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Given a meromorphic linear di¤erential system with several levels, we prove that the Borel transforms of its highest level's reduced formal solutions are summable-resurgent and we give a complete description of all their singularities. Then, as an application and under some convenient hypothesis on the geometric con…guration of singular points, we state formulae to express some highest level's Stokes multipliers of the initial system in terms of connection constants in the Borel plane, generalizing thus formulae already displayed by M. Loday-Richaud and the author for systems with a single level. As an illustration, we develop three examples.

Introduction

All along the article, we are given a positive integer r 1 and a linear di¤erential system (in short, a di¤erential system or a system) of dimension n 2 with meromorphic coe¢cients of order r + 1 at the origin 0 2 C of the form (A)

x r+1 dY dx = A(x)Y ; A(x) 2 M n (Cfxg); A(0) 6 = 0 together with a formal fundamental solution e Y (x) = e F (x)x L e Q(1=x) at 0 where

1 e F (x) 2 GL n (C[[x]][x 1 ]
) is an invertible matrix with formal meromorphic entries in x, L = J M j=1 L j with J an integer 2 and L j := j I n j + J n j ; I n j denotes the identity matrix of size n j and if n j 2 is an irreductible Jordan block of size n j ,

J n j = 8 > > > > > > < > > > > > > : 0 if n j = 1
Q 1 x = J M j=1
q j 1 x I n j with the q j (1=x)'s polynomials of maximal degree equal to r with respect to 1=x.

For very general system (A), the q j (1=x)'s may be polynomials in a fractional power in 1=x. However, they can always be changed into polynomials in the variable 1=x itself by means of an adequate …nite algebraic extension x 7 ! x , 1, of the variable x; henceforth, we suppose, without loss of generality, that the q j (1=x)'s read as q j 1 x = a j;r x r a j;r 1 x r 1 :::

a j;1 x 2 1 x C 1 x
for all j = 1; :::; J. In addition, we suppose

(C1) e F (x) 2 M n (C[[x]]
) is a formal power series in x satisfying e F (x) = I n + O(x r );

(C2) the eigenvalues j satisfy 0 Re( j ) < 1 for all j = 1; :::; J, (C3) 1 = 0 and q 1 0.

Recall that these conditions are not restrictive since they can always be ful-…lled by means of a convenient meromorphic gauge transformation Y 7 ! T (x)x 1 e q 1 (1=x) Y , where T (x) has explicit computable polynomial entries in x and 1=x (cf. [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]). Recall also that conditions (C1) and (C2) guarantee the unicity of e F (x) as formal series solutions of the homological system associated with system (A) (cf. [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]); condition (C3) is for notational convenience.

Under the hypothesis that system (A) has the unique level r 1 (see de…nition 2.1 below for the exact de…nition of levels), M. Loday-Richaud and the author proved in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] (case r = 1) and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] (case r

2) that the formal Borel transforms b F [u] ( ) of the r-reduced series e F [u] (t), u = 0; :::; r 1 and t = x r , of e F (x) (= the sub-series of terms r by r of e F (x)) are summableresurgent; then, they displayed exact formulae relating the Stokes multipliers of e F (x) and the so-called connection constants given, in the Borel plane, by some convenient analytic continuations of the b F [u] ( ) at their various singular points, providing thus an e¢cient tool for the numerical calculation of the Stokes-Ramis matrices associated with e Y (x). These two results were generalized later by the author in [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF] to the …rst (= lowest) level r 1 of any meromorphic linear di¤erential system with several levels by considering the r 1 -reduced series of e F (x).

In the present paper, we suppose that system (A) has multi-levels, say r 1 < ::: < r p 1 < r p with p 2. Our aim is to extend the results above to the highest level r p . To this end, we proceed in a similar way as [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] by considering the r p -reduced system (A) associated with system (A) to which the r p -reduced series of e F (x) are intimitely related (see [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF] for instance). The organization of the paper is as follows. In section 2, we brie ‡y recall some basic de…nitions and properties about the multisummation theory we are needed in the sequel. In particular, we recall the factorization theorem of the Stokes-Ramis matrices due to M. Loday-Richaud and J.-P. Ramis ([11, 21, 22]) and its link with a convenient generalized multisummability. In section 3, we introduce the r p -reduced system (A) associated with system (A) and we give some relations between its formal solutions and the highest level's Stokes multipliers of e F (x). Then, by adapting the method developed in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], we prove in section 4 the summable-resurgence of the formal Borel transforms of the r p -reduced series of e F (x) (section 4.3, theorem 4.9) and we give a complete description of all their singularities (section 4.4, theorem 4. [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]). This we use in section 5 to state, in the case of a Special Geometric Con…guration of singular points, some highest level's connection-to-Stokes formulae which generalize, for highest level's Stokes multipliers of system (A), formulae already given in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]. As an illustration of all the results of this article, we develop in section 6 three examples.

In the whole paper, we denote by 

Multisummability and Stokes phenomenon

In this section, we recall, for the convenience of the reader, some basic de…nitions and results of the summation theory.

Levels and anti-Stokes directions

Split the matrix e F (x) into J column-blocks …tting to the Jordan blockstructure of L (for `= 1; :::; J, the matrix e F ;`( x) has n `columns):

e F (x) = h e F ;1 (x) e F ;2 (x) e F ;J (x)

i :

/ Levels. Given a pair (q j ; q `) of polynomials of Q such that q j 6 = q `, we denote (q j q `) 1 x = j;x r j;`+ o 1 x r j;`

; j;`6 = 0: De…nition 2.1 (Levels) We call levels of system (A) associated with e F (x) (in short, levels of e F (x)) all the degrees r j;`f or j; `= 1; :::; J such that q j q `6 0; levels of system (A) associated with e F ;`( x), `2 f1; :::; Jg (in short, levels of e F ;`( x)) all the degrees r j;`f or j = 1; :::; J such that q j q `6 0.

Note that, according to the normalizations of system (A), all the levels are integers. One sometimes refers to this case as the unrami…ed case.

Let us now denote by R := fr 1 < ::: < r p g with p 1, the set of all the levels of e F (x). We have r 1 1 and r p r the rank of system (A). Actually, if r p < r, all the polynomials q j , j = 1; :::; J, have the same degree r and the terms of highest degree coincide; one then reduces this case to the case r p = r by means of a change of unknown vector of the form Y = Ze q(1=x) with a convenient polynomial q(1=x) 2 x 1 C[x 1 ]. Recall that such a change does not a¤ect levels or Stokes-Ramis matrices of system (A).

As we said in section 1, we suppose from now on that p 2, i.e., system (A) has at least two levels; otherwise, system (A) has the unique level r 1 = r p = r and we refer to [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF].

Let us also denote by R (`) := fr k th level's Stokes values (or of level r k ) of system (A) associated with e F ;`( x), `2 f1; :::; Jg, (in short, k th level's Stokes values of e F ;`( x)) all the j;`, j = 1; :::; J, generating the k th level's anti-Stokes directions of e F ;`( x).

Note that, as anti-Stokes directions, Stokes values may be of several levels.

Multisummability

Recall that a formal power series e h(t) 2 C[ [t]] is said to be Borel-Laplace summable of level k > 0 (or simply k-Borel-Laplace summable or k-summable) in a direction 2 R=2 Z if the following two conditions are satis…ed:

1. the formal Borel transform B k ( e h)( ) of level k of e h(t) is convergent (i.e., e h(t) is 1=k-Gevrey),

2. its sum can be analytically continued in a function s 1; (B k ( e h))( )1 on a sector bisected by with an exponential growth of order k at in…nity.

Then, the k-sum s k; ( e h)(t) of e h(t) in the direction is given by

s k; ( e h) = L k; (s 1; (B k ( e h)))
and thus de…ned an analytic function 1=k-Gevrey asymptotic to e h on a germ of sector with vertex 0, bisected by and opening larger than =k 2 . The notation L k; denotes the Laplace transformation of level k in direction . For precise de…nitions and properties of operators B k and L k; , we refer, for instance, to [START_REF] Martinet | Elementary acceleration and multisummability[END_REF].

The summation of several levels k := (k 1 < ::: < k s ), s 2, is more complicated. It was investigated in great details by many authors and several equivalent de…nitions based on various methods such as asymptotic, cohomology, integral operators, ... were given. See for instance [1-3, 6, 11, 15, 19]. In this section, we focus on two of them the so-called accelero-summation and iterated Laplace method which "extend" the Borel-Laplace summation.

/ Accelero-summation. Historically, this approach was the …rst able to solve the problem of multisummation. First introduced by J. Écalle in a very general setting applying to series solutions of non-linear equations and more general functional equations, it was adapted by J. Martinet and J.-P. Ramis in [START_REF] Martinet | Elementary acceleration and multisummability[END_REF] to the case of solutions of linear di¤erential equations. The method proceeds by recursion on increasing levels and each step is performed with the use of special integral operators called accelerators or Écalle's accelerators.

Let A k 0 ;k; denote the accelerator of levels 0 < k < k 0 in direction 2 R=2 Z. (see, for instance, [START_REF] Martinet | Elementary acceleration and multisummability[END_REF] for its precise de…nition and properties). Recall however that L k; applies to any function with exponential growth of order k at in…nity in direction and A k 0 ;k; applies to any function with exponential growth of order 0 := k 0 k=(k 0 k) at in…nity in direction . A formal power series e h(t) 2 C[[t]] is called k-summable in a direction 2 R=2 Z if the following two conditions are satis…ed:

1. the formal Borel transformation B k 1 ( e h)( ) of level k 1 is convergent and its sum can be analytically continued along in a function B k 1 ; ( e h)( ) on a sector bisected by with an exponential growth of order 1 at in…nity, 2. for j = 2; :::; s, the functions h j; recursively de…ned by

h j; := A k j ;k j 1 ; h j 1; ; h 1; := B k 1 ; ( e h)
can be analytically continued along in a function, still denoted by h j; , on a sector bisected by with an exponential growth of order j at in…nity.

Then, the k-sum s k; ( e h)(t) of e h(t) in the direction is given by

s k; ( e h) = L ks; A ks;k s 1 ; :::A k 2 ;k 1 ; B k 1 ; ( e h)
and thus de…ned an analytic function 1=k 1 -Gevrey asymptotic to e h on a germ of sector bisected by and opening larger than =k s . Remark 2.5 If k 0 := (k 0 1 < ::: < k 0 s 0 ) and k := (k 1 < ::: < k s ) with 1 s 0 < s satisfy fk 0 1 ; :::; k 0 s 0 g fk 1 ; :::; k s g, then k 0 -summability implies k-summability; furthermore, the two sums s k 0 ; ( e h) and s k; ( e h) coincide.

/ Iterated Laplace method. This method is due to W. Balser. It proceeds, unlike the accelero-summation, by recursion on decreasing levels and is based on the fact that a convenient formal Borel transformation of a formal series is itself (multi)-summable. De…nition 2.6 below makes explicit this method:

De…nition 2.6 ([1]) Let s 2 and k := (k 1 < ::: < k s ) a s-tuple of positive real numbers. Denote j := k s k j k s k j
for j = 1; :::; s 1.

A formal power series e h(t) 2 C[[t]

] is called k-summable in a direction 2 R=2 Z if the following two conditions are satis…ed:

1. the formal Borel transformation B ks ( e h) of level k s is -summable in the direction with := ( 1 < ::: < s 1 ), Let us now turn to the formal factor series e F (x) of e Y (x):

/ Multisummability of e F (x). One has the following theorem:

Theorem 2.9 ([3, 6, 11, 15, 19])

1. Let 2 R=2 Z be a non anti-Stokes direction of e F (x). Let r := (r 1 < ::: < r p 1 < r) be the p-tuple of all the levels of e F (x). Then, e F (x) is r-summable in the direction .

2. More precisely, let `2 f1; :::; Jg, (`) 2 R=2 Z a non anti-Stokes direction of e F ;`( x) and r (`) := (r

(`) 1 < ::: < r (`)
p ` 1 < r) the p `-tuple of all the levels of e F ;`( x). Then, e F ;`( x) is r (`) -summable in the direction (`) .

We are now able to de…ne the sum of e Y (x): let 2 R=2 Z be a non anti-Stokes direction of e F (x) and a choice of an argument of , say its principal determination ? 2] 2 ; 0]3 . Then, the sum Y (x) of e Y (x) in direction is given by

Y (x) := s r; ( e F )(x)Y 0; ? (x);
where Y 0; ? (x) is the actual analytic function Y 0; ? (x) := x L e Q(1=x) de…ned by the choice arg(x) close to ? (denoted below by arg(x) ' ? ).

Stokes phenomenon and Stokes-Ramis matrices

Let 2 R=2 Z be an anti-Stokes direction of e F (x) and s r; ( e F ) and s r; + ( e F ) the two lateral sums of e F (x) at respectively obtained as analytic continuations of s r; ( e F ) and s r; + ( e F ) to a sector with vertex 0, bisected by and opening =r. Note that such analytic continuations exist without ambiguity when is small enough. ? ] into blocks …tting to the Jordan blockstructure of L (for j; `= 1; :::; J, the matrix St j;` ? has size n j n `). Then,

St j;` ? = I n j if j = 0 if is not an anti-Stokes direction of q j q `:
When is an anti-Stokes direction of q j q `, the entries of St j;` ? are called Stokes multipliers of e F ;`( x) in direction .

/ Factorization of Stokes-Ramis matrices. The factorization of St ? by levels was …rst proved by J.-P. Ramis in [START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] by using the factorization theorem of e F (x); a quite di¤erent proof based on Stokes cocycles and mainly algebraic was given later by M. Loday-Richaud in [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF].

Theorem 2.11 (Factorization of St ? , [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF]) With notations as above, the Stokes-Ramis matrix St ? can be written as 2. When is an anti-Stokes direction of q j q `and r j;`= r k , the entries of St j;k ; ? are called k th level's Stokes multipliers (or Stokes multipliers of level r k ) of e F ;`( x) in direction .

St ? =
Recall that the lowest level's (= …rst level's) Stokes multipliers of St j;1

; ? coincide with the Stokes multipliers of St j;` ? . Recall also that, in the present paper, we are interested in the highest level's (= p th level's) Stokes multipliers of St j;p ; ? . To this end, we need to introduce the notion of multisummability along a path ( ; ") with a direction 2 R=2 Z and a p-tuple " = (" 1 ; :::; " p ) with " i = 1 (see [START_REF] Martinet | Elementary acceleration and multisummability[END_REF]).

Generalized multisummability

The notion of multisummability along a path ( ; "), which is based on the accelero-summation (see de…nition 2.4), is given in the following de…nition: ; + [nf g with > 0 small enough. Let " := (" 1 ; :::; " s ) with " i 2 f 1; +1g for all i = 1; :::; s. One says that e h(t) is k-summable along the path ( ; ") if (2.1)

L ks; "s A ks;k s 1 ; " s 1 :::A k 2 ;k 1 ; " 1 B k 1 ; " 1 ( e h) exists. Then, the function (2.1) thus de…ned is analytic on a germ of sector with vertex 0 and bisected by ; it is called the sum of e h(x) along the path ( ; "). We denote it by s k; ;" ( e h).

Remark 2.14 Laplace operator L ks; "s , accelerators A k j+1 ;k j ; " j and sum B k 1 ; " 1 ( e h) are de…ned in the same way as the sums s r; ( e F ) (cf. section 2.3 above). Furthermore, to make sense in expression (2.1), the analytic continuations of the sums A k j+1 ;k j ; " j (:::) for j = 1; :::; s are, of course, along the direction " j+1 .

Back to e F (x), we have the following theorem:

Theorem 2.15 ([19, Thm. 9, p. 366]) Let 2 R=2 Z be an anti-Stokes direction of e F (x). Let " = (" 1 ; :::; " p ) with " i 2 f 1; +1g for all i = 1; :::; p. Then, e F (x) is r-summable along the path ( ; ").

As in theorem 2.9, a more precise statement can be given for each columnblock e F ;`( x) of e F (x).

For and " as in theorem 2.15, we de…ned the sum Y ;" (x) of e Y (x) along the path ( ; ") by Y ;" (x) := s r; ;" ( e F )(x)Y 0; ? (x) for arg(x) ' ? :

Note that for " = ( 1; :::; 

Setting the problem

Any of the J column-blocks e F ;`( x), `= 1; :::; J, of e F (x) associated with the Jordan block-structure of L can be positioned at the …rst place by means of a convenient permutation P on the columns of e Y (x). Furthermore, the same permutation P acting on the rows of e Y (x) also allows to keep initial normalizations of e Y (x); precisely, the new formal fundamental solution P e Y (x)P reads P e Y (x)P = P e F (x)P x P 1 LP e P 1 Q(1=x)P with P e F (x)P = I n + O(x r ):

Consequently, without loss of generality, we can restrict our study to the …rst column-block e F ;1 (x), which we denote below by e f (x). Note that the size of

e f (x) is n n 1 : e f (x) 2 M n;n 1 (C[[x]]).
The goal of this paper is double:

1. prove a summable-resurgence theorem for the formal Borel transforms b f [u] ( ) of the r-reduced series e f [u] (t); u = 0; :::; r 1, of e f (x),

2. display explicit and exact formulae relating the highest level's Stokes multipliers st j; p; ? := St j;1 p; ? of e f (x) and the connection constants given by some convenient analytic continuations of the b f [u] ( )'s at their various singular points.

Recall that the formal series e f [u] (t) are intimitely related to the classical method of rank reduction and are uniquely determined by the relation e f (x) = e f [0] (x r ) + x e f [1] (x r ) + :::

+ x r 1 e f [r 1] (x r ):
Before starting the calculations, let us begin by recalling some general results on the rank reduction.

Rank reduction

For the convenience of the reader, we brie ‡y recall in this section some results on the rank reduction, such as the r-reduced system associated with system (A) and the structure of the r-reduced formal fundamental solution associated with e Y (x), which will be used in next section 4. For more details, we refer, for instance, to [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]. / r-reduced system. The method of rank reduction is a procedure allowing to associate with system (A) a system with meromorphic entries, rank 

A [0] (t) tA [r 1] (t)
tA [1] (t)

A [1] (t)

A [0] (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . A [0] (t) tA [r 1] (t) A [r 1] (t)
A [1] (t) 

A [0] (t) 3 
(t 1 r ) 0 e Q 0 (t) ( t 1 r ) 0 e Q 1 (t) ( r 1 t 1 r ) 0 e Q r 1 (t) (t 1 r ) 1 e Q 0 (t) ( t 1 r ) 1 e Q 1 (t) ( r 1 t 1 r ) 1 e Q r 1 (t) . . . . . . . . . . . . (t 1 r ) r 1 e Q 0 (t) ( t 1 r ) r 1 e Q 1 (t) ( r 1 t 1 r ) r 1 e Q r 1 (t) 3 7 7 7 5 
with, for all k = 0; :::; r 1,

Q k (t) := Q 1 k t 1=r ; k := L kI n = J M j=1 j;k ; j;k := L j kI n j : Note that initial condition e F (x) = I n + O(x r ) implies e F (t) = I rn + O(t);
note also that the matrix of the …rst n 1 columns of e F (t) is the matrix

(3.1) e f (t) := 2 6 4 e f [0] (t) . . . e f [r 1] (t) 3 7 5
formed by the r-reduced series of e f (x). Thereby, it is equivalent to work with the r-reduced series e f [u] (t) of with e f (t). In the rest of the article, we make the choice to work with e f (t) rather than with each e f [u] (t). Of course, all the results which will be stated for e f (t) wil be immediately transposable to the e f [u] (t)'s.

To end this section, let us give some classical results about the multisummability of the formal factor series e

F (t) 2 M rn (C[[t]]).
/ Multisummability of e F (t). Let 2 R=2 Z be a non anti-Stokes direction of e F (x). Then, the r-summability of e F (x) in direction (cf. theorem 2.9) implies the r-summability of e F (t) in direction := r with r := (r 1 < ::: < r p 1 < 1) ; r j := r j r .

More precisely, split

e F (x) = h e F ;1 (t) e F ;2 (t) e F ;r (t) i into r column-blocks e F ;v (t) of size rn n; then, each e F ;v (t) = h e F ;v;1 (t) e F ;v;2 (t) e F ;v;J (t)
i into J column-blocks e F ;v;`( t) of size rn n `according to the Jordan blockstructure of matrix L. Then, for all v = 1; :::; r, e

F ;v;`( t) is r (`) -summable in direction with r (`) := (r (`) 1 < ::: < r (`) p ` 1 < 1) ; r (`) j := r (`) j r .
In the same way, the r-summability of e F (x) along a path ( ; ") (cf. theorem 2.15) implies the r-summability of e F (t) along the path ( ; "); the sum Y ;" (t) of e Y (t) along the path ( ; ") is de…ned similarly as the sum Y ;" (x).

Notation 3.1 In the sequel, we shall use the following notations:

Given a matrix M of size m rn with m 1, we split M into columnblocks in the same way as e F (t):

-M is …rst split into r column-blocks M ;v , v = 1; :::; r, of size m n according to the block-structure of matrix e Y (t), each M ;v is then split into J column-blocks M ;v;`, `= 1; :::; J, of size m n `according to the Jordan block-structure of matrix L.

We shall also use a row-blocks splitting:

-Given a matrix M of size n m with m 1, we split M into J row-blocks M j; , j = 1; :::; J, of size n j m according to the Jordan block-structure of matrix L, -Given a matrix M of size rn m with m 1, we …rst split M into r row-blocks M u; , u = 1; :::; r, of size n m according to the block-structure of matrix e Y (t); then, each M u; into J row-blocks M u;j; of size n j m as above.

Let us now turn to the study of the highest level's Stokes multipliers of the …rst n 1 columns e f (x) of e F (x).

Highest level's Stokes multipliers and rank reduction

As we said at the beginning of section 3, we restrict our study to the highest level's Stokes multipliers st j; p; ? of the …rst column-block e f (x) of e F (x).

According to the normalization q 1 0 and de…nitions 2.2-2.3, the highest level's anti-Stokes directions of e f (x) are all the directions of maximal decay of exponentials e q j (1=x) with polynomials q j of degree r, i.e., all the collections of the r directions 0 , 1 , ..., r 1 2 R=2 Z regularly distribued around the origin x = 0 which are given by the r th roots of the nonzero highest level's Stokes values a j;r 6 = 0 of e f (x). For such a collection ( k ),

we denote := r 0 (hence, = r k for any k) and p; := fa j;r 6 = 0 ; arg(a j;r ) = g the set of all the highest level's Stokes values of e f (x) generating ( k );

we choose as principal determination ? k 2] 2 ; 0] of k the argument ? k := arg ? (a j;r ) r 2k r ; arg ? (a j;r ) 2] 2 ; 0]; in order that the ? k 's satisfy

2 < ? r 1 < ::: < ? 1 < ? 0 0:
In particular, identity (2.2) and theorem 2.16 imply that the Stokes-Ramis matrice St p; ? k are uniquely determined, for all k = 0; :::; r 1, by relations

Y k ;" ( k x) = Y k ;" 0 ( k x)St p; ? k for arg(x) ' ? 0 and = e 2i =r :
By de…nition of rank reduction, direction is a highest level's anti-Stokes direction (i.e., an anti-Stokes direction of level 1) of e f (t). Then, section 3.1 above and [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]Prop. 4.2] imply the following proposition: Proposition 3.2 Let " and " 0 as in theorem 2.16. Then, 

(3.2) Y ;" (t) = Y ;" 0 (t)
( e F )(t) = s r; ;" 0 ( e F )(t)Y 0; ? (t) r 1 M k=0 C p; ? k ! Y 0; ? (t) 1 :
where Y 0; ? (t) 1 is the matrix

1 r 2 6 6 6 4 (t 1 r ) 0 e Q 0 (t) (t 1 r ) 1 e Q 0 (t) (t 1 r ) r 1 e Q 0 (t) ( t 1 r ) 0 e Q 1 (t) ( t 1 r ) 1 e Q 1 (t) ( t 1 r ) r 1 e Q 1 (t) . . . . . . . . . . . . ( r 1 t 1 r ) 0 e Q r 1 (t) ( r 1 t 1 r ) 1 e Q r 1 (t) ( r 1 t 1 r ) r 1 e Q r 1 (t) 3 7 7 7 5 :
Hence, in restriction to the …rst n 1 columns, the identity

(3.3) s r; ;" ( e f )(t) s r; ;" 0 ( e f )(t) = s r; ;" 0 ( e F )(t)M p; ? (t)
where M p; ? (t) is the rn n j -matrix de…ned by

M u;j; p; ? (t) = 8 > > > < > > > : 1 r r 1 X k=0 ( k t 1 r ) j;u 1 st j; p; ? k ( k t 1 r ) Jn 1 e q j (1=( k t 1=r )) if a j;r 2 p;
0 otherwise for all u = 1; :::; r and j = 1; :::; J. Recall that j;u 1 = L j (u 1)I n j .

As we said in section 3.1.3, e f (t) is r (1) -summable with

r (1) := (r (1) 
1 < ::: < r

(1)

p 1 1 < 1) ; r (1) 
j := r (1) j r ; p 1 1:
In particular, e f (t) is 1-summable when p 1 = 1 and multi-summable otherwise. Then, applying remark 2.5, lemma 2.8 and de…nition 2.13, this brings us to the following result: Lemma 3.3 Let " and " 0 as in theorem 2.16. Then, the sums s r; ;" ( e f )(t) and s r; ;" 0 ( e f )(t) read as the Laplace integrals

( s r; ;" ( e f )(t) = L 1; ( b f )(t) s r; ;" 0 ( e f )(t) = L 1; + ( b f )(t) ; b f := s (1) ; ( b f )
where b f := B 1 ( e f ) and where (1) is de…ned by (1) :=

> <

> :

1 if p 1 = 1 ( (1) 
1 ; :::;

(1)

p 1 1 ); (1) 
j := r (1) j 1 r (1) j = r 
(1) j r r

(1) j if p 1 2 :

Hence, according to identity (3.3), the following proposition: Proposition 3.4 Let " 0 as in theorem 2.16. Then, for arg(t) ' ? ,

(3.4) (L 1; L 1; + )( b f )(t) = s r; ;" 0 ( e F )(t)M p; ? (t)
where the matrix M p; ? (t) is given by relations above.

Note that relation (3.4) characterizes all the highest level's Stokes multipliers of e f (x) in terms of function b f ( ). This function (in fact, a more general function) is studied in great details in next section 4. In particular, we prove that it is summable-resurgent and we give a description of all its singularities.

Summable-resurgence and singularities

In this section, we …x a non anti-Stokes direction 2 R=2 Z of e F (x) and we set, as before, := r . According to the properties of (multi)-summability of formal series e F ;v;`( t) previously given, we can de…ne, as in lemma 3.3, the functions b F ;v;` := s (`) ; ( b F ;v;`) where b F ;v;`: = B 1 ( e F ;v;`) and where (`) is de…ned by

(`) := 8 > < > :
1 if p `= 1 ( (`)
1 ; :::;

(`) p ` 1 );

(`)

j := r (`) j 1 r (`) j = r (`) j r r (`) j if p ` 2 :
Recall that p `denotes the number of levels of e F ;;`( x). Recall also that b F ;v;` is analytic on a disc centered at 0 2 C when p `= 1 (indeed, e F ;v;`( t) is 1-summable, hence, 1-Gevrey) and is analytic on a sector with vertex 0, bisected by and opening larger than = (`)

p ` 1 = (r r (`) p ` 1 )=r (`) p ` 1 otherwise.
The aim of this section is to study the analytic continuations of b f := b F ;1;1 outside its domain of de…nition V 0 ( b f ). In particular, we shall prove that b f ( ) is summable-resurgent (theorem 4.9) and we shall give a complete description of all its singularities in the Borel plane (theorem 4.24) 5 . To this end, we shall proceed similarly as in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]: we …rst reduce system (A) into a convenient scalar linear di¤erential equation with polynomial coe¢cients (section 4.2 below); then, we compare b f with some "solutions" (precisely actual or micro-solutions) of its Borel transformed equation.

Before starting the calculations, let us begin by recalling some classical results about the Borel transformation, both formal and functional versions.

Borel transformation

/ Formal Borel transformation. Let us begin by some recalls about the formal Borel transformation: 5 Even if these two results are obtained for b f , they can be obviously extended to the other column-blocks b F ;v;` . Indeed, when v = 1, the block e F ;1;`( t) is formed, for all `2 f2; :::; Jg, by the r-reduced series of e F ;`( x) (compare with the de…nition of e f (t)) and, to normalize e F ;`( x) as e f (x), one has just to multiply by x `e q `(1=x) . As for the blocks b F ;v;` with v 2 f2; :::; rg, it clearly results from the de…nition of e F (t) that they have same properties as b F ;1;` .

1. The formal Borel transformation 

B 1 : e h(t) = X m 0 m t m 7 ! b h( ) = 0 + X m 1 m m 1 ( m 
d k+1 k d k 1 d k 1
for any k 1. 

If

B 1; (h(t))( ) := 1 2 i Z h(t)e =t dt t 2
where denotes the image by t 7 ! 1=t of a Hankel contour directed by direction and oriented positively 6 . Note that, using Hankel's formula for the inverse of gamma function, we obtain

B 1; (t m )( ) = m 1 (m 1)!
for all m 1 and (hence, the coherence with the de…nition of the formal Borel transformation) and, more generally,

B 1; (t )( ) = 1 
( ) for all 2 Cn( N) and .

Note also that the Borel transform B 1; (h(t)) may be integrable or not at 0:

B 1; (t 1=2 )( ) = 1=2 p whereas B 1; (t 1=2 )( ) = 2 p 3=2 :
The operator B 1; applies to any function with subexponential growth at the origin 0 2 e C (in fact, to a more general class of functions de…ned near 0; see, for instance, [START_REF] Martinet | Théorie de Galois di¤érentielle et resommation[END_REF] 

: b h( ) 2 O 1 ( e C).
2. B 1; satis…es the same properties of B 1 :

B 1; t 2 dh dt = b h and B 1; 1 t h = d b h d , B 1; (h 1 h 2 ) = b h 1 b h 2 when b h 1 and b h 2 are integrable at 0.

B 1;

changes exponential e !=t with ! 2 C into the translation by !.

Note that, when h(t) 2 O, point 1 coincides with the second recall given at the beginning of this section. Note also that the convolution product does not make sense when b h 1 or b h 2 are not integrable at 0. To consider such a case, we need to "extend" the de…nition of B 1; (see section 4.4 below).

System (A) vs scalar di¤erential equation

The cyclic vector lemma due to P. Deligne ([7, Lemme II.1.3]) and the algebrisation theorem of G. Birkho¤ (see [START_REF] Birkho¤ | Singular points of ordinary linear di¤erential equations[END_REF] or [START_REF] Sibuya | Linear di¤erential equations in the complex domain: problems of analytic continuation[END_REF]Thm. 3.3.1]) say us that there exists a meromorphic gauge transformation

Y = M (t)Z, M (t) 2 GL n (Cftg[t 1 ]
), which changes system (A) into a system ( M A) which is a companion form of a scalar linear di¤erential equation with polynomial coef-…cients. Furthermore, multiplying the formal solutions of this equation by a convenient power of t if needed, we can always suppose that system ( M A) has for formal fundamental solution a matrix of the form

(4.1) e Z(t) = e G(t) e Y 0 (t) with e G(t) := M 1 (t) e F (t) 2 M rn (C[[t]]):
Remark 4.2 Given v 2 f1; :::; rg and `2 f1; :::; Jg, the two column-blocks e F ;v;`( t) and e G ;v;`( t) are related by the relation e F ;v;`( t) = M (t) e G ;v;`( t). Thereby, they have same properties of (multi)-summability. In particular, writing M (t) on the form

M (t) = N X m=1 m t m + M 0 (t) with N 1, m 2 C and M 0 (t) 2 O, identity e f (t) = M (t) e G ;1;1 (t)
implies, after Borel transformation, the following fundamental identity which will be us useful in the sequel

(4.2) b f ( ) = N X m=1 m d m b G ;1;1 d m + c M 0 b G ;1;1 where c M 0 ( ) 2 O 1 (C) and where b G ;1;1 = s (1) ; ( b G ;1;1 ) 2 O(V 0 ( b f )).
Let us now denote by Dy(t) = 0 the equation associated with ( M A). It clearly has order rn and levels 1 at the origin (levels of D are levels of system (A)). Denote also by g Sol 0 (D) the space of formal solutions of D at 0. A basis of g Sol 0 (D) is obvious given by relation (4.1). More precisely, we have the following lemma:

Lemma 4.3 (Basis of g Sol 0 (D))
Denote by e g v;`;q (t) 2 C[[t]] the entry at row 1 and column q of e G ;v;`( t). Then, g Sol 0 (D) = vect(e z v;`;q (t); v = 1; :::; r; `= 1; :::; J; q = 1; :::; n `), where e z v;`;q (t) is de…ned for all v, `and q by e z v;`;q (t) := e q `(1=( v

1 t 1=r )) r X u=1 q X p=1 (v 1)( ` u+1) e g u;`;p (t)t ` u+1 r ln q p ( v 1 t 1 r ) (q p)! :
The following result is a direct consequence of lemma 4. [START_REF] Balser | Multisummability of formal power series solutions of linear ordinary di¤erential equations[END_REF] 

:

In particular, it says us that all the entries of e G ;1;1 (t) are expressed in terms of formal series e g 1;1;q (t)'s with q = 1; :::; n 1 .

Corollary 4.4 Let q 2 f1; :::; n 1 g and m 2 f0; :::; rn 1g. Then, the (m + 1) th entry of the q th column of e G ;1;1 (t) reads

(4.3) d m e g 1;1;q dt m + q 1 X p=1 m X k=q p m k ( 1) k q+p (k q + p)! r q p t k q+p+1 d m k e g 1;1;p dt m k with the classical convention m k = 0 if m < k.
Remark 4.5 According to formula (4.3) above, the second entry of the q th column of e G ;1;1 is

de g 1;1;1 dt if q = 1 and de g 1;1;q dt + e g 1;1;q 1 rt if q 2.
Consequently, since e G ;1;1 2 C[[t]], corollary 4.4 shows in particular that, for n 1 2, we have e g 1;1;q (t) 2 tC[[t]] for all q 2 f1; :::; n 1 1g.

Corollary 4.4 and the study of the Borel transforms of the e z v;`;q (t)'s will allow us to investigate in next sections 4.3 and 4.4 the analytic continuations and the singularities of b G ;1;1 ; hence, according to relation (4.2), the analytic continuations and the singularities of b f .

Summable-resurgence theorem 4.3.1 Main result

Recall that p 1 1 denotes the number of levels of e f (x). Recall also that b f is analytic on a domain V 0 ( b f ) which is:

Case p 1 = 1: an open disc centered at 0 2 C (indeed, e f is 1-summable, hence, 1-Gevrey), Case p 1
2: an open sector with vertex 0 2 C, bisected by and opening larger than = (1)

p 1 1 = (r r (1) p 1 1 )=r (1) p 1 1 (see de…nition 2.4).
Summable-resurgence theorem 4.9 below tells us that b f can be analytically continued outside V 0 ( b f ) on all a convenient Riemann surface; in particular, it says us that the only singular points of b f belong to the set p := fa j;r ; j = 1; :::; Jg of all the highest level's Stokes values of e f (x). Note that, according to the possible two choices of domain V 0 ( b f ), we need de…nitions of resurgence and summable-resurgence more general than those used in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]. Indeed, all the functions considered in these papers were analytic at the origin 0 2 C, whereas our functions are potentially singular at 0, possibly with multivalued analytic continuation around 0.

The adequate Riemann surface on which b

f lives is one of the following two surfaces: the Riemann surface R p de…ned as (the termined end of) all homotopy classes in Cn p of path issuing from 0 and bypassing all points of p ; only homotopically trivial paths are allowed to turn back to 0, the universal cover e R p := Ĉn p of Cn p .

Note that R p is the Riemann surface used in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]. Note also that the di¤erence between R p and e R p just lies in the fact that R p has no branch point at 0 in the …rst sheet. This brings us to extend de…nitions of resurgence and summable-resurgence given in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] We are now able to state the main result of this section: The proof is developed in section 4.3.2 below. The following proposition, which will be us useful in the study of singularities of b f , extends theorem 4.9 to the other functions b F ;v;` (see footnote 5).

Proposition 4.10 Let v 2 f1; :::; rg and `2 f1; :::; Jg.

Case p `= 1. Then, b F ;v;` ( ) 2 Res sum p a `;r ;0 .

Case p ` 2. Then, b F ;v;` ( ) 2 Res sum p a `;r ; e 0 .

Note that, since system (A) has p 2 levels, there exists at least one `2 f1; :::; rg such that b F ;v;` ( ) 2 Res sum p a `;r ; e 0 .

Proof of theorem 4.9

According to relation (4.2) and lemma 4.8, it su¢ces to prove that theorem 4.9 is valid for b G ;1;1 instead of b f . This stems obvious from corollary 4.4, properties of (formal) Borel transformation given in section 4.1 and following proposition 4.11.

Proposition 4.11 Let q 2 f1; :::; n 1 g. Then, theorem 4.9 is valid for b g 1;1;q instead of b f .

The proof is essentially based on the following technical lemmas 4.12 and 4.13 which respectively provide some properties about the space g Sol 0 (D) and about the Borel transformed equation b Db y( ) = 0 of Dy(t) = 0. Recall that, multiplying D by a convenient power of 1=t if needed, this equation is again a linear di¤erential equation with polynomial coe¢cients. Lemma 4.12 Let q 2 f1; :::; n 1 g. Then, q X p=1 e g 1;1;p (t) ln q p (t 1=r ) (q p)! 2 g Sol 0 (D)

Proof. We shall prove in fact the following more general statement: for all u 2 f1; :::; rg and q 2 f1; :::; n 1 g, we have h u;q (t) := q X p=1 e g u;1;p (t)t u 1 r ln q p (t 1=r ) (q p)! 2 g Sol 0 (D):

To simplify notations and calculations below, we denote temporarily g u;p (t) for e g u;1;p (t)t

u 1 r .
/ Let us begin with the simplest case n 1 = q = 1. According to lemma 4.3, we have, for all v = 1; :::; r, the following equalities

e z v;1;1 (t) = r X u=1 (v 1)(u 1) g u;1 (t) = r X u=1 (v 1)(u 1) h u;1 (t) 2 g Sol 0 (D)
which we can rewrite as the matrix identity Thereby, we deduce that all the h u;1 's are linear combinations of the e z v;1;1 's (indeed, V is an invertible Van der Monde matrix). Hence, h u;1 (t) 2 g Sol 0 (D) for all u = 1; :::; r and the result follows.

/ When n 1 2, we proceed by induction on q. Since the case q = 1 has been treated above, we now suppose that, for a certain q 2 f1; :::; n 1 1g, h u;p (t) 2 g Sol 0 (D) for all u = 1; :::; r and p = 1; :::; q. We must then prove that h u;q+1 (t) 2 g Sol 0 (D) for all u = 1; :::; r. To do that, we apply again lemma 4.3 which says us that

(4.4) e z v;1;q+1 (t) = r X u=1 q+1 X p=1 (v 1)(u 1) g u;p (t) ln q+1 p ( v 1 t 1 r ) (q + 1 p)! 2 g Sol 0 (D)
for all v = 1; :::; r. Let us temporarily denote

S u := q+1 X p=1 (v 1)(u 1) g u;p (t) ln q+1 p ( v 1 t 1 r ) (q + 1 p)!
for all u 2 f1; :::; rg and apply Newton's formula

ln q+1 p ( v 1 t 1 r ) (q + 1 p)! = ln q+1 p (t 1 r ) (q + 1 p)! + A q;p with A q;p := q+1 p X s=1 ln s ( v 1 ) s! ln q+1 p s (t 1 
r ) (q + 1 p s)! for all p = 1; :::; q. We get

S u = (v 1)(u 1) q X p=1 g u;p ln q+1 p (t 1 r ) (q + 1 p)! + A q;p ! + (v 1)(u 1) g u;q+1 = (v 1)(u 1) h u;q+1 + (v 1)(u 1) q X p=1 g u;p q+1 p X s=1 ln s ( v 1 ) s! ln q+1 p s (t 1 r ) (q + 1 p s)! ! = (v 1)(u 1) h u;q+1 + (v 1)(u 1) q X s=1 ln s ( v 1 ) s! q+1 s X p=1 g u;p ln q+1 p s (t 1 r ) (q + 1 p s)! ! = (v 1)(u 1) h u;q+1 + (v 1)(u 1) q X s=1 ln s ( v 1 )
s! h u;q+1 s :

Hence, using (4.4), the following identities

e z v;1;q+1 r X u=1 (v 1)(u 1) q X s=1 ln s ( v 1 ) s! h u;q+1 s ! = r X u=1 (v 1)(u 1) h u;q+1
hold for all v = 1; :::; r. Since the left-hand side belongs to g Sol 0 (D), we conclude, as in the case q = 1, that h u;q+1 (t) 2 g Sol 0 (D) for all u = 1; :::; r. This ends the proof. Proof. Point 1 can be seen as a consequence of Écalle's theorem on microsolutions (see proposition 4.19 below). It can also be directly proved by using the Newton polygons of D and b D at 0 (adapt, for instance, the proof of [START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF]Lemma 6.3.16]). For point 2, it is a classical result and we refer, for instance, to [START_REF] Malgrange | Fourier transform and di¤erential equations[END_REF]Thm. 1.4] or [START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF]Prop. 4.3.22].

We are now able to prove proposition 4.11 and so theorem 4.9.

Proof of proposition 4.11. / Let us …rst consider the case n 1 = q = 1. According to lemma 4.12 which says us that e g 1;1;1 (t) 2 g Sol 0 (D), function b g 1;1;1 is an actual solution on V 0 ( b f ) of b Db y( ) = 0. Proposition 4.11 follows then from lemma 4.13. Indeed, point 1 and Cauchy-Lipschitz's theorem show that b g 1;1;1 can be analytically continued along any path of Cn p originating from any point of V 0 ( b f )nf0g; hence, the resurgence of b g 1;1;1 . As for the summable-resurgence, it stems from point 2 and Ramis index theorems [START_REF] Ramis | Théorèmes d'indices Gevrey pour les équations di¤érentielles ordinaires[END_REF].

/ When n 1 2, we proceed by induction on q. Since the case q = 1 has been treated above, we now suppose that, for a certain q 2 f1; :::; n 1 1g, theorem 4.9 is valid for any b g 1;1;p with p 2 f1; :::; qg. We must then prove that theorem 4.9 is still valid for b g 1;1;q+1 . According to lemma 4.12, e g 1;1;q+1 (t) + q X p=1 e g 1;1;p (t) ln q p (t 1=r ) (q p)! 2 g Sol 0 (D):

Since e g 1;1;p (t) 2 tC[[t]] for all p = 1; :::; q (cf. remark 4.5), the terms e g 1;1;p (t) ln q p (t 1=r ) can by written on the form e g 1;1;p (t) ln q p (t 1=r ) = e g 1;1;p (t) t t ln q p (t 1=r ) with e g 1;1;p (t)

t 2 C[[t]].
Hence, applying lemma 4.1, the function b g 1;1;q+1 + q X p=1 1 (q p)! db g 1;1;p d \ t ln q p (t 1=r ) is an actual solution of b D and the same arguments as in the case q = 1 show it is summable-resurgent. Note that all the convolution products in the sum above make sense since db g 1;1;p d and \ t ln q p (t 1=r ) are both integrable at 0. Indeed, db g 1;1;p d admits an asymptotic expansion at 0 in C[[ ]] and \ t ln q p (t 1=r )( ) 2 C[ln ]7 . We are left to prove that b g 1;1;q+1 is summableresurgent. To do that, it su¢ces to remark that, for all p = 1; :::; q, 1. our hypothesis and lemma 4.8 imply that all the functions db g 1;1;p d are summable-resurgent; 2. the Borel transforms \ t ln q p (t 1=r ) belong to O 1 ( e C) (cf. lemma 4.1) and are integrable at the origin.

Hence, proposition 4.11 by applying once again lemma 4.8. This ends the proof of theorem 4.9.

Description of singularities

Summable-resurgence theorem 4.9 above asserts that the only possible singular points of b f are the highest level's Stokes values a j;r 2 p of e f (x). The aim of this section is to give a complete description of singularities of b f at the various nonzero points a j;r 6 = 0. Before starting the calculations, let us …rst recall some de…nitions and classical properties of singularities. For more precise details, we refer to [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] O of y( ) = 0 de…nes a micro-solution r ' := can('), it is natural to de…ne the singularities of …nite determination (resp. of Nilsson class), i.e., the singularities for which some, hence all, majors are of …nite determination (resp. of Nilsson class). In fact, as we shall see below, the majors of this type which occur in our study have besides a summable-resurgence property. This leads us then to consider the following two subspaces of C: De…nition 4.14 (Summable-resurgent singularity)

We call summable-resurgent singularity of …nite determination with singular support p ; e 0 any singularity for which some, hence all, majors read on the form (4.5) with all the ' ;p ( )'s summable-resurgent with singular support p ; e 0.

We call summable-resurgent singularity of Nilsson class with singular support p ; 0 any singularity for which some, hence all, majors read on the form (4.5) with all the ' ;p ( )'s summable-resurgent with singular support p ; 0. ' its variation,

Let

L ext 1; ( r ')(t) := Z ;" ' b ( )e =t d + Z 1e i "e i b '( )e =t d
where ;" denotes a circle centered at the origin and going from "e i ( 2 ) to "e i , " > 0 small enough. (1 e 2i ) ( ) / Singularity at !. For any ! 2 C , we denote by C j! the space of singularities at !, i.e., the space C translated from 0 to !. To investigate the singularities r f ;!; , our approach is similar to the one developed in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for the study of singularities of systems with a unique level and is based on the same arguments as those detailed in section 4. 

Note that

r t m = can m 1 ln (m 1)! ; r 1 = can 1 2i ; r t m = can ( 1) m m! 2i m+1
d m + c M 0 b G ;1;1 ;!;
derived from (4.2).

Before starting the calculations, let us introduce the key notion of front of a singularity.

/ Front of a singularity. Let ! 2 p nf0g. Following [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], we call front of ! the set F r(!) := q ` 1 x ; a `;r = ! :

of polynomials q `(1=x) of Q(1=x) with leading term !=x r . Note that, contrarily to the case of systems with a unique level considered in reference above, the front F r(!) may be here not a singleton. This brings us to the following de…nition: De…nition 4.17 (Singularity with good/bad front)

A singular point ! 2 p nf0g is said to be with good front when F r(!) is a singleton. The corresponding singularity r f ;!; is then called singularity with good front.

When F r(!) is not a singleton, ! (hence, its corresponding singularity r f ;!; ) is said to be with bad front.

Remark 4.18

The denomination good/bad front is due to the following fact: when the front F r(!) is (resp. is not) a singleton, the column-blocks e F ;`( x) of e F (x), with `= 1; :::; J such that q `(1=x) 2 F r(!), have all the unique level r (resp. at least two levels r 0 < r). Thereby, when F r(!) is a singleton, the r-reduced series e F [u] ;`( t) of e F ;`( x) are always 1-Gevrey (more precisely, 1summable) formal series and, consequently, according to proposition 4.16 and Écalle's theorem below (see proposition 4.19), they always yield singularities of Nilsson class at !. On the other hand, when F r(!) is not a singleton, the e F [u] ;`( t)'s yield in general more complicated singularities at !, no longer of Nilsson class, but of …nite determination.

Let us now consider a singular point ! with good front. Then,

F r(!) = ! x r + _ q ! 1 x where _ q ! (1=x) 2 x 1 C[x 1
] is a polynomial in 1=x with degree < r and without constant term. By analogy with [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], ! (hence, its corresponding singularity) is said to be with good monomial front (resp. good nonmonomial front) when _ q ! 0 (resp. _ q ! 6 0). 1. Let v 2 f1; :::; rg, `2 f1; :::; Jg and q 2 f1; :::; n `g. Then, the extended formal Borel transformation r z v;`;q := B ext 1 (e z v;`;q ) of e z v;`;q is a microsolution of b D at a `;r .

/ Structure of singularities

Denote by

r M ! ( b D) the space of micro-solutions of b D at ! 2 p . Then, r M ! ( b D) =vect(
r z v;`;q ; v = 1; :::; r; q = 1; :::; n `)`;a `;r =! :

Following lemma 4.20 precises the structure of singularities r z v;`;q . Lemma 4.20 Let v 2 f1; :::; rg, `2 f1; :::; Jg and q 2 f1; :::; n `g.

1. Suppose that a `;r has a good front. Then, r z v;`;q 2 r N il s-res p a `;r ;0 ~r e _ qa `;r (1=( v 1 t 1=r ))

ja `;r :

2. Suppose that a `;r has a bad front. Then, r z v;`;q 2 r Det s-res p a `;r ; e 0 ~r e _ qa `;r (1=( v 1 t 1=r ))

ja `;r :

Notation r e _ qa `;r (1=( v 1 t 1=r )) denotes the singularity B ext 1 (e _ qa `;r (1=( v 1 t 1=r )) ), where _ q a `;r (1=x) is the polynomial in 1=x and degree < r de…ned by

_ q a `;r 1 x := q ` 1 x a `;r x r = a `;r 1 x r 1 ::: a `;1 x :
Proof. Following lemma 4.3, e z v;`;q reads as e z v;`;q (t) = e ' v;`;q (t)e _ qa `;r (1=( v 1 t 1=r )) e a `;r =t with e ' v;`;q (t) := r X u=1 q X p=1 (v 1)( ` u+1) e g u;`;p (t)t ` u+1 r ln q p ( v 1 t 1 r ) (q p)! :

Recall that b g v;`;q and b F ;v;` have the same summable-resurgence properties. In particular, they are analytic at 0 as soon as a `;r has a good front (see remark 4.18). This brings us to the following discussion.

/ First case : a `;r has a good front. In this case, all the e g v;`;q (t)'s are 1-Gevrey and, consequently, propositions 4.10 and 4.16 imply that r ' v;`;q := B ext 1 (e ' v;`;q ) 2 r N il s-res p a `;r ;0 : / Second case : a `;r has a bad front. In this case, let us begin by observing that, since e ' v;`;q is also a formal solution at 0 of a convenient scalar linear di¤erential equation, we necessarily have r ' v;`;q of …nite determination (see page 31). We are then left to prove that r ' v;`;q 2 r Det s-res p a `;r ; e 0 . To do that, it su¢ces to remark that r ' v;`;q can be written as the sum

r X u=1 q X p=1 (v 1)( ` u+1) (q p)! r g u;`;p ~r h ; h(t) = t ` u+1 r ln q p ( v 1 t 1 r )
We are now able to display the structure of singularities r G ;1;1 ;!; . Proposition 4.23 (Description of singularities r G ;1;1 ;!; ) Let ! 2 p nf0g and a path on Cn p starting from a point of V 0 ( b f ) 12 and ending in a neighborhood of !.

1. Suppose that ! has a good front. Then,

r G ;1;1 ;!; 2 r X v=1 r N il s-res p !;0 ~r e _ q!(1=( v 1 t 1=r )) j! :
2. Suppose that ! has a bad front. Then,

r G ;1;1 ;!; 2 X `;a `;r =! r X v=1 r Det s-res p !; e 0 ~r e _ qa `;r (1=( v 1 t 1=r )) j! :
Proof. / Suppose for the moment that proposition 4.23 holds for all the …rst entry r g 1;1;q ;!; of all the n 1 columns of . / We are left to prove the result for r g 1;1;q ;!; . To do that, we adapt the arguments of the proof of proposition 4.11:

Let us …rst suppose that n 1 = q = 1. As we have already seen, the function b g 1;1;1 is an actual solution on V 0 ( b f ) of b Db y( ) = 0. Then, the singularity r g 1;1;1 ;!; = can(b g 1;1;1 ;!; ) de…nes a micro-solution of b D at ! and, consequently, the structure of r g 1;1;1 ;!; follows from corollary 4.21. When n 1 2, we proceed by induction on q and we now suppose that, for a certain q 2 f1; :::; n 1 g, proposition 4.23 is valid for any r g 1;1;p ;!; with p 2 f1; :::; qg. As in the case q = 1, we derive from the proof of proposition 4.11 that b h ;!; := b g 1;1;q+1 ;!;

+ q X p=1 1 (q p)! db g 1;1;p ;!; d \ t ln q p (t 1=r ) de…nes a micro-solution r h ;!; of b D at ! which belongs either to r X v=1 r N il s-res p !;0 ~r e _ q!(1=( v 1 t 1=r )) j!
(case ! with good front) or to

X `;a `;r =! r X v=1 r Det s-res p !; e 0 ~r e _ qa `;r (1=( v 1 t 1=r )) j!
(case ! with bad front) :

Since singularities r g 1;1;p ;!; also belongs, for all p 2 f1; :::; qg, to these spaces and since \ t ln q p (t 1=r ) 2 C[t ; (ln t) q ] 2C;q2N , remark 4.22 implies that r g 1;1;q+1 ;!; still belongs to these spaces. / Hence, proposition 4.23.

We are now able to state the main result of section 4. 

d m + c M 0 b G ;1;1 ;!;
and properties of stability of spaces r N il s-res p !;0 ~r e _ q!(1=( v 1 t 1=r )) and r Det s-res p !; e 0 r e _ qa `;r (1=( v 1 t 1=r )) previously given, it is clear that proposition 4.23 is still valid when we replace r G ;1;1 ;!; by r f ;!; . In fact, this result can be improved by observing that some polynomials _ q ! (1=( v 1 t 1=r )) with v = 1; :::; r (or some polynomials _ q a `;r (1=( v 1 t 1=r )) with a `;r = ! and v = 1; :::; r) may be equal. This brings us to the following main result: 1. Suppose that ! has a good front. Let

_ Q ! = _ q ! 1 v 1 t 1=r ; v = 1; :::; r : Then, r f ;!; 2 X q2 _ Q! r
N il s-res p !;0 ~r e q j! :

In particular, if ! has besides a monomial front, then

r f ;!; 2 r N il s-res p !;0 j! :
2. Suppose that ! has a bad front. Let _ Q ! = _ q a `;r 1 v 1 t 1=r ; v = 1; :::; r and `such that a `;r = ! :

Then, r f ;!; 2 X q2 _ Q! r
Det s-res p !; e 0 ~r e q j! :

A more precise description of singularities with good monomial front will be given in next section 5 in the case of some special geometric con…gurations of singular points of p nf0g.

Principal singularities of b f

As said at the beginning of section 4.4.2, the singularity of b f at ! 2 p nf0g depends on the path of analytic continuation and meanwhile, on the chosen determination of the argument around !.

Denote by d the half-line [0; 1e i [ issuing from 0 2 C with argument 2 R=2 Z and suppose that V 0 ( b f ) \ d arg(!) 6 = ;. Then, we can always make the following choices:

0 is a point of V 0 ( b f ) \ d arg(!) lied in the …rst sheet of R p or e R p 13 ,
+ 0 ;! is a path starting from 0 , going along the straight line [0; !] to a point close to ! and avoiding all singular points of p \]0; !] to the right (see …gure 4.1 below), we choose the principal determination of the variable around !, say arg( ) 2] 2 ; 0] as in section 2.2.2 (cf. note 3). As we shall see in section 5 below, the principal singularities r f ;!;+ will be play a key role in the calculation of highest level's Stokes multipliers.

Highest level's connection-to-Stokes formulae

Let us now …x a collection ( k ) k=0;:::;r 1 2 (R=2 Z) r of highest level's anti-Stokes directions of e f (x) so that the principal determinations ? k 2] 2 ; 0] of the k 's satisfy 2 < ? r 1 < ::: < ? 1 < ? 0 0:

Recall that such a collection is generating by the nonzero highest level's Stokes values a j;r 2 p nf0g of e f (x). As in section 3.2, we denote := r 0 and p; the set of all the elements of p nf0g with argument . Recall that the highest level's Stokes multipliers of e f (x) in direction k are all the entries of the matrices st j; p; ? k with j such that a j;r 2 p; . Recall also that these matrices are completely determined by identity (3.4) given in proposition 3.4.

In the rest of this section, we restrict our study to the following Special Geometric Con…guration (denoted below by SG-Con…guration) of p; : all the elements of p; have a good front, there exists (at least) one element of p; with a good monomial front.

Note that this last condition can always be ful…lled by means of a convenient change of the variable x in the initial system (A). Precisely, one has the following classical result: Lemma 5.1 (M. Loday-Richaud, [START_REF] Loday-Richaud | Calcul des invariants de Birkho¤ des systèmes d'ordre deux[END_REF]) Let ! 2 p nf0g with a good front and q ! (1=x) the unique element of F r(!).

1. There exists a change of the variable x of the form (5.1)

x = y 1 + 1 y + ::: + r 1 y r 1 ; 1 ; :::; r 1 2 C such that the polar part of q ! (1=x(y)) reads !=y r .

2. The Stokes-Ramis matrices of system (A) are preserved by the change of variable (5.1).

Observe that, although lemma 5.1 be proved in [START_REF] Loday-Richaud | Calcul des invariants de Birkho¤ des systèmes d'ordre deux[END_REF] in the case of systems of dimension 2 (hence, with a single level), it can be extended to any system of dimension 3. Indeed, the change of variable (5.1) being tangent to identity, it "preserves" levels, Stokes values and summation operators.

Observe also that lemma 5.1 has already used in [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] to display connectionto-Stokes formulae for systems with a unique level and for the …rst level of systems with several levels.

Singularities vs highest level's Stokes multipliers

for the SG-Con…guration's case / The left-hand side of identity (3.4) can be seen as the Laplace integral

(L 1; L 1; + )( b f )(t) = Z 0 b f ( )e =t d ;
where 0 is a Hankel type path going along the straight line d := [0; 1e i [ from in…nity to 0 and back to in…nity passing positively all singular points of p; on both ways (recall that b f ( ) is integrable at 0 in the …rst sheet). Without changing the value of this integral (use here the summableresurgence of b f ; see theorem 4.9), the path 0 can be deformed into a union 0 = S !2 p; 0 (!) of Hankel type paths 0 (!) with asymptotic direction around each singular point ! 2 p; . Then, using the fact that direction is actually a direction (with > 0 small enough) satisfying V 0 ( b f ) \ d 6 = ;, we can replace b f by one of its principal majors f b ;!;+ at each !, obtaining so, after translation from ! to 0: 

(5.2) (L 1; L 1; + )( b f )(t) = X !2 p; e !=t
(t) = 1 r r 1 X k=0 ( k t 1 r ) `;v 1 st `; p; ? k ( k t 1 r ) Jn 1 e _ q!(1=( k t 1=r )) :
Following key lemma 5.2 stems obvious from the SG-Con…guration considered here and from remark 4.18.

Lemma 5.2 Let ! 2 p; , v 2 f1; :::; rg and `2 f1; :::; Jg such that a `;r = !. Then, e F ;v;`( t) is 1-summable in any direction + with > 0 small enough. In particular, s r; ;" 0 ( e F ;v;`) (t) = s 1; + ( e F ;v;`) (t).

/ We are now able to state the main two results of this section. The proof of proposition 5.3 is similar to the one of [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF]Prop. 4.1] (see also [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Sect. 4.3]) and stems from the structure of singularities with good front (cf. theorem 4.24), identities (5.2) and (5.3) and from lemma 5.2 above. Note in particular the importance of the 1-summability of formal series e F ;v;`( t) of identity (5.4). where K u;j; ! ? ;+ denotes a constant n j n 1 -matrix such that K u;j; ! ? ;+ = 0 as soon as a j;r 6 = !, R u;j; `;v;! ? ;+ (X) denotes a n j n 1 -polynomial matrix with coe¢cients in Res sum p !;0 whose the columns are of log-degree

N [`] = 8 < : (n ` 1) (n ` 1) + 1 (n ` 1) + (n 1 1) if `6 = 0 n `n`+ 1 n `+ (n 1 1) if `= 0:
Proof. It su¢ces to apply the extended Borel transformation to identity (5.5) and to remark (see conditions (C1) and (C2) page 2) that 1. e F ;v;`( t) = I ;v;r n + O(t) with I rn the identity matrix of size rn, 2. the eigenvalues `of L satisfy 0 Re( `) < 1.

The calculations are left to the reader. Note that, in practice, the matrix K u;j; ! ? ;+ can be determined as the coef-…cient of the monomial ( j u+1)=r 1 in the major f b u;j;

;!;+ (! + ).

Remark 5.6 When admits (at least) a singular point with bad front, it seems that propositions 5.3 and 5.4 are still valid. Nevertheless, we will not treat this case in this article because calculations become much more complicated due to singularities of …nite determination which occur. This will be investigate in great details in a further article.

Highest level's connection-to-Stokes formulae for

the SG-Con…guration's case / Suppose for the moment that ! 2 p; is a singular point with good monomial front. Then, using the same arguments as those detailed in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF]Sect. 4.3] and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Sect. 4.3], we derive from propositions 5.3 and 5.4 above the following main result which displays explicit formulae between the highest level's Stokes multipliers st j; p; ? k of e f (x) in direction k , k = 0; :::; r 1 and j such that a j;r = !, and the connection constants K u;j; ! ? ;+ of b f ( ) at !. Note that relation (5.6) is similar to the one obtained in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for systems with a unique level. In particular, an expanded form providing each entry of formula (5.6) can be found in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Cor. 4.6]. This can be useful for e¤ective numerical calculations.

Here below, we recall this expanded form in the special case where the matrix L of exponents of formal monodromy is diagonal: L = diag( 1 ; :::; n ). In this case, the matrices st through a convenient linear di¤erential systems, to "special values" which can be numerically computed. As for the third example, it deals with a singularity with bad front.

Example 1

In this …rst example, we consider the system (6.1)

x 3 dY dx = 2 6 6 4 
0 0 0 0 x 3 ix 0 0 x 2 0 2 + x 2 2 0 x 2 x 2 x 2 4 3 7 7 5 Y
and its formal fundamental solution e Y (x) = e F (x)x L e Q(1=x) where

Q 1 x = diag 0; i x ; 1 x 2 ; 2 x 2 , L = diag 0; 0; 1 2 ; 0 , e F (x) = 2 6 6 6 4 
1 0 0 0 e f 2 (x) 1 0 0 e f 3 (x) 0 1 0 e f 4 (x) 1 3 7 7 7 5 veri…es e F (x) = I 4 + O(x 2
). More precisely, (6.2)

8 > < > : e f 2 (x) = ix 2 + 2x 3 + O(x 4 ) 2 x 2 C[[x]] e f 3 (x) = 1 2 x 2 + O(x 4 ) 2 x 2 C[[x 2 ]] e f 4 (x) = 1 4 x 2 + O(x 4 ) 2 x 2 C[[x]]
: System (6.1) has levels (1; 2) and the set of highest level's Stokes values of the …rst column e f (x) of e F (x) is 2 = f0; 1; 2g. In particular, the highest level's anti-Stokes directions of e f (x) are given by the unique collection ( 0 = 0; 1 = ) generated by = 1 and = 2. Obviously, the corresponding highest level's Stokes-Ramis matrices St 2; k read as

St 2; k = 2 6 6 4 
1 0 0 0 0 1 0 0 st 3 2; k 0 1 0 st 4 2; k 1 3 7 7 5
; k = 0; 1 and, since the set 2;0 = f1; 2g has the SG-Con…guration (the highest level's Stokes values = 1 and = 2 have indeed both a good monomial front), theorem 5.7 tells us that the two highest level's Stokes multipliers st 3 2;0 and st 3 2;

(resp. st 4 2;0 and st 4 2;

) are expressed in terms of the connection constants of b f 0 ( ) at = 1 (resp. = 2). We are then left to determine these constants, what is the purpose of the following calculations. satisfying e f u;j (t) = O(t). As a result, their formal Borel transforms b f u;j ( )'s verify the following equations:

(6.3) 8 > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > : 4 2 d 2 b f 1;2 d 2 + (14 + 1) b f 1;2 + 6 b f 1;2 = 0 ( ) b f 2;2 = 2i d d b f 1;2 ( ) 2( 1) d b f 1;3 d + 3 2 b f 1;3 = 0 ; b f 1;3 (0) = 1 2 2( 2) d b f 1;4 d + 2 b f 1;4 = b f 1;2 + b f 1;3 ; b f 1;4 (0) = 1 4 2( 2) d b f 2;4 d + 3 b f 2;4 = b f 2;2 ; b f 2;4 (0) = 0
Note that, according to the Newton polygon at 0 of equation ( ), the formal series b f 1;2 ( ) (hence, b f 2;2 ( )) is 1-summable in any direction 6 = . In particular, it is 1-summable in direction 0 (or 0). Note also that its 1-sum in direction is 1-Gevrey asymptotic to b f 1;2 ( ) on a germ of sector bisected by and opening > and can be analytically continued on all e C since 0 is the unique singular point of ( ).

More precisely, by considering the formal series solutions in C[[ ]] of equation ( ), one can easily check that

b f 1;2 ( ) = 2i p X m 0 ( 4) m m + 3 2 m 2 C[[ ]]:
Consequently, its formal Borel transform is given by

B 1 ( b f 1;2 )(u) = i + 2i p X m 1 ( 4) m m + 3 2 u m 1 (m 1)! = i 6i(4u + 1) 5 2 
and its 1-sum in direction = 0 is given by b

f 1;2 0 ( ) = i p 4 3=2 e 1=(4 ) + i 2 1 F 1 1; 1 2 ; 1 4 
where 1 F 1 1; 1 2 ; denotes the con ‡uent hypergeometric function with parameters 1 and 1 2 . Note that this relation also de…nes the analytic continuation

We are now able to determine the highest level's Stokes multipliers of e f (x). Since the matrix L of exponents of formal monodromy is diagonal, it results from (5.8) that st 3 2;0 and st 3 2;

(resp. st 4 2;0 and st 4 2;

) are related to the connection constants K 1;3 1;+ and K 2;3 1;+ (resp. K 1;4 2;+ and K 2;4 2;+ ) above by relations

st 3 2;0 = (1 + i) p 2 3 4 K 1;3 1;+ (4 4i) 3 4 K 2;3 1;+ ; st 3 2 
; = ( 1 + i) p 2 3 4 K 1;3 1;+ + (4 + 4i) 3 4 K 2;3 1;+ ; st 4 
2;0 = 2i K 1;4 2;+ 4 p K 2;4 2;+ ; st 4 2;

= 2i K 1;4 2;+ + 4 p K 2;4 2;+ (recall that = e i since r = 2). Hence,

st 3 2;0 = i 3 4 st 3 2; = 3 4 st 4 2;0 = 2i p ( p ) st 4 2; 
= 2i p ( p + )

Example 2

In this second example, we consider the system (6.4)

x 3 dY dx = 2 4 0 0 x 2 x 3 x 0 x 4 x 2 + x 3 2 + x 2 3 3 5 Y and its formal fundamental solution e Y (x) = e F (x)x L e Q(1=x) where Q 1 x = diag 0; 1 x ; 1 x 2 , L = diag 0; 0; 1 3 , e F (x) 2 M 3 (C[[x]]) satis…es e F (x) = I 3 + O(x 2 ).
As in previous example, system (6.4) has levels (1; 2) and we denote by e f (x) the …rst column of e F (x). Since the set of its highest level's Stokes values is 2 = f0; 1g, the highest level's anti-Stokes directions of e f (x) are given by the unique collection ( 0 = 0; 1 = ) generated by = 1. The corresponding highest level's Stokes-Ramis matrices St 2; k with k = 0; 1 read then as and, since 2;0 = f1g has a SG-Con…guration (1 has a good monomial front), theorem 5.7 applies once again and allows to express the highest level's Stokes multipliers st 3 2;0 and st 3 2;

in terms of the connection constants K 1;3 1;+ and K 2;3 1;+ of b f 0 ( ) at = 1. More precisely, due to the fact that matrix L is diagonal, we deduce from (5.8) the following relations: 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 11 0 0 0 3 11 0 0 3 11 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 14 0 0 0 3 14 0 0 Hence, choosing as previously a determination of the logarithm so that ln( ) 2 R for > 0, system (6.6) has for fundamental solution at = 1 a matrix of the form Z 1 ( ) = D 1 G 1 ( )( 1) M 1 where G 1 ( ) 2 M 12 (Cf 1g) is analytic on D(1; 1) and is completely determined by relations Let us now apply Cauchy-Lipschitz's theorem: the analytic continuation F 0 ;1;+ of F 0 at = 1 is a solution of system (6.6); thereby, there exists a unique matrix 1 2 M 12;1 (C) such that F 0 ( ) = Z 1 ( ) 1 for all 2 D(1; 1)nf1g. In particular, denoting by 1 := [ 1 1 ; 2 1 ; :::; 12 1 ], calculations above show that connection constant K 1;3 1;+ (resp. K 2;3 1;+ ) is equal to 6 5 9 1

st 3 2;0 = i ( p 3 
( 1) dG 1 d = D 1 1 C 1 ( )D 1 G 1 G 1 M 1 ; G 1 (
(resp. To do that, one can adapt the method detailed in [START_REF] Remy | Stokes phenomenon for single-level linear di¤erential systems: a perturbative approach[END_REF] by considering a point 2 V 0 ( b f 0 ) \ R + so that 1 = Z 1 ( ) 1 F 0 ( ). Note that, by de…nition of the right analytic continuation, Z 1 ( ) is evaluated at a point such that arg( 1) = . Note also that the evaluation of F 0 ( ) requires methods for the e¤ective calculation of multi-sums of formal series (see, for instance, [START_REF] Jung | An algorithm of multisummation of formal power series solutions of linear odes[END_REF]).

Example 3

In this last example, we consider the system (6.7)

x 3 dY dx = f jointly with the initial condition e f (0) = I 6;1 . Then, adapting calculations already made in section 6.1, one can check that the Borel transforms b f u;j ( ), u = 1; 2 and j = 2; 3, verify the following equations: (6.9) equations of (6.9) and calculations above that b f 1;2 is the unique solution of

8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > :

e

  C the Riemann surface of the logarithm, O(V ) the space of analytic functions on an open set V of C or e C; in particular, O(C) (resp. O( e C)) denotes the space of entire functions on all C (resp. e C), O := Cftg the set of germs of analytic functions at 0 2 C and e O the set of germs of analytic functions at 0 2 e C; recall that one has a natural injection O ,! e O.

De…nition 2 . 4 (

 24 [19, Def. 2, p. 343]) Let s 2 and k := (k 1 < ::: < k s ) a s-tuple of positive real numbers. Denote j := k j+1 k j k j+1 k j for j = 1; :::; s 1 and s := k s .

  e h(t) 2 O is analytic at the origin 0 2 C, then b h( ) de…nes an entire function on all C with exponential growth of order 1 at in…nity: b h( ) 2 O 1 (C). / Borel transformation. Let us now consider the functional version of the Borel transformation. It is given, in each direction 2 R=2 Z, by the integral

Theorem 4 . 9 (

 49 Summable-resurgence theorem) Case p 1 = 1. b f is summable-resurgent with singular support p ; 0: b f ( ) 2 Res sum p;0 Case p 1 2. b f is summable-resurgent with singular support p ; e 0: b f ( ) 2 Res sum p; e 0

Lemma 4 . 13 1 .

 4131 Let b D be the Borel transformed equation of D. The singular points of b D are the highest level's Stokes values a j;r 2 p . 2. The levels of b D at in…nity are 1.

  .

4. 4 . 1 ' 2 C

 412 The space C and the extended Borel transformation / The space C. Let C denote the space of singularities at the origin 0 2 e C. It is de…ned as the quotient C := e O=O. Recall that C is also denoted by SING 0 by J. Écalle and al. (cf. [26] for instance). Recall also that the elements of C are called micro-functions by B. Malgrange [17] by analogy with hyper-and micro-functions de…ned by Sato, Kawai and Kashiwara in higher dimensions. / Micro-solutions. Let be a scalar linear di¤erential operator with coe¢cients in O. Recall that the solutions of y( ) = 0 in e O are always of …nite determination, i.e., they read as (4.5) X f inite ' ;p ( ) (ln ) p where 2 C, p 2 N and ' ;p ( ) holomorphic on a punctured disc at 0; some of them may be of Nilsson class, i.e., may be write on the form (4.5) with all the ' ;p ( ) in O. A micro-solution of at 0 is any singularity r ' 2 C satisfying r ' = 0 in C, i.e., any r whose some, hence all, majors ' b 2 e O satisfy ' b 2 O. Since any solution ' 2 e

L ext 1 ;' 1 ') = b ' 9 .

 119 ( r ') makes sense since it does not depend on the choice of " nor on the chosen major ' b ; in particular, for a choice ' =t d where denotes a Hankel path directed by direction and oriented positively. Note also that, if b ' is integrable at 0, then L ext 1; ( r ') and L 1; ( b ') coincide. As B 1; , we omit to write and we simply denote r ( e C) for B ext 1; ('); thus, using notation of lemma 4.1, var( r The following relations are essentially known: given 2 CnZ and m 2 N ,

4 . 4 . 2

 442 A function ' b is a major of a singularity at ! if ' b (! + ) is a major of a singularity at 0. In the same way, we de…ne the spaces r Det s-res p; e 0 j! and r N il s-res p;0 j! as the translated of the spaces r Det s-res p; e 0 and r N il s-res p;0 to !. Let us now turn to the description of singularities of b f . Structure of singularities of b f Theorem 4.9 tells us that the only singular points of b f are the highest level's Stokes values a j;r 2 p of e f (x). The behavior of b f at any of these points ! depends, of course, on the "homotopic class" of the path of analytic continuation followed from any point a 6 = 0 of V 0 ( b f ) 10 to a neighborhood of !. In particular, "homotopic class" implies that the behavior of b f does not depend on the choice of a. We denote below by b f ;!; the analytic continuation of b f along the path , r f ;!; := can( b f ;!; ) the singularity of b f at ! de…ned by b f ;!; .

G

  3.2 for the proof of summable-resurgence of b f . Precisely, 1. we …rst study the singularities r G ;1;1 ;!; of b G ;1;1 (see page 22 for notation) at ! de…ned by the analytic continuation b G ;1;1 ;!; of b G ;1;1 along , 2. next, we "extend" the structure of r

  is essentially based on Écalle's theorem, as stated and proved by B. Malgrange in [17, Thm. 2.2], which asserts that the space g Sol 0 (D) of formal solutions of D at 0 and the space r M( b D) of micro-solutions of b D are isomorphic 11 . In our case, this theorem reads as follows: Proposition 4.19 (Écalle) With notations as lemma 4.3.

rG ; 1 ; 1 ;t into the derivation d d and the derivation d k dt k into d k+1 d k+1 k d k 1 d k 1 ,

 1111 !; . Then, since the Borel transformation changes the multiplication by 1 corollary 4.4 and remark 4.22 show that proposition 4.23 still holds for all the other entries of r G ;1;1 ;!;

4 ./

 4 Structure of singularities r f ;!; . According to relation b f ;!;

Theorem 4 . 24 (

 424 Description of singularities r f ;!; ) Let ! 2 p nf0g and a path on Cn p starting from a point of V 0 ( b f ) and ending in a neighborhood of !.

  The analytic continuation b f ;!;+ := b f ;!; + 0 ;! is called right analytic continuation of b f at !. Note that it does not depend on the choice of 0 .

Figure 4 . 1 - 2 De…nition 4 . 25 (

 412425 Figure 4.1 -A path + 0 ;! in the case of a sector V 0 ( b f ) with opening < 2

  + (! + )e =t d ;where is, as shown on …gure 5.1, a classical Hankel path directed by direction and oriented positively around 0.

Figure 5 . 1 -

 51 Figure 5.1 -A Hankel path

Proposition 5 . 3

 53 Given ! 2 p; , the following identity + (! + )e =t d = M p; ? ;! (t) holds for arg(t) ' ? .

Proposition 5 . 4 (;+

 54 Structure of principal singularities with good monomial front) Let ! 2 p; a singular point with good monomial front. Then, the principal singularity r f ;!;+ admits a major f b rem u;j; ! ? ;+ ( ) for all u = 1; :::; r and j = 1; :::; J with a remainder rem u;j; ! ? ;+ ( ) := X `;a `;r =! r X v=1 ` v+1 r R u;j; `;v;! ? ;+ (ln )

De…nition 5 . 5 (

 55 Connection constants) Let ! 2 p; a singular point with good monomial front. The nontrivial entries of matrices K u;j; ! ? ;+ are called connection constants of b f at !.

Theorem 5 . 7 ( 1 )

 571 Highest level's connection-to-Stokes formulae) Let j 2 f1; :::; Jg such that a j;r = !. Then, the data of the highest level's Stokes multipliers (st j; p; ? k ) k=0;:::;r 1 of e f (x) and the data of the connection constants (K u;j; ! ? ;+ ) u=0;:::;r 1 of b f ( ) at ! are equivalent and are related, for all k = 0; :::; r 1, by the relations In j L j ) I u;j; and where 0 is a Hankel type path around the nonnegative real axis R + with argument from 2 to 0.

St 2

 2 

F 0 := " b f 0 b f 0 0 # 1

 01 Note that system (6.5) has an irregular singular point at = 0 (due to the level 1 of e f (x)) and a regular singular point at = 1 (due to the fact that 1 has a good monomial front). More precisely, it reads near = ( ) is diagonalizable and analytic on the open disc D(1; 1) with center 1 and radius 1. Following Wasow[START_REF] Wasow | Asymptotic expansions for ordinary di¤erential equations[END_REF], let the matrix D

so that M 1 := D 1 1 C 1 ( 1 )D 1 =

 11111 

with z 9 (

 9 ) and z 12 ( ) analytic on D(1; 1); as for the other columns of Z 1 ( ), they are analytic on D(1; 1).

3

 3 

F

  together with the formal fundamental solution e Y (x) = e F (x)e Q(1=x) where (x) = I 3 + O(x 2

f 1 ; 2 ,

 12 we deduce from the …rst two

  Lemma 2.8 below, which will be us useful later, relates the two methods of summation above by making explicit the sum s ; (B ks (e g)) in terms of accelerators. With notations as above, s ; (B ks ( e h)) = A ks;k s 1 ; :::A k 2 ;k 1 ; B k 1 ; ( e h):

	Lemma 2.8

2. its -sum s ; (B ks ( e h)) can be analytically continued along in a function, still denoted s ; (B ks ( e h)), on a sector bisected by with an exponential growth of order k s at in…nity.

Then, the k-sum s k; ( e h)(t) of e h(t) in the direction is de…ned by

s k; ( e h) = L ks; (s ; (B ks ( e h))):

Remark 2.7 One can show that the two k-sums given by de…nitions 2.4 and 2.6 coincide (see, for instance,

[START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF]

).

/

  Stokes phenomenon. The Stokes phenomenon of system (A) stems from the fact that the sums s r; ( e F ) and s r; + ( e F ) of e F (x) are not analytic continuations from each other in general. This defect of analyticity is quan-ti…ed by the collection of Stokes-Ramis automorphisms St ? : Y + 7 ! Y for all the anti-Stokes directions 2 R=2 Z of e The Stokes-Ramis matrices 4 are then de…ned as matrix representations of the St ? 's in GL n (C): in direction the matrix of St ? in the basis Y + . We still denote it by St ? ; it is uniquely determined by the relation Y (x) = Y + (x)St ? for arg(x) ' ? : Let us now split St ? = [St j;`

	De…nition 2.10 (Stokes-Ramis matrix) One calls Stokes-Ramis matrix
	associated with e Y (x)

F (x), where Y denote the sums of e Y (x) de…ned, for arg(x) ' ? , by Y (x) := s r; ( e F )(x)Y 0; ? (x).

/ Stokes-Ramis matrices.

St 1; ? :::St p; ? ; St k; ? = [St j

  

			;k	; ? ] 2 GL n (C)
	where, for all k = 1; :::; p,	
	St j;k	; ? =	I n j if j = if is not an anti-Stokes direction of q j q `or r j;`6 = r k 0	:
	De…nition 2.12 (k th level's Stokes multipliers) Let k 2 f1; :::; pg.
	1. The matrix St k; ? is called k th level's Stokes-Ramis matrix (or Stokes-Ramis matrix of level r k ) associated with e Y (x) in direction .

  St ? the Stokes-Ramis matrix associated with e Y (x) in the direction . More generally, a convenient choice of " and " 0 allows us to obtain all the k th level's Stokes-Ramis matrices St k; ? for k = 1; :::; p. Theorem 2.16 below precises this point in the case of the highest level's Stokes-Ramis matrix St p; ? (recall that the aim of this paper is the calculation of this one).

		1) = (resp. " = (+1; :::; +1) = +), the sums
	Y ; and Y (resp. Y ;+ and Y + ) coincide. The comparison between sums Y ;" and Y ;" 0 for di¤erent " and " 0 yields a generalized Stokes phenomenon: given " 6 = " 0 , there exists a unique invertible matrix St ";" 0 ? 2 GL n (C) such that
	(2.2)	Y ;" (x) = Y ;" 0 (x)St ";" 0 ?	for arg(x) ' ? :
	Note that St ;+		
	Theorem 2.16 ([19, Thm. 9, p. 366]) Let 2 R=2 Z be an anti-Stokes direction of e F (x).
	Let " = ( 1; :::; 1) and " 0 = ( 1; :::; 1; +1) with a "+1" only at index p. Then, St ";" 0 ? = St p; ? the highest level's Stokes-Ramis matrix associated with e Y (x) in direction .
	Theorem 2.16 will be us useful in next section 3.2 below.

?

=

  Let eO exp denote the space of all the functions with subexponential growth at 0. For example, any power t , 2 C, of t; hence, any analytic function h(t) 2 O, any power (ln t) m , m 1, of the logarithm, any exponential exp(P (t 1=r )) with P (t) polynomial in t of degree < r

	for exact conditions). Recall that such a function
	h(t) 2 e O satis…es lim jtj!0 jtj ln(jh(t)j) = 0 uniformly on any bounded sector with vertex 0:
	belong to e O

exp . Classical lemma 4.1 gives us some properties of B 1; . Lemma 4.1 Let 2 R=2 Z and h; h 1 ; h 2 2 e O exp . Then, 1. B 1; (h) := b h is holomorphic on all e C with exponential growth of order 1 on any bounded sector of in…nity

  and of the fact that, by de…nition of a companion system, the …rst column-block of e

					Z(t)
	reads as	2 6 6 6 6 6 6 4	e z 1;1;1 de z 1;1;1 dt . . . d rn 1 e z 1;1;1	e z 1;1;2 de z 1;1;2 dt . . . d rn 1 e z 1;1;2	e z 1;1;n 1 de z 1;1;n 1 dt . . . d rn 1 e z 1;1;n 1
			dt rn 1	dt rn 1	dt rn 1

  as follows:We call resurgent function with singular support p ; 0 any function de…ned and analytic on all the Riemann surface R p .We call resurgent function with singular support p ; e 0 any function de…ned and analytic on all the Riemann surface e R p .A resurgent function of Res p;0 is said to be summable-resurgent if it grows at most exponentially on any bounded sector of in…nity of R p . A resurgent function of Res p; e 0 is said to be summable-resurgent if it grows at most exponentially on any bounded sector of in…nity of e R p . Let Res sum p;0 and Res sum p; e 0 denote the sets of summable-resurgent functions with singular support p ; 0 and of summable-resurgent functions with singular support p ; e 0. As before, we have a natural injection Res sum p;0 ,! Res sum p; e 0 . The four sets of resurgent and summable-resurgent functions above have a natural structure of C-algebra. Following lemma 4.8 gives us some other elementary stability properties. Lemma 4.8 (Stability properties) The sets of resurgent and summableresurgent functions above have the following stability properties: Let ' 1 2 Res p;0 (resp. Res sum p;0 ) and ' 2 2 O 1 (C). Then, ' 1 ' 2 2 Res p;0 (resp. Res sum p;0 ). Let ' 1 2 Res p; e 0 (resp. Res sum p; e 0 ) and ' 2 2 O 1 ( e C). Suppose that ' 1 and ' 2 are both integrable at 0 (in the …rst sheet). Then, ' 1 ' 2 2 Res p; e 0 (resp. Res sum p; e 0 ). They are besides stable under the derivation d=d .

	De…nition 4.6 (Resurgence)
	De…nition 4.7 (Summable-resurgence)

Let Res p;0 and Res p; e 0 denote the sets of resurgent functions with singular support p ; 0 and of resurgent functions with singular support p ; e 0. Note that we have a natural injection Res p;0 ,! Res p; e 0 .

  ;0 denote the spaces of summable-resurgent singularities of …nite determination with singular support p ; e 0 and of Nilsson class with singular support p ; 0. Observe that these two spaces are stable under derivation d d and under multiplication by an element of O 1 (C).

	holomorphic functions on all e C with exponential growth of order 1 on any
	bounded sector at in…nity (see section 4.1). Let us now denote by C 1 the subspace of singularities r ' 2 C for which var r ' 2 O 1 ( e C). Recall that, for such a singularity, there always exists a major ' b C) (see [8]); thereby, 2 O 1 ( e C 1 is stable under the convolution product ~. One has the following classical result:
	Proposition 4.15 (Écalle, [8, pp. 46-48]) Let 2 R=2 Z be a direction. The Borel transformation B 1; can be extended into an isomorphism
	B ext 1; : e O exp ; +; ; t 2 d dt	! C 1 ; +; ~;
	O exp . 1; de…nes as follows: Its inverse is the extended Laplace transformation L ext given r ' 2 C 1 , ' b a major of
	/ Extended Borel transformation. Recall that the Borel transformation B 1; de…nes, for any direction 2 R=2 Z, an operator from the space e O exp of functions with subexponential growth at the origin to the space O 1 ( e C) of

r Det s-res p; e 0 and r N il s-res pof C-di¤erential algebras so that var(B ext 1; ') = B 1; (') for all ' 2 e r ' and b ' = var r

  More generally, let C[t ; (ln t) p ] 2C;p2N denote the subspace of ' 2 e 2C;p2N .In the same way as B 1; , the formal Borel transformation B 1 can be extended to formal expansions of the form

	of the form 2. Reciprocally, let X f inite ;p t (ln t) p with ;p 2 C; 2 C; p 2 N: r p;0 with N il s-res h ;p ( ) = X m 0 h ;p;m m 2 O	O exp
	Let us also denote by r ' 2 r C[t ; (ln t) p ] 2C;p2N , there exits a major ' r C[t ; (ln t) p ] 2C;p2N its image by B ext 1; . Then, for any in a neighborhood of 0 2 C. Then, for any direction 2 R=2 Z such that p \]0; 1e i [= ;, b 2 C[ ; (ln ) q ] 2C;q2N . Moreover, the spaces r Det s-res r N il s-res p;0 are stable under the ~-convolution L ext 1; ( r h) = p X k=0 p k s 1; ( e h ;p k )(t)t +1 (ln t) k p; e 0 and by an element of where, for all `= 0; :::; p,
	e h(t) = p;0 . Then, m 0 h b h( ) 2 Res sum X e h ;`( t) = 2i X m 0	d dz `	e i z (1 z) jz=m+1+	h ;p;m t
	r e h(t)t (ln t) p 2	r N il s-res p;0 :

r C[t ; (ln t) p ] m (t) with h m (t) 2 e O exp by applying separately B ext 1; for any on each term h m (t). As previously, we denote by r h the extended formal Borel transform B ext 1 ( e h). Note that, when e h(t) 2 C[[t]], the variation var r h coincides with the formal Borel transformation b h = B 1 ( e h). In particular, when e h(t) 2 C[[t]] 1 is a 1-Gevrey formal series, one has b h( ) = B 1 ( e h) 2 O and r h = B ext 1 ( e h) = can b h( ) ln 2i ! : More generally, one has the following classical result which will be us useful later: Proposition 4.16 ([14, 16, 26]) With notations as above: 1. Let 2 C, p 2 N and e h(t) 2 C[[t]]. Suppose that the formal Borel transform b h( ) of e h(t) is summable-resurgent with singular support p ; 0: r h = can(h ;p ( ) (ln ) p ) 2 m and b h ;`( ) 2 Res sum p;0 . In particular, e h ;`( t) 2 C[[t]] 1 .

  Contrarily to previous example, the exact calculation of K 1;3 1;+ and K 2;3 1;+ is no longer possible. Nevertheless, we can determine approximate values of these constants. To do that, we can proceed as follows.As in previous example, this system provides relations on each entry of e f (t). Then, multiplying each on these relations by 1=t 2 and applying a Borel transformation, one can check that the matrix

				5	i)	K 1;3 1;+ +	3i p 2	3	(1 + i p	3)	2 3	K 2;3 1;+
				6								
	st 3 2;	=	i (	p	3 + i) 5	K 1;3 1;+ +	3i	p 2	3	(1 i p	3)	2 3	K 2;3 1;+
					6							
	Following relation (A H ), the matrix e f (t) 2 M 6;1 (C[[t]]) is a formal solu-tion of system
		2t 2 df dt	=	2 6 6 6 6 6 6 4 t 2 t 2 + t 0 0 t 0 0 0 3 0 0 0 t 1 0		0 0 t 2 t 0 t 2 t 0 0 t	0 0 0 t 0	3 7 7 7 7 7 5 7	f
						0 t	0			t 2 t 2 2t 3

  1) = I 12 :In particular, the ninth and twelfth columns of Z 1 ( ) read respectively as 2

	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4	6 5 ( 3 5 ( (	0 0 0 0 0 0 1) 1) 1) 11 6 0 0	5 6 5 6	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5	+ (	1)	1 6 z 9 ( ) and	2 6 6 6 6 6 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6	3 4	0 0 0 0 0
			0								

  ).As before, we denote by e f (x) the …rst column of e F (x). Note that e f (x) has just the level 2; thereby, e f (t) is 1-Gevrey and b f ( ) is analytic at 0 2 C. The set of highest level's Stokes values of e f (x) is 2 = f0; 1g. Contrarily to previous examples, our present aim is not to calculate the highest level's Stokes multipliers of e f (x), but just to display the structure of the singularity of b f ( ) at 1 in order to illustrate theorem 4.24 in the case of a singularity with a bad front. Indeed, we have here As in section 6.1, system (6.7) is simple enough to allow exact calculations. According to relations (3.1) (see page 15) and (6.8), the matrix e f (t) 2 M 6;1 (C[[t]]) reads on the form

	e f (t) =	"	e f 1 (t) e f 2 (t)	#	with e f 1 (t) =	2 f 1;3 (t) 1 e 4 e f 1;2 (t)	3 5 , e f 2 (t) =	2 f 2;3 (t) 0 e 4 e f 2;2 (t)	3 5
	and the e f u;j (t)'s satisfying		
	(	e f 1;2 (t) = 1 2 t 5 8 t 2 + O(t 3 ); e f 1;3 (t) = 1 2 t 1 2 t 2 + O(t 3 ); e f 2;2 (t) = 1 4 t + 11 16 t 2 + O(t 3 ); e f 2;3 (t) = 1 4 t 2 + O(t 3 ):
	Following relation (A H ), e f (t) is uniquely determined by the system
				2t 2 df dt	=	2 6 6 6 6 6 6 4 0 0 0 0 t 2 0 0 t 0 2 0 0 0 0 t 0 1 0 t 2 t 0 t t 2 0	0 0 0 0 0	3 7 7 7 7 7 7 5
								0 t 0 t	0	2 t
										More precisely,
	(6.8)		(	e f 2 (x) = 1 2 x 2 + 1 4 x 3 5 8 x 4 + 11 16 x 5 + O(x 6 ) e f 3 (x) = 1 2 x 2 1 2 x 4 + 1 4 x 5 + O(x 6 )
							F r(1) =	1 x 2	1 x	;	1 x 2 :

Compare with the notation s ; (B ks ( e h)) of de…nition

2.6 below.[START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤erential equations[END_REF] When opening is < 2 , the sector can be seen as a sector of Cnf0g; otherwise, it must be considered as sector of e C.

Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 arg(z = 1=x) < 2 of the principal determination at in…nity, we suggest to choose 2 < arg(x) 0 as principal determination about 0.

In the literature, a Stokes matrix has a more general meaning where one allows to compare any two asymptotic solutions whose domains of de…nition overlap. According to the custom initiated by J.-P. Ramis[START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] in the spirit of Stokes' work, we exclude this case here. We consider only matrices providing the transition between the sums on each side of a same anti-Stokes direction.

Observe that we need a contour that ends at 0 since the functions we consider are studied near the origin; if we worked at in…nity, we would use a Hankel contour itself.

More generally, \ t ln m (t)( ) 21 C[ln ] for all 2 C and m 1. For exact formulae, we refer, for instance, to[START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF].

This relation justi…es the notation of the variation of any singularity of C; see note 8.

See page 23 for the exact de…nition of V 0 ( b f ).

In[START_REF] Malgrange | Fourier transform and di¤erential equations[END_REF], B. Malgrange states actually this theorem not in terms of Borel transformation, but in terms of Fourier (= Laplace) transformation.

See page 23 for the exact de…nition of V 0 ( b f ).

This last condition is, of course, always ful…lled when V 0 ( b f ) is a disc or a sector with opening < 2 .

2

The elements of C are usually denoted with a nabla, like Note that d d is not a ~-derivation; its action on ~is actually given by

On the other hand, the multiplication by is an ~-derivation:

8 The fact that we use here the same notation b ' as the Borel transform of an element ' 2 e O exp will be justify below with the de…nition of the extended Borel transformation. Det s-res p a `;r ; e 0 is the singularity at 0 de…ned by b g u;`;q ; then, we conclude by properties of stability. / This ends the proof of lemma 4.20 since B ext 1 (e a `;r =t ) is the translation by a `;r and since B ext 1 (e ' v;`;q e _ qa `;r (1=( v 1 t 1=r )) ) = r ' v;`;q ~r e _ qa `;r (1=( v 1 t 1=r )) .

Proposition 4.19 and lemma 4.20 above lead us to the following result which makes explicit the stucture of micro-solutions of b D. r Det s-res p !; e 0 ), we have

where

Then, applying theorem 5.7 to system (A 0 ), we can again express the highest level's Stokes multipliers of e f (x) associated with ! in terms of connection constants. Note however that these constants are calculated from system (A 0 ) and not from system (A).

E¤ective calculation of the highest level's Stokes multipliers for the SG-Con…guration's case

When p; has the SG-Con…guration, theorem 5.7 tells us that the e¤ective calculation of the highest level's Stokes multipliers associated with ! 2 p; is reduced, after applying lemma 5.1 if needed, to the e¤ective calculation of the connection constants at !. In section 6 below, we treat in detail some typical examples to both illustrate the structure of singularities and the highest level's connection-to-Stokes formulae .

Recall that, according to initial normalizations (C1) (C3) (see page 2), the matrix e f (t) is uniquely determined by the …rst n 1 columns

of the homological system of the r-reduced system (A) jointly with the initial condition e f (0) = I rn;n 1 = the …rst n 1 columns of the identity matrix of size rn (see [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]). Thereby, the sum b f itself is completely determined by the convolution system (A H ) deduced from (A H ) by Borel transformation. Note that, in the special case where matrix A(x) of initial system (A) has rational coe¢cients, convolution system (A H ) can actually be always replaced by a convenient linear di¤erential system.

Examples

To end this article, we develop in this section three typical examples in which, for a full e¤ectivity, systems are chosen with rational coe¢cients.

In the …rst one, we consider a SG-Con…guration and we choose a simple enough system to allow the exact calculation of the connection constants and so of the highest level's Stokes multipliers. Of course, such a case is anecdotal, but it is worth to be treated.

In the second example, we consider once again a SG-Con…guration, but we choose this time a more general system for which no exact calculations are possible. We then show how the connection constants can be related, of b f 1;2 0 ( ) on all e C. Relation ( ) above provides then us the exact expression of the sum b f 2;2 0 ( ). Note that the fact we can make explicit the sums b f 1;2 0 ( ) and b f 2;2 0 ( ) is only due to the great simplicity of system (6.1). Of course, for more general systems, such exact calculations are not possible anymore.

Let us now turn to the calculation of the connection constants of b f 0 at 1 and 2, and so of the highest level's Stokes multipliers of e f (x). According to the last three equations of (6.3), following equalities hold for all j j < 1:

and choosing a determination of the logarithm such that ln( ) 2 R for > 0, the analytic continuations b f u;j 0 ;!;+ 's of the b f u;j 0 's at ! 2 f1; 2g verify

Consequently, the connection constants of b f 0 ( ) at the points = 1 and = 2 are given by

is an analytic solution on V 0 ( b f 0 ) 14 of the system (6.5)

where C( ) is the following 

Hence, for all j j < 1, 1)

(1 )

where 1 F 1 (a; b; ) denotes the con ‡uent hypergeometric function with parameters a and b. This relation shows then us that the singularity at = 1 is strongly irregular and, thereby, much more complicated than the singularities met in previous examples (see sections 6.1 and 6.2) for singular points with good monomial front. Note that explicit formulae can also be displayed for b f 2;2 , b f 1;3 and b f 2;3 and provide yet much "harder" singularities. These formulae stem from the following relations which result from ( ) and from the last two equations of (6.9): for all j j < 1,