Rgq, is the Riemann surface used in [14,23,24]. Note also that

the difference between Rgq, and 7%9 , just lies in the fact that Rq, has no
branch point at 0 in the first sheet. This brings us to extend definitions of
resurgence and summable-resurgence given in [14,23,24] as follows:

Definition 4.6 (Resurgence)

e We call resurgent function with singular support €2,,0 any function
defined and analytic on all the Riemann surface Rq,.

e We call resurgent function with singular support Qp,6 any function
defined and analytic on all the Riemann surface Rq,.

Let Resq, 0 and Resnpﬁ denote the sets of resurgent functions with singular

support £2,,,0 and of resurgent functions with singular support Qp,a. Note
that we have a natural injection Resq, o — Resnp,’d-

Definition 4.7 (Summable-resurgence)

o A resurgent function of Resq, o is said to be summable-resurgent if it
grows at most exponentially on any bounded sector of infinity of Rq,.

e A resurgent function of Resq 5 is said to be summable-resurgent if it

grows at most exponentially on any bounded sector of infinity of ﬁgp.

Let Resqy and Resg, s denote the sets of summable-resurgent functions

J 2l
with singular support €2, 0 and of summable-resurgent functions with singu-

lar support €2,,,0. As before, we have a natural injection Resgy — Resgp’%.
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The four sets of resurgent and summable-resurgent functions above have
a natural structure of C-algebra. Following lemma 4.8 gives us some other
elementary stability properties.

Lemma 4.8 (Stability properties) The sets of resurgent and summable-
resurgent functions above have the following stability properties:

o Let p1 € Resq,o (resp. Resg’y) and s € O=H(C).
Then, 1 * p2 € Resq, 0 (Tesp. Resgo)-

o Let p1 € Resq 5 (resp. Resg™ ) and p, € O=1(C).
5 Dy

Suppose that ¢1 and @y are both integrable at O (in the first sheet).
Then, @1 % s € Resq 5 (resp. Resg™™s).

Q,,0
They are besides stable under the derivation d/dr.
We are now able to state the main result of this section:

Theorem 4.9 (Summable-resurgence theorem)

e Case p; = 1. fg is summable-resurgent with singular support €2, 0:

fg(T) € Resg

e Case p; > 2. }'\9 18 summable-resurgent with singular support Qp,a.'

fg(T) € Res?iﬁ%

The proof is developed in section 4.3.2 below. The following proposition,
which will be us useful in the study of singularities of fg, extends theorem
4.9 to the other functions F§"* (see footnote 5).

Proposition 4.10 Letv € {1,....,7} and { € {1, ..., J}.

o Case py=1. Then, | F3y*(r) € Resgota, 0 |

o Case py > 2. Then,| Fy™(1) € Resi™

Pfaﬁn'vo

Note that, since system (A) has p > 2 levels, there exists at least one

L€ (L) such that By (r) € Res
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4.3.2 Proof of theorem 4.9

According to relation (4.2) and lemma 4.8, it suffices to prove that theorem

4.9 is valid for é;;“ instead of ]?9. This stems obvious from corollary 4.4,
properties of (formal) Borel transformation given in section 4.1 and following
proposition 4.11.

Proposition 4.11 Let g € {1,...,n,}.
Then, theorem 4.9 is valid for ﬁ},’l’q instead of fo.

The proof is essentially based on the following technical lemmas 4.12 and
4.13 which respectively provide some properties about the space Soly(D) and
about the Borel transformed equation ZA)Q(T) = 0 of Dy(t) = 0. Recall that,
multiplying D by a convenient power of 1/t if needed, this equation is again
a linear differential equation with polynomial coefficients.

Lemma 4.12 Let g € {1,...,n1}. Then,

q—p(41/r
Z’“ll hl (t ) c SOlo( )

(g-p)!

Proof. We shall prove in fact the following more general statement: for all
we {l,...,r} and g € {1,...,n1}, we have

a I p(tl/r) —
=) g“lP(t ——= € 8ol

To simplify notations and calculations below, we denote temporarily g, ,(t)
for g“'r(t)

< Let us begin with the simplest case n; = ¢ = 1. According to lemma
4.3, we have, for all v =1, ..., r, the following equalities

y11 Zp(v 1)(u— 1) i ( valul u1()€§\0/lo(D)

which we can rewrite as the matrix identity

1 1 1
21,1 h1,1 1 D prfl
=V | : with V = )
o fira |l D
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Thereby, we deduce that all the h, ;’s are linear combinations of the zublog

(indeed, V is an invertible Van der Monde matrix). Hence, h, () € /S\O-ZQ(D)
for all w =1, ..., and the result follows.

< When n; > 2, we proceed by induction on ¢. Since the case ¢ = 1 has
been treated above, we now suppose that, for a certain ¢ € {1,...,n; — 1},

hup(t) € g\o/lo(D) forall w = 1,...,7 and p = 1,...,q. We must then prove
that hyg41(t) € Solo(D) for all w = 1,...,r. To do that, we apply again
lemma 4.3 which says us that

r g+1 — v—1,1
(44) zv,l,q—i—l(t) — ZqZﬁ(v_l)(u_l)gum(t) lanFl p(p Ly ) c /S-\OZO(D)
o (¢+1—p)

for all v =1, ...,r. Let us temporarily denote

q+1 +1-p( v—1421

InT" P (p )
Sy =) p by (¢ for all u € {1,...,r
2 O P {1ar}

and apply Newton’s formula

lnq“_p(p”*lt%) lnq“_p(t%)
— o — i T A
(¢+1-p)! (g+1-p)!

with )
at _plnS(pvfl) ln‘”l_p_s(t%)

Agp =
Z st (¢g+1—p—9)!

q;p
s=1

forallp=1,...,q. We get

DY (¢ (v-1)(u-1)
Su=Dp pz;gu,p m +A,, | +p Gu,q+1

q q+1-p, 5 - 1-p—s ;L
In®(p"~") I P7E(Er)
O S RS (S )
P ,q+1 P pz;(g 7P; sl (q+1—p—8)'

q s —1\4qt+1=s +1-p—s 4L
Y (1) (e In®(p¥ In?™ P73 (tr
:ﬁ(v 1)(u 1)hu,q+1+p( 1)( 1)2( (") Z (tr) )

Gu,p
| —p—3)!
— s! o (g+1—p—s)!

q s v—1
In P
_(v—l)(u—l)h%q L —p(v—l)(u—1)§ ( )hu,q .

|
1 S!
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Hence, using (4.4), the following identities

Fubatl _ ET: (ﬁv—l)(u—Di% wg1— 8) Z uq+1

u=1 s=1

hold for all v = 1,...,r. Since the left-hand side belongs to Solo(D), we
conclude, as in the case ¢ = 1, that hy 41(t) € Solg(D) for all u = 1,...,r
This ends the proof. m

Lemma 4.13 Let D be the Borel transformed equation of D.
1. The singular points oflA? are the highest level’s Stokes values aj, € §2,.

2. The levels oflA) at infinity are < 1.

Proof. Point 1 can be seen as a consequence of Ecalle’s theorem on micro-
solutions (see proposition 4.19 below). It can also be directly proved by
using the Newton polygons of D and D at 0 (adapt, for instance, the proof
of [13, Lemma 6.3.16]). For point 2, it is a classical result and we refer, for
instance, to [17, Thm. 1.4] or [13, Prop. 4.3.22]. =

We are now able to prove proposition 4.11 and so theorem 4.9.

Proof of proposition 4.11. < Let us first consider the case n; = ¢ = 1.
According to lemma 4.12 which says us that g'"!(t) € Solo(D), function
9g"" is an actual solution on Vp( 7 o) of Dij(r) = 0. Proposition 4.11 follows
then from lemma 4.13. Indeed, point 1 and Cauchy-Lipschitz’s theorem show

that gé L1 can be analytically continued along any path of C\Q, originating

from any point of Vg(fg)\{()}; hence, the resurgence of gy''. As for the
summable-resurgence, it stems from point 2 and Ramis index theorems [20].

< When n; > 2, we proceed by induction on ¢. Since the case ¢ = 1 has
been treated above, we now suppose that, for a certain ¢ € {1,...,ny — 1},
theorem 4.9 is valid for any gg'” with p € {1,...,q}. We must then prove
that theorem 4.9 is still valid for g1 L0t According to lemma 4.12,

q—p tl/r o
11q+1 +Z~11p nq (p))650l0( )

Since g'tP(t) € tC[[t] for all p = 1,...,q (¢f remark 4.5), the terms
gt (1) In?"P(t/7) can by written on the form

“1.1.p

ghuP () In? P (¢ = gT(t) x tIn®P(¢"")  with 7 I:(t) e C[[t]).
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Hence, applying lemma 4.1, the function

1,147 o —

gg T+ Z % tIn? P (t1/7)

is an actual solution of D and the same arguments as in the case ¢ = 1
show it is summable-resurgent. Note that all the convolution products in

—

~1,1,p
the sum above make sense since 22— and ¢In?” (t/7) are both integrable

dr
at 0. Indeed,

tIn?P(t/7)(1) € Clln7] 7. We are left to prove that gy"?"" is summable-
resurgent. To do that, it suffices to remark that, for all p =1, ..., ¢,

5 P
%6 admits an asymptotic expansion at 0 in C[[r]] and

~1,1,
1. our hypothesis and lemma 4.8 imply that all the functions G5 " are

dr
summable-resurgent;

2. the Borel transforms ¢In?"?(¢1/7) belong to O<(C) (¢f. lemma 4.1)
and are integrable at the origin.

Hence, proposition 4.11 by applying once again lemma 4.8. m

This ends the proof of theorem 4.9.

4.4 Description of singularities

Summable-resurgence theorem 4.9 above asserts that the only possible sin-
gular points of f.g are the highest level’s Stokes values a;, € €, of f(z). The
aim of this section is to give a complete description of singularities of fe at
the various nonzero points a;, # 0. Before starting the calculations, let us
first recall some definitions and classical properties of singularities. For more
precise details, we refer to [8,16,26].

4.4.1 The space C and the extended Borel transformation

<4 The space C. Let C denote the space of singularities at the origin 0 € C.
It is defined as the quotient C := O/O. Recall that C is also denoted by SING,
by J. Ecalle and al. (cf. [26] for instance). Recall also that the elements of C
are called micro-functions by B. Malgrange [17] by analogy with hyper- and
micro-functions defined by Sato, Kawai and Kashiwara in higher dimensions.

"More generally, t/\ilm\(t)(T) € 727 IC[In 7] for all A € C and m > 1. For exact formulze,
we refer, for instance, to [16].
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The elements of C are usually denoted with a nabla, like Z), for a singu-
larity of the function . A representative of Z in O is often denoted by @

and is called a major of .
It is worth to consider the two natural maps

can: O — C = O/O the canonical map and
var: C — O the variation map,

action of a positive turn around 0 defined by vargvp = o(1) — @(re ™),
where @(7e7%™) is the analytic continuation of @(7) along a path turning
once clockwise around 0 and close enough to 0 for ¢ to be defined all along

(the result is independant of the choice of the major ¢). The germ vargz is

often denoted by ¢ ® and is called the minor of g%.
One can not multiply two elements of C, but an element of C and an

element of O: agvo := can(ap) = avgo for all & € O and Z eC.
On the other hand, one can defined a convolution product ® on C by

setting gvol ® Zz := can(@y *, P2), where p; *, P is the truncated convolution
product

(P1 %0 P2)(T) := /T_usvm(T — )@2(n)dn € O

with u arbitrarily close to 0 satisfying 7 €]0, u[ and arg(7 — u) = arg(r) — 7.

v Vv . .
Note that ¢ ® o makes sense since it does not depend on u, nor on the
choice of the majors @; and ps. The convolution product ® is commutative

and associative on C with unit ¢ := can (2;7)'

Let 6™ denote the m'™ derivative of §. One has 6™ := can (M>

2mrm+1

and the m™ derivative of a singularity Z coincides with the convolution by
§m);
dm v
drm
Note that % is not a ®-derivation; its action on ® is actually given by
a" (v v dm v v v " v
o (@1@902) =\ g BP2=pP1® | 2 | .

drm drm

=5 @ P,

On the other hand, the multiplication by 7 is an ®-derivation:
vV Vv Y vV Vv v
7’<801®<,02> = (7'<P1> ® P2 + 1 ® (7'902)-

8'llhe fact that we use here the same notation @ as the Borel transform of an element
© € O=°*P will be justify below with the definition of the extended Borel transformation.
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<4 Micro-solutions. Let A be a scalar linear differential operator with
coefficients in O. Recall that the solutions of Ay(7) = 0 in O are always of
finite determination, i.e., they read as

(4.5) Z Gap(T)T(InT)P

finite

where o € C, p € N and ¢, ,(7) holomorphic on a punctured disc at 0; some
of them may be of Nilsson class, i.e., may be write on the form (4.5) with
all the g ,(7) in O.

A micro-solution of A at 0 is any singularity Z € C satisfying A(,VD =0in
C, i.e., any Z € C whose some, hence all, majors % € O satisfy Ap € O.

Since any solution ¢ € O of Ay(t) = 0 defines a micro-solution gz =
can(yp), it is natural to define the singularities of finite determination (resp.
of Nilsson class), i.e., the singularities for which some, hence all, majors
are of finite determination (resp. of Nilsson class). In fact, as we shall
see below, the majors of this type which occur in our study have besides a
summable-resurgence property. This leads us then to consider the following
two subspaces of C:

Definition 4.14 (Summable-resurgent singularity)

o We call summable-resurgent singularity of finite determination with sin-
gular support §2,,0 any singularity for which some, hence all, majors
read on the form (4.5) with all the ¢, ,(7)’s summable-resurgent with

singular support £2,, 0.

o We call summable-resurgent singularity of Nilsson class with singular
support 2, 0 any singularity for which some, hence all, majors read on
the form (4.5) with all the ¢, ,(7)’s summable-resurgent with singular
support €2,, 0.

4 v
Let Det;;%? and N\ ilg)%G denote the spaces of summable-resurgent singular-

ities of finite determination with singular support Qp,6 and of Nilsson class
with singular support €2, 0. Observe that these two spaces are stable under

derivation -~ and under multiplication by an element of O<!(C).

1 Extended Borel transformation. Recall that the Borel transformgtion
Bi.¢ defines, for any direction § € R/27Z, an operator from the space Q=P

of functions with subexponential growth at the origin to the space O=!(C) of
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holomorphic functions on all C with exponential growth of order < 1 on any
bounded sector at infinity (see section 4.1). Let us now denote by C=! the

subspace of singularities gYJ € C for which VaI‘(,VD € O<!(C). Recall that, for
such a singularity, there always exists a major ¢ € O=!(C) (see [8]); thereby,
C=!is stable under the convolution product ®. One has the following classical

result:

Proposition 4.15 (Ecalle, [8, pp. 46-48]) Let # € R/21Z be a direction.
The Borel transformation By, can be extended into an isomorphism

~ d
By - (O<exp,+,-,t2£) — (@)

of C-differential algebras so that var(B5y ) = Big() for all ¢ € Osexp,

Its inverse is the extended Laplace transformation Eﬁfg defines as follows:

given Z € C=, ¢ a major on and § = vargz its variation,

60

v - . ooe N .
GO0 = [ #oe i [T amear
Y6,e cet?
where vy . denotes a circle centered at the origin and going from ge'0=2m) 1o

ee?, e > 0 small enough.

Note that f;xg@) makes sense since it does not depend on the choice of

e nor on the chosen major @; in particular, for a choice p € O=!(C), one has

%&@:/amme

V0
where vy denotes a Hankel path directed by direction 6 and oriented posit-
ively. Note also that, if ¢ is integrable at 0, then 5%@) and L1,9(®) coincide.

As By, we omit to write § and we simply denote QY) = can(p) with

¢ € O='(C) for Bs¥(p); thus, using notation of lemma 4.1, var(g) =
The following relations are essentially known: given A\ € C\Z and m € N*,

tVA = can ((1 — 6721;1)“)\)) ; tAYnt = can <% ((1 - eT;\;rl)\)F()\)))

v ™ tinr v 1 v (=1)™m!
t™ = can (m) s 1 = can (2271'7’) s t~"™ = can <W>

9This relation justifies the notation of the variation of any singularity of C; see note 8.
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More generally, let C[t*, (Int)?] e pen denote the subspace of ¢ € Q<P
of the form

Z arpt*(Int)?  with ay, € C, A€ C, p € N.
finite
v
Let us also denote by C[t*, (Int)?]rec pen its image by B§i. Then, for any
v
Z € C[t*, (Int)P]rec pen, there exits a major @ € C[7*, (In 7)) cc gen-

\4 v
Moreover, the spaces Det‘gr%"’ and Nl Q.0 are stable under the ®-convolution
Py ’

v
by an element of C[t*, (Int)?]ycc pen-

In the same way as By, the formal Borel transformation B; can be ex-
tended to formal expansions of the form

E(t) = Z Bon(t)  with hy,(t) € O=P

m>0
by applying separately Bfﬁf for any 6 on each term h,,(t). As previously, we

v ~
denote by h the extended formal Borel transform B{**(h). Note that, when

~ %

h(t) € C[[t]], the variation var h coincides with the formal Borel transforma-
tion h = By(h). In particular, when h(t) € C[[t]]; is a 1-Gevrey formal series,
one has

o~ ~

o ~ N
h(t) =Bi(h) € O and h = B{*(h) = can (@) :
i

More generally, one has the following classical result which will be us useful
later:

Proposition 4.16 ([14,16,26]) With notations as above:

1. Let A€ C, p € N and h(t) € C[[t]]. Suppose that the formal Borel trans-
form h(T) of h(t) is summable-resurgent with singular support §,,0:
h(r) € Resgy. Then,

Y v
h(t)t(Int)? € Nilg' .
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v v
2. Reciprocally, let h = can(h, (1) (In7)?) € NilG's with
h)\’p<7') = Z h)\,p;me €0
m>0

in a neighborhood of 0 € C. Then, for any direction 0 € R/21Z such
that €2,N]0, coe[= 0,

v L ~
i) = Y- (1) ssolln-0 (00 e

k=0

where, for all £ =0, ..., p,

_ dg e—iﬂz
hae(t) =2im Yy — | =7 Pagint™
Ae(t) sz Azt (F(l — Z>)|z:m+l+/\ A’p7

and iy (7) € Resgy- In particular, Tae(t) € C[[t]1.

< Singularity at w. For any w € C*, we denote by C|, the space of sin-
gularities at w, i.e., the space C translated from 0 to w. A function ¢ is a
major of a singularity at w if p(w+ 7) is a major of a singularity at 0. In the

\ v
same way, we define the spaces Det,"F ., and Ni (.0 |w as the translated of
P> ’

4 v
the spaces Detg,"s and Nilg s to w.
Let us now turn to the description of singularities of fg.

4.4.2 Structure of singularities of fg

Theorem 4.9 tells us that the only singular points of fg are the highest level’s
Stokes values a;, € €, of f(x). The behavior of fg at any of these points
w depends, of course, on the “homotopic class” of the path ~ of analytic
continuation followed from any point a # 0 of Vy(fe) * to a neighborhood
of w. In particular, “homotopic class” implies that the behavior of fg does
not depend on the choice of a. We denote below by

° }‘\g;wﬂ the analytic continuation of fg along the path ~,

v ~ ~ ~
o fo. = can(fe.) the singularity of fg at w defined by fo., -

10See page 23 for the exact definition of Vo(Fe).



35

\Y
To investigate the singularities f ., ., our approach is similar to the one

developed in [24] for the study of singularities of systems with a unique level
and is based on the same arguments as those detailed in section 4.3.2 for the
proof of summable-resurgence of fg4. Precisely,

v e
1. we first study the singularities G;j,i}’l7 of G5" (see page 22 for notation)
e:1,1

~e;l.1
9.0, Of Gy along 7,

at w defined by the analytic continuation G

eo:1,1

\Y v
2. next, we “extend” the structure of Gy, to fe.,, by means of relation

Osw,y
N m ve;1,1
i . d Gﬂ;w,7 ﬁ, ao;l,l
Fowa(r) =D am—2= + M x G,
m=1

derived from (4.2).

Before starting the calculations, let us introduce the key notion of front
of a singularity.

< Front of a singularity. Let w € €,\{0}. Following [24], we call front

of w the set
1
Fr(w):= {q@ <—) D g, = w} )
x

of polynomials ¢,(1/z) of Q(1/x) with leading term —w/z". Note that, con-
trarily to the case of systems with a unique level considered in reference
above, the front F'r(w) may be here not a singleton. This brings us to the
following definition:

Definition 4.17 (Singularity with good/bad front)

e A singular point w € €,\{0} is said to be with good front when Fr(w)
v

is a singleton. The corresponding singularity f .., is then called sin-
gularity with good front.

e When Fr(w) is not a singleton, w (hence, its corresponding singularity
\Y
fo.) is said to be with bad front.
Remark 4.18 The denomination good/bad front is due to the following fact:

when the front Frr(w) is (resp. is not) a singleton, the column-blocks F**(x)
of F(x), with ¢ =1, ..., J such that ¢,(1/x) € Fr(w), have all the unique level
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r (resp. at least two levels " < r). Thereby, when Fr(w) is a singleton, the
r-reduced series F1*((t) of F**(z) are always 1-Gevrey (more precisely, 1-
summable) formal series and, consequently, according to proposition 4.16 and
Ecalle’s theorem below (see proposition 4.19), they always yield singularities
of Nilsson class at w. On the other hand, when Fr(w) is not a singleton, the
ﬁ‘[“]';e(t)’s yield in general more complicated singularities at w, no longer of
Nilsson class, but of finite determination.

Let us now consider a singular point w with good front. Then,

o= (2o ()

where ¢, (1/x) € x7!Cl[z™!] is a polynomial in 1/x with degree < r and
without constant term. By analogy with [24], w (hence, its corresponding
singularity) is said to be with good monomial front (resp. good nonmonomial
front) when ¢, = 0 (resp. ¢, Z 0).

v
The study of singularities Gi'". is

v
. . 1,1
4 Structure of singularities G} 00y

Ow,y*
essentially based on Ecalle’s theorem, as stated and proved by B. Malgrange
in [17, Thm. 2.2], which asserts that the space Soly(D) of formal solutions

Vo ~
of D at 0 and the space M(D) of micro-solutions of D are isomorphic'!. In
our case, this theorem reads as follows:

Proposition 4.19 (Ecalle) With notations as lemma 4.3.
1. Letve{l,...,r}, L €{1,....J} and q € {1,...,n,}. Then, the extended

v ~ ~ , .
formal Borel transformation z"% := B¢(z%49) of Z%%4 is a micro-
solution of D at ay,.

Voo ~
2. Denote by M, (D) the space of micro-solutions of D at w € §,,. Then,

Vo= v
My(D) =vect(z"57 ; v=1,...,r, ¢=1,....,10)p0,,—0-

. . . .V
Following lemma, 4.20 precises the structure of singularities 2.

Lemma 4.20 Letv € {1,...,r}, € {1,...,J} and g € {1,...,n4}.

"Tn [17], B. Malgrange states actually this theorem not in terms of Borel transformation,
but in terms of Fourier (= Laplace) transformation.
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1. Suppose that ay, has a good front. Then,

v(q c NZZS T’esal 0 ® GQa[’T(l/(PU—ltl/r))

‘a‘f,r'

2. Suppose that ay, has a bad front. Then,

v A,q c D@ts res @ Z’jae,r(l/(p"’*ltl/ﬂ))
Qp— ag,r,0 ‘aé?r'

Notation &%) gonotes the singularity Bfﬁ(Gq““’r(l/(pvfltl/r)))

Ga,, (1/x) is the polynomial in 1/x and degree < r defined by

i Ly ‘ 1 g Qpr—1 g1
e\ x x’ xr—1 x

Proof. Following lemma 4.3, z"%? reads as

, where

Z004(1) = U (t)eloer /(= 17)) p—ag,r /¢

with

vt In9~P (o1
Uéq Zzpv D (Ae—u+1) uﬂp(t)tAZ +11n (p )

== (¢ —p)!
Recall that gy“? and f‘;;”’g have the same summable-resurgence properties.
In particular, they are analytic at 0 as soon as ag, has a good front (see
remark 4.18). This brings us to the following discussion.

a First case : ag, has a good front. In this case, all the g%4(t)’s are
1-Gevrey and, consequently, propositions 4.10 and 4.16 imply that

C,VO Bert( vﬁq) GNle res

p—0a¢,r0°
< Second case : ag, has a bad front. In this case, let us begin by observing
that, since %9 is also a formal solution at 0 of a convenient scalar linear

differential equation, we necessarily have %% of ﬁmte determination (see

page 31). We are then left to prove that cp”eq € Det‘;{e_s - To do that, it

v )
suffices to remark that ¢¥%? can be written as the sum

T q

>y

~= (@-p)

—1)(Ae—u+1) Ap—u
Zg’ P ® h s h(t) =t e lanp(pvflt%)




38

vV v
where h € C[t*, (Int)?] ec pen and where gu = Det?{es ot is the singular-
P T

ity at 0 defined by 5;“; then, we conclude by properties of stability.
< This ends the proof of lemma 4.20 since B{*(e~%r/t) is the translation

by a,, and since B§™(p vl glar, (1/ (0" ltl/r))) = Z)v,e,q ® lag, (1/ (0 71T,

Proposition 4.19 and lemma 4.20 above lead us to the following result
which makes explicit the stucture of micro-solutions of D.

VoL ~
Corollary 4.21 Let w € Q,, and (,vow € My (D) a micro-solution of D at w.
1. Suppose that w has a good front. Then,

v - 7 v—1,1/r
P € S Nilgres, @ e/ 1)

2. Suppose that w has a bad front. Then,

poc Y ZDets res @ gien (/0T

4 g, r=wv= 1

Remark 4.22 As spaces /\/ g%, 0 and Dets " 5 the spaces of corollary

4.21 above are stable under derlvatlon E and under ®-convolution by an

v
element of C[t*, (Int)?]secpen (use the associativity of ®). They are also

v
stable by multiplication by 7: given % eN i 0 (resp. Dets Te_sw 6) we

have

(P ® o/ = () @ g/ T L D g (g (/0T

with

i (1 vfltl/r

et (/)  pgeat pde T P, g LU/ 1)
dt
where X X
_ -1 —1/r
P,(t) = rp”—lt q, (pv_ltl/r) etClt.

Hence,

(@ ngu/ CIY (7§ + @ P) @ B/ )

with ng + Z ® v € ./\/zls res o(resp. Det?{es 6)
p—w
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We are now able to display the structure of singularities G(,,’L’l7

v
ope o s . ities GOl
Proposition 4.23 (Description of singularities Gy, v) Letw € Q,\{0}

and v a path on C\Q, starting from a point of Vo(fg) and ending in a
neighborhood of w.

1. Suppose that w has a good front. Then,

Goll ZNzls res o ® e/

Bw'y

2. Suppose that w has a bad front. Then,

. vV, v—141/7r

biap r=wv=1

Proof. « Suppose for the moment that proposition 4.23 holds for all the

) 7q .y]-’]-

first entry ge of all the n; columns of G Then, since the Borel

transformation changes the multiplication by 1 N 1nt0 the derivation -+ and

dr
k dk:*l

the derivation jt—i into ddkk% <7’ W)) corollary 4.4 and remark 4.22 show

1,1

that proposition 4.23 still holds for all the other entries of Go o

4 We are left to prove the result for gl’l’q

of the proof of proposition 4.11:
— Let us first suppose that n; = ¢ = 1. As we ‘have already seen,
the function gy"' is an actual solution on Vo(fg) of Dg(r) = 0. Then,

. Y
the singularity gé’l’ = can(g ge’ w’ ) defines a micro-solution of D at w and,

To do that, we adapt the arguments

consequently, the structure of ge’ L follows from corollary 4.21.
— When n; > 2, we proceed by induction on ¢ and we now suppose

that, for a certain ¢ € {1,...,n;}, proposition 4.23 is valid for any gd P with
p € {1,...,q}. As in the case ¢ = 1, we derive from the proof of proposmon
4.11 that

q ~1,1,p
1 g o —
1,1,q+1 0w, - r
howq = Gout 4 Y TED T
=1

12Gee page 23 for the exact definition of Vo(Fe).
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v ~
defines a micro-solution hg,, , of D at w which belongs either to
ZN@Z‘* "o 0 ® o1/ 1) w (case w with good front)

or to

Z ZDets e 5 ® g lar, /(" 117) w (case w with bad front)

liap p=wv=1

Since singularities gg’ w’pv also belongs, for all p € {1,...,q}, to these spaces

and since ¢ In?"P(t¥/7) € C[t*, (Int)?] sec gen, remark 4.22 implies that gé’}u’qjl
still belongs to these spaces.
< Hence, proposition 4.23. =

We are now able to state the main result of section 4.4.

\Y%
< Structure of singularities fg,,,. According to relation

N mao;l,l
" 0;w,y 7 el
Fowa(r) = Zam dr™ +M x Gy
m=1

1 p'ufltl/r

Vv .
and properties of stability of spaces N/ ilf—;;efw’()@ng( /(

Vi, (1/(p"~141/7))

)) an dDet?{ej ®

previously given, it is clear that proposition 4.23 is still valid

v
when we replace Ge’ily by fe.w- In fact, this result can be improved by
observing that some polynomials g, (1/(p*~'t/")) with v = 1,...,7 (or some
polynomials g, (1/(p"~'t"/")) with a,, = w and v =1, ...,r) may be equal.

This brings us to the following main result:

v
Theorem 4.24 (Description of singularities fg.,,) Letw € Q,\{0} and

v a path on C\S2, starting from a point of Vo(fe) and ending in a neighbor-
hood of w.

1. Suppose that w has a good front. Let

. . 1
QUJ: {qw <W> 7 U:]_,...,T}-
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Then,

v Y. v
Sfowny € § :NZZ?IZ?LU,O ® ey,

qEQw

In particular, if w has besides a monomial front, then

v v
Jowry € Ni Ezisw,o e+

2. Suppose that w has a bad front. Let

. . 1
Q. = {qa“ <W> s v=1,..,r and ¢ such that a,, = w} .

Then,

v v v
E s-res q
f@;wn/ G D@tnp w,ﬁ ® e ‘W'

quw

A more precise description of singularities with good monomial front will
be given in next section 5 in the case of some special geometric configurations
of singular points of ©,\{0}.

4.4.3 Principal singularities of }’\9

As said at the beginning of section 4.4.2, the singularity of fg at w € Q,\{0}
depends on the path 7 of analytic continuation and meanwhile, on the chosen
determination of the argument around w.

Denote by d, the half-line [0, coe’| issuing from 0 € C with argument
a € R/277 and suppose that Vo(fg) N dargw) 7 0. Then, we can always
make the following choices:

e 7y is a point of Vo(fg) N darg(w) lied in the first sheet of Rq, or ﬁQp 13,

e 7} . is a path starting from 7y, going along the straight line [0, w] to a
point 7 close to w and avoiding all singular points of €2,N]0,w] to the
right (see figure 4.1 below),

e we choose the principal determination of the variable 7 around w, say
arg(7) €] — 2w, 0] as in section 2.2.2 (cf. note 3).

13This last condition is, of course, always fulfilled when V; (fg) is a disc or a sector with
opening < 27.
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The analytic continuation }'\g;w,Jr = fe;w’% _ Is called right analytic continu-

ation of ]?9 at w. Note that it does not depend on the choice of 7.

Figure 4.1 — A path ~;} . in the case of a sector
Vo(f 9) with opening < 27

Definition 4.25 (Principal singularity) Let w € ,\{0} and suppose
that Vo(fe) N darg(w) 7# 0. We call principal singularity of f¢ at w the singu-
v

larity f¢., + defined by the right analytic continuation fg;wﬂL of ]?9 at w. A

- v
major f ., + of fe., + is then called principal major.

Y
As we shall see in section 5 below, the principal singularities f ., + will
be play a key role in the calculation of highest level’s Stokes multipliers.

5 Highest level’s connection-to-Stokes formulae

—1 € (R/27Z)" of highest level’s anti-
Stokes directions of f(z) so that the principal determinations 65 €] — 27, 0]
of the 0’s satisfy

Let us now fix a collection (0y)x—o,...

—2r <O, <..<07<6;<0.

Recall that such a collection is generating by the nonzero highest level’s
Stokes values a;, € ,\{0} of f(x).

As in section 3.2, we denote 6 := rf, and €29 the set of all the elements
of ©2,\{0} with argument . Recall that the highest level’s Stokes multipliers
of f(w) in direction 6 are all the entries of the matrices st;z;* with j such
that a;, € ,. Recall also that these matrices are Completefy determined
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by identity (3.4) given in proposition 3.4.

In the rest of this section, we restrict our study to the following Spe-
cial Geometric Configuration (denoted below by SG-Configuration) of €2,,.¢:
o all the elements of 2,9 have a good front,

e there exists (at least) one element of Q,,.¢ with a good monomial front.

Note that this last condition can always be fulfilled by means of a convenient
change of the variable x in the initial system (A). Precisely, one has the
following classical result:

Lemma 5.1 (M. Loday-Richaud, [10]) Letw € Q,\{0} with a good front
and q,(1/x) the unique element of Fr(w).

1. There exists a change of the variable x of the form

_ Y
St oyt o gy!

(5.1) x , a1, ...,0,_1 € C

such that the polar part of q.,(1/x(y)) reads —w/y".

2. The Stokes-Ramis matrices of system (A) are preserved by the change
of variable (5.1).

Observe that, although lemma 5.1 be proved in [10] in the case of systems
of dimension 2 (hence, with a single level), it can be extended to any system
of dimension > 3. Indeed, the change of variable (5.1) being tangent to
identity, it “preserves” levels, Stokes values and summation operators.

Observe also that lemma 5.1 has already used in [23,24] to display connection-
to-Stokes formulze for systems with a unique level and for the first level of
systems with several levels.

5.1 Singularities vs highest level’s Stokes multipliers
for the SG-Configuration’s case

< The left-hand side of identity (3.4) can be seen as the Laplace integral

(L10- — 51;9+)(J?9—)<t) =/, J?e—(T)efT/th;

where 7, is a Hankel type path going along the straight line dg := [0, coe®|

from infinity to 0 and back to infinity passing positively all singular points
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of ©, on both ways (recall that fo (1) is integrable at 0 in the first
sheet). Without changing the value of this integral (use here the summable-
resurgence of '}.\0—; see theorem 4.9), the path v, can be deformed into a
union vy, = Uwenp;e vp(w) of Hankel type paths v5(w) with asymptotic dir-
ection @ around each singular point w € €2,9. Then, using the fact that
direction 0~ is actually a direction 8 — n (with 7 > 0 small enough) satis-
fying Vo(fe—) Ndg # (0, we can replace fe— by one of its principal majors
f@‘;w, + at each w, obtaining so, after translation from w to 0:

(52) (L1~ — Lig+) Z _w/t/ FowilwtTe ~ldr,
weﬂpg

where 7 is, as shown on figure 5.1, a classical Hankel path directed by
direction 0 and oriented positively around 0.

do
0

Figure 5.1 — A Hankel path s

< On the other hand, the right-hand side of identity (3.4) can be written on
a similar form:

(5.3) Sri0.e (F)(t) M e+ (1 Z eiw/tMPO* (1),

wEQP -0

where

(54) p@* Z Z S0, F.UZ()MpH* (t)

v=1 fap p=w

with
’ 17" 1
Y w vﬁ- AU Lo LN S kyl/r
M g (8) = €M (1) = = (p"7)Motst . (pftr) = et (/).
k=0

Following key lemma 5.2 stems obvious from the SG-Configuration considered
here and from remark 4.18.
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Lemma 5.2 Let w € Q,9, v € {1,...;7} and ¢ € {1, ..., J} such that a;, =
w. Then, F%%(t) is 1-summable in any direction 6 + n with n > 0 small
enough. In particular, spg.. (F*)(t) = s+ (F*)(t).

< We are now able to state the main two results of this section.

Proposition 5.3 Given w € €9, the following identity

(5.5) / Foruns (w0 7)e ™ tdr = Mg (1)
Yo

holds for arg(t) ~ 0*.

The proof of proposition 5.3 is similar to the one of [14, Prop. 4.1] (see also
[24, Sect. 4.3]) and stems from the structure of singularities with good front
(cf. theorem 4.24), identities (5.2) and (5.3) and from lemma 5.2 above. Note
in particular the importance of the 1-summability of formal series Fevt (1)
of identity (5.4).

Proposition 5.4 (Structure of principal singularities with good monomial front)
Let w € Q,.9 a singular point with good monomial front. Then, the principal

v -
singularity f o-., . admits a major fo-., , of the form

/\j7u+1

~ . Jn
Fuie (wtr) = 5 K el (r)

forallu=1,...,r and j =1, ..., J with a remainder

] r )‘Z v+1 u]
remy it (7 g E T R/\Mw* (InT)

Agsap p=wv=1

where
° K“j’ denotes a constant n; X ny-matric such that K“’]’ =0 as soon
as aj, # w,
o RK’J; o+ (X) denotes a nj x ny-polynomial matriz with coefficients in
Ress“mwo whose the columns are of log-degree
[(ne—1) (ne—=1)+1 -+ (ng—=1)+(ni—1)] fAN#0

N[l =
[ng ng—i-l ng—i—(nl—l)] if)\g:O.
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Proof. It suffices to apply the extended Borel transformation to identity
(5.5) and to remark (see conditions (C'1) and (C2) page 2) that

1. Feol(t) = 159 4+ O(t) with I, the identity matrix of size rn,
2. the eigenvalues )\, of L satisfy 0 < Re()\;) < 1.

The calculations are left to the reader. m

Definition 5.5 (Connection constants) Let w € €,4 a singular point

e

with good monomial front. The nontrivial entries of matrices K/’? are

called connection constants of fof at w.

u,j;®

Note that, in practice, the matrix K ”, can be determined as the coef-

ficient of the monomial 7(—%+1/7=1 in the major fgf' w+T).

ot
Remark 5.6 When Q4 admits (at least) a singular point with bad front,
it seems that propositions 5.3 and 5.4 are still valid. Nevertheless, we will
not treat this case in this article because calculations become much more
complicated due to singularities of finite determination which occur. This
will be investigate in great details in a further article.

5.2 Highest level’s connection-to-Stokes formulse for
the SG-Configuration’s case

< Suppose for the moment that w € €2, is a singular point with good
monomial front. Then, using the same arguments as those detailed in [14,
Sect. 4.3] and [24, Sect. 4.3], we derive from propositions 5.3 and 5.4 above
the following main result which displays explicit formulee between the highest
level’s Stokes multipliers st]];;;2 of f(x) in direction 6y, k = 0,...,r — 1 and j
such that a;, = w, and the connection constants K Zf; of fef (1) at w.
Theorem 5.7 (Highest level’s connection-to-Stokes formulae) Let j €
{1,...,J} such that a;, = w. Then, the data of the highest level’s Stokes

multipliers (37%;;;2)14:0,...,7*71 of f(m) and the data of the connection constants

(Kz;jj;)uzowﬂ_l of fg—(T) at w are equivalent and are related, for all k =
0,....,r — 1, by the relations

(5.6) st;f;* = E eI =Lg) usgie pleduy
W
u=1
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where

Jn j Jn

Juie . S I Ko T g
(5.7) t= T T K it e Tdr
Yo

and where vy is a Hankel type path around the nonnegative real axis RY with
argument from —2m to 0.

Note that relation (5.6) is similar to the one obtained in [24] for systems
with a unique level. In particular, an expanded form providing each entry of
formula (5.6) can be found in [24, Cor. 4.6]. This can be useful for effective
numerical calculations.

Here below, we recall this expanded form in the special case where the
matrix L of exponents of formal monodromy is diagonal: L = diag(Ay, ..., A,).

In this case, the matrices st/3. and K/ are reduced to just one entry which
b k b

we respectively denote st;;ez and K Zf +. Then, identity (5.7) becomes
)‘j —u+1

/\j—u+171 wi B ) e—z'7r - i
T K" e dr = 2im Fy— K./,
Yo r (1 — %)

and the highest level’s connection-to-Stokes formulee (5.6) becomes

L oAs—u+1
—im L

J o k(u—1-X;) € " w,j
(5.8) Stpo; = QWZP ’ r <1 _ Aruﬂ) Ko

u=1

T

a4 When w € £2,,¢ is a singular point with good nonmonomial front, a result of
the same type exists too, but requires to first reduce w into a singular point
with monomial front. To do that, we apply lemma 5.1 and we construct a
new system, denoted below by (A’) and satisfying the following properties:

e (A’) has same levels and satisfies same normalizations as system (A),

(A’) has the same (highest level’s) Stokes values (hence, (highest level’s)
anti-Stokes directions) as system (A),

Q.6 has still the SG-Configuration,

w still belongs to €2,.9, but has now a good monomial front,

(A’) has the same Stokes-Ramis matrices (hence, the same highest
level’s Stokes-Ramis matrices) as system (A).
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Then, applying theorem 5.7 to system (A’), we can again express the highest
level’s Stokes multipliers of f(w) associated with w in terms of connection
constants. Note however that these constants are calculated from system
(A’) and not from system (A).

5.3 Effective calculation of the highest level’s Stokes
multipliers for the SG-Configuration’s case

When 2,9 has the SG-Configuration, theorem 5.7 tells us that the effective
calculation of the highest level’s Stokes multipliers associated with w € £2,.¢
is reduced, after applying lemma 5.1 if needed, to the effective calculation of
the connection constants at w.

In section 6 below, we treat in detail some typical examples to both
illustrate the structure of singularities and the highest level’s connection-to-
Stokes formulee .

Recall that, according to initial normalizations (C'1) — (C3) (see page 2),
the matrix f(t) is uniquely determined by the first n; columns

(An) AN TN

of the homological system of the r-reduced system (A) jointly with the initial
condition f(O) = I, n, = the first ny columns of the identity matrix of size
rn (see [4]). Thereby, the sum ]?97 itself is completely determined by the
convolution system (A7) deduced from (Agr) by Borel transformation. Note
that, in the special case where matrix A(x) of initial system (A) has rational
coefficients, convolution system (A%;) can actually be always replaced by a
convenient linear differential system.

6 Examples

To end this article, we develop in this section three typical examples in which,
for a full effectivity, systems are chosen with rational coefficients.

In the first one, we consider a SG-Configuration and we choose a simple
enough system to allow the exact calculation of the connection constants
and so of the highest level’s Stokes multipliers. Of course, such a case is
anecdotal, but it is worth to be treated.

In the second example, we consider once again a SG-Configuration, but
we choose this time a more general system for which no exact calculations
are possible. We then show how the connection constants can be related,
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through a convenient linear differential systems, to “special values” which
can be numerically computed.
As for the third example, it deals with a singularity with bad front.

6.1 Example 1

In this first example, we consider the system

0 0 0 0
dyY 3 ix 0 0

1 S = Y
(6.1) Tdr T |22 0 242 0
x? —x? x? 4

and its formal fundamental solution Y (z) = F(z)z%e@(1/2) where

1 1 2 1
. Q<—> — diag <o,—3,——2,——2>, L = diag (0,0,—,0),
T T T 2

Nl 000
~ R 1oof o~ , ,
e F(x)= Ji3<x) 010 verifies F'(z) = Iy + O(2*). More precisely,
fa(z) = = 1
falx) =iz? +22° + O(a?) € 2°C[[a]]
(6.2) Jfg@) = —%x2 + O(z*) € 22Cl[2?]]
fa(z) = —32% + O(a%) € 2°Cl[z]]

System (6.1) has levels (1,2) and the set of highest level’s Stokes values of
the first column f(z) of F(z) is Qs = {0,1,2}. In particular, the highest
level’s anti-Stokes directions of f(z) are given by the unique collection (6 =
0,0, = —m) generated by 7 = 1 and 7 = 2. Obviously, the corresponding
highest level’s Stokes-Ramis matrices Sts.9, read as

1 000
0 100

Stag, B, 010 , k=0,1
stiek |

and, since the set Qy,9 = {1,2} has the SG-Configuration (the highest level’s
Stokes values 7 = 1 and 7 = 2 have indeed both a good monomial front),
theorem 5.7 tells us that the two highest level’s Stokes multipliers st%;o and
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st5. . (vesp. sty and sty ) are expressed in terms of the connection con-

stants of f o (1) at 7 =1 (resp. 7 = 2). We are then left to determine these
constants, what is the purpose of the following calculations.

According to relations (3.1) (see page 15) and (6.2), the matrix f(t) €
Ms 1(C[[t]]) reads on the form

1 0
o L Ol 7 = [E2O] 52, _ [£20)
f(t) - [fz(t)] thf (t) .f/173(t) 7f (t) 1’;2’3(15)
) F24)

and the f™i(t)’s satisfying

—1t+O(t?),
O(t?).

FL2t) =it+0(), fY3(1) =-t+0(8), FHi()
F221) =20+ 0(8), f*(1) =0, F24()

Following relation (Ag), f(¢) is uniquely determined by the system

00 0 00 0 O 0
00 0 0 ¢ it 0 0
t 0 2+ 0 0 0 0 0
Adf |t =t t 4 0 0 0 0
P =loo 0 0 -t o0 o o |1
t i 0 0 0 —t 0 0
00 0 0 ¢t 0 2-L 0
00 0 0 t —t t 44—t

jointly with the initial condition f(()) = I3 1; in particular, the f“’j(t)’s are
uniquely determined as formal series solutions of the following system

d~1’2 B d~2,2 - _
212 J;t — itf2?, 212 ’;t = t+if 12— tf22,
dfl,S t\ ~
212 =t+ (242 ) f13
7 +(2+5 I,
le’4 _ _ _ d~2,4 — _
2t2—]; =t —tf 12 4 tf L3 4 4f L 2t2{l—t = —tf*?+ (4 -t)f**
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satisfying £ (¢) = O(t). As a result, their formal Borel transforms f%J(7)’s
verify the following equations:

de 1,2
dr?

}?2,2 = —22’6%_ (T}'\l’2> (%)

(

472 + (M4 + Df2 462 =0 (%)

(63 SR A R O
f14 A R -~ 1
27— 2) = F2f = R FH0) =
f24 —~ ~
| 20r-2)= +3f24 = —f22 | f24(0) =

Note that, according to the Newton polygon at 0 of equation (x), the

formal series £ 12(7) (hence, £22(7)) is 1-summable in any direction 6 # —.
In particular, it is l-summable in direction 0~ (or 0). Note also that its
1-sum in direction 6 is 1-Gevrey asymptotic to f2(7) on a germ of sector
bisected by 6 and opening > 7 and can be analytically continued on all C
since 0 is the unique singular point of (x).

More precisely, by considering the formal series solutions in C[[7]] of equa-
tion (x), one can easily check that

F12(r) ;0 ( g) el

Consequently, its formal Borel transform is given by

By(f 1) (u) @5+—Z ( §>(um—1:i(5—6i(4u—|—1)_g

2/ (m—1)!
m>l

and its 1-sum in direction 6 = 0 is given by

Fl2r) = _gT—smel/«m R (1; L i)

2T 241

where 1F} (1, 2 ) denotes the confluent hypergeometric function with para-
meters 1 and = 1 . Note that this relation also defines the analytic continuation
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of ]?(1) (7) on all C. Relation (xx) above provides then us the exact expression
of the sum fo (7).

Note that the fact we can make explicit the sums fé’Q(T) and fg’2(7') is
only due to the great simplicity of system (6.1). Of course, for more general
systems, such exact calculations are not possible anymore.

Let us now turn to the calculation of the connection constants of ]?0—
at 1 and 2, and so of the highest level’s Stokes multipliers of f(x). According
to the last three equations of (6.3), following equalities hold for all |7] < 1:

p

~ 1 ~
7)== (1= ) 2(r) =0,

-~ 1 3
- (e [0s)

fol(r) = %(2 — 1) /OTJ? 52 (n)(2 — n)Y2dn.

\

Hence, setting

/on3’2(ﬁ)(2 —n)Pdyp=a+(2-71)*"(r) , aeC, g(r) € C{r -2}

and choosing a determination of the logarithm such that In(7) € R for 7 > 0,
the analytic continuations f ¢ s of the f “Is at w € {1,2} verify

1+7 _ -~
o 1Jr(l—i-T) 2\/§T 3/4, if;l’Jr(l—i-T):O,
_B _ g
.fo 2+(2+T>—;+h1(7), fO 2+(2+7')—7T —i—hg(T).

with

_——+f+zx/§—/f ndn and - hy(7), hy(1) € C{T}.

Consequently, the connection constants of }’\07 (1) at the points 7 = 1 and
T = 2 are given by

1o’
2

141

V2

1,3 _ 2,3 _ 14 _ 24
| K2 -0 Kytl=p5 K=
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_ We are now able to determine the highest level’s Stokes multipliers of
f(z). Since the matrix L of exponents of formal monodromy is diagonal, it
results from (5.8) that st3,, and st3.__ (resp. st3, and st3_,) are related to
the connection constants K }i and K fi (resp. K ;i and K §i) above by
relations

1414 2 3
st3, = MK}E’L —(A-4)T(Z) K22,
) F <3> 5 4 ’

4

(—14i)mv/2
(3

4 _ o 1,4 2,4 4 o 1,4 2,4

3
st = K% + (44 4i)T (Z) K73,

(recall that p = e™"" since r = 2). Hence,

sthe = 2VA(BYT —)  sth_, = 2/E(AYT +a)

st3o = sty =—

6.2 Example 2

In this second example, we consider the system

0 0 x?
(6.4) x3Z—Y | 0 |y
v a2t 2?4+ 24 %

and its formal fundamental solution Y (z) = F(z)z=e@1/2) where

1 1 1 1
. Q<—> = diag <O,——,——2>, L = diag (0,0, —),
x r x 3

o F(x) € M3(C[[z]]) satisfies F(z) = I3 + O(2).

As in previous example, system (6.4) has levels (1,2) and we denote by f(z)
the first column of F'(x). Since the set of its highest level’s Stokes values is
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Q, = {0, 1}, the highest level’s anti-Stokes directions of f(x) are given by the
unique collection (6y = 0,6; = —7) generated by 7 = 1. The corresponding
highest level’s Stokes-Ramis matrices Sto9, with £ = 0,1 read then as

1 00
Stg;gk = O 1 O
sthe x 1

and, since Q9,9 = {1} has a SG-Configuration (1 has a good monomial front),
theorem 5.7 applies once again and allows to express the highest level’s Stokes
multipliers st3,, and st3._ in terms of the connection constants K }i and

K f‘i of fo- (1) at 7 = 1. More precisely, due to the fact that matrix L is
diagonal, we deduce from (5.8) the following relations:

. im(v3—1)

Sty = — e\
"(5)
6

im(vV/3 +1)

sy =TT
(3)
6
2.3

Contrarily to previous example, the exact calculation of K }i and K77, isno
longer possible. Nevertheless, we can determine approzimate values of these
constants. To do that, we can proceed as follows.

3ivV3, 2
K%+ T\/_(l +iv3)0 (5) K%

) 2
i+ 0w (2) K

3

Following relation (Ag), the matrix f (t) € Ms 1(CJ[[t]]) is a formal solu-
tion of system

[0 0 ¢ 0 0 ]
00 0 ¥ t 0
o df 2t 24L 0 ¢ 0
2= 1oo o —+t o t |7
t 1 0 0 -t 0
0ot 0 # t 2-2]

As in previous example, this system provides relations on each entry of f(t)
Then, multiplying each on these relations by 1/t* and applying a Borel trans-
formation, one can check that the matrix



95

is an analytic solution on Vb(fo—) 14 of the system
iz
dr
where C'(7) is the following 12 x 12-matrix

(6.5) C(r)Z

o 00 0 O 01 0 0 0 O 0
o 00 0O O 0O 1 0 0 O 0
o 00 0 O 00 0 1 0 0 0
o 00 0 O 00O 0O 0 1 0 0
o 00 0 O 0O0O 0 0 0 1 0
o 00 0 O 00 0O 0 0 O 1
0o 00 0 0 0= 0 £ 0 0 0
0 00 5~ 0 00 =2 0 0 4+ 0
27172 00 0 2T172 0 0 2Tlf2 6;£16 0 0 0
o 00 0 O 00 0 0 FE 0 5+
0 00 & 0 0 & =% 0 0 EF o0
| 0 00 271—2 000 271—2 0 0 271—2 37_—73 .

Note that system (6.5) has an irregular singular point at 7 = 0 (due to the

level 1 of f(z)) and a regular singular point at 7 = 1 (due to the fact that 1
has a good monomial front). More precisely, it reads near 7 = 1 as
dZ
6.6 —1)— =0Ci(1)Z
(6.6 (1% = oy(r)
where C4(7) := (7 — 1)C(7) is diagonalizable and analytic on the open disc
D(1,1) with center 1 and radius 1. Following Wasow [28], let the matrix

1 000 0O00O0O0OOO0O
0100 000O0OOTO0DO
001 0 000O0ODOO0O
0001 000O0O0O0GO0O
0000 1 00O0O0DO0GO0O

D= |0 000 01000000

~ /0000 00100000
0000 000710000
2000 20021000
0000 0O0O0O0GOTI1O0O0
0000 0O0DO0O0ODOT10
0 002 0002 00 2 1]

4 Here, Vo(fo_) is a sector with opening > 7. Indeed, f(w) has levels (1, 2); hence, f(t)
is (3,1)-summable (cf. section 3.1) and so f(7) is 1-summable (cf. def. 2.6).
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so that

11 7
M, = D7 Cy(1)D, = diag (0, 0,0,0,0,0,0,0, ——, 0,0, ——> .

6 3

Hence, choosing as previously a determination of the logarithm so that
In(r) € R for 7 > 0, system (6.6) has for fundamental solution at 7 = 1 a
matrix of the form Z(7) = DG (7)(7 — 1) where G, (1) € M15(C{r —1})
is analytic on D(1,1) and is completely determined by relations

dG
(T — ].) dTl == D;101<T)D1G1 — G1M1 s G1<1> == ]12.
In particular, the ninth and twelfth columns of Z;(7) read respectively as
_ 0 - _ 0 -
0 0
-1y 0
0 0
0 0
0 1 —§<T — 1)_% 1
_%(7_1)_% + (7 —1)829(7) and 4 0 + (7 —1)"3212(7)
0 0
(1 — 1)*%1 0 \
0 —g(T —1)73
0 0
0 | (r-1)7F |

with 2z9(7) and z15(7) analytic on D(1,1); as for the other columns of Z(7),
they are analytic on D(1,1).

Let us now apply Cauchy-Lipschitz’s theorem: the analytic continuation
Fo-1,+ of Fo- at 7 = 1 is a solution of system (6.6); thereby, there exists
a unique matrix ¥; € Mi21(C) such that Fyo-(7) = Z(7)%; for all 7 €
D(1,1)\{1}. In particular, denoting by %; := [ai,a%,.. 01?%], calculations

6.9

above show that connection constant K ii (resp. K % %) is equal to —207

(resp. —3051?). Hence, the following relations:
sty =~ TS0 MV i (3) o
| 5T (2 i
6
St%,_W:—GZW(\/g_‘_Z) 0 97,\/_(1_“/—) ( )
: ) 8
2% (6)
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It then remains to numerically evaluate o} and o12. To do that, one can
adapt the method detailed in [25] by considering a point « € Vo(for) NRT
so that ¥ = Z(a) ' Fy- (). Note that, by definition of the right analytic
continuation, Z;(«) is evaluated at a point such that arg(aw — 1) = —m.
Note also that the evaluation of Fy-(a) requires methods for the effective
calculation of multi-sums of formal series (see, for instance, [9]).

6.3 Example 3

In this last example, we consider the system

0 0
(6.7) ¥—= |2 2+2 0|Y
2 2

together with the formal fundamental solution Y (z) = F(z)e?1/®) where

1 1 1 1
e () <—> = diag (0,——2 — —,——2> (hence, system (6.7) has, once
x 2
again, levels (1,2)),
~1 0 0
o F(z)=|fo(x) 1 0| satisfies F(x) = I3+ O(z?). More precisely,
fs(x) 1

f;(x) = —%x2 + }Lx?’ — 21‘4 + %xf’ + O(29%)
—37? — ot 4 327 + 0(af)

As before, we denote by f(z) the first column of F(z). Note that f(z) has
just the level 2; thereby, f(t) is 1-Gevrey and f(7) is analytic at 0 € C.

The set of highest level’s Stokes values of f(x) is Q25 = {0,1}. Contrarily
to previous examples, our present aim is not to calculate the highest level’s
Stokes multipliers of f(z), but just to display the structure of the singularity
of f(T) at 1 in order to illustrate theorem 4.24 in the case of a singularity
with a bad front. Indeed, we have here

1 1 1

As in section 6.1, system (6.7) is simple enough to allow exact calculations.
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According to relations (3.1) (see page 15) and (6.8), the matrix f(t) €
Me 1(C[[t]]) reads on the form

=1 N N 1 ~ N 0
Fi)= H?] with (1) = | F22(0) | F2(0) = |F2200)
L3(7) 24(1)

and the f™i(t)’s satisfying

FI2(1) = =3t = 32+ O(F). F3(1) = 4t — 32 + O(#),
F22(0) = i+ B+ 0(8), 23(0) = 12 + O(F).

Following relation (Ag), f(¢) is uniquely determined by the system

0 0 0 0 0 ]
t 20 0 ¢t 0
df t 02 0 ¢t 0
27
ZtE_OOO—to o |f
010 t 2—t 0
0t 0 t 0 2-t

jointly with the initial condition f(O) = Is1. Then, adapting calculations
already made in section 6.1, one can check that the Borel transforms f“J(7),
u=1,2 and j = 2, 3, verify the following equations:

dfm

¢

or -~ 1)L yopre=fee )= (4
F2,.2 1,2 N

ST A Y SR

69)

1,3

ST A T N O
f23 A ~

A e A A UE

Since (+) implies £22 = 24 ((7’ - 1)}\172>, we deduce from the first two

equations of (6.9) and calculations above that f1,2 is the unique solution of
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the differential equation

d2J?1,2 dfl,? N
4(1 — 1)2 147 — 15 6f12 =0
(r = 1P+ (47 =155 — + 6F
~ 1 dfl2 5
1,2 O - _ O —_

Hence, for all |7] < 1,

2

13 1
S 1F1(§;§; Z) L1 11 1
o~ e T
frr) = (1—7)"2 < )

- 1 REEE T Sttty

where 1F} (a; b; ®) denotes the confluent hypergeometric function with para-
meters a and b. This relation shows then us that the singularity at 7 =1 is
strongly irregular and, thereby, much more complicated than the singular-
ities met in previous examples (see sections 6.1 and 6.2) for singular points
with good monomial front. R R
Note that explicit formulee can also be displayed for f22, £ and f23
and provide yet much “harder” singularities. These formulae stem from the

following relations which result from (%) and from the last two equations of
(6.9): for all |7] < 1,

P =2 -

(7) +2F 12(7),

1 1

P = =5+ 7= [ (= mFan

723 :_11_ —3/2 Tl_ 1/2F1,2 d
|7 = 5= [
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