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A Belief-Rule-Based Inference Method for 

Carrier Battle Group Recognition 

Lianmeng Jiao1, Quan Pan, Xiaoxue Feng and Feng Yang 

Abstract. This paper proposes a method for carrier battle group recognition with 

over-the-horizon radar outputs. A newly developed belief-rule-based inference 

method is employed to deal with uncertainties in both radar outputs and domain 

knowledge. The recognition belief-rule base is constructed considering the con-

straints among sub-targets in the carrier battle group and subsequently the infe-

rence according to such hierarchical belief-rule base is implemented. Moreover, 

the parameters training method is designed to update the belief-rule base through 

accumulated historical data. The simulation results show that the belief-rule-based 

inference method is effective to address the uncertainties in carrier battle group 

recognition, and the method performs much better after parameters training. 

Keywords: Belief-rule base · Carrier battle group · Over-the-horizon ra-

dar · Target recognition 

1 Introduction 

The carrier battle group (CVBG) consists of an aircraft carrier and its escorts (car-

rier-borne aircrafts and other warships), together comprising the combat formation 

[1]. The CVBG includes capabilities sufficient to accomplish a variety of combat 

tasks in war, and so the detection and recognition of CVBG become quite urgent 

for early warning. Over-the-horizon radar (OTHR), as important equipment in ear-

ly-warning system, can detect beyond-the-horizon targets at ranges of thousands 

of kilometers [2]. Generally, the outputs of OTHR are target tracks and very li-

mited attribute information can be obtained. However, it’s believed that the sub-

targets in CVBG usually satisfy some kinds of spacial and subordinate relation-
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ship and it’s possible to recognize CVGB as a whole with higher reliability by 

mining the internal constraints among the sub-targets. 

The CVGB recognition problem based on the outputs of OTHR faces many 

challenges as follows. Firstly, because of the vast sight scope, the clutters may be 

mistakenly detected as target and thus it makes the target tracks information with 

great probability uncertainty. Secondly, limited by radar’s detecting accuracy, the 

target tracks information has great fuzzy uncertainty. Lastly, sometimes the ex-

perts’ subjective information will be utilized when the target tracks information 

provided by radar is inadequate. As a result, an inference method that can address 

the information with both probability uncertainty and fuzzy uncertainty, as well as 

subjective information, is needed. Recently, a generic rule-based inference meth-

odology using the evidential reasoning approach (RIMER) has been proposed [3], 

which provides a flexible and effective framework to represent not only precise 

data but also vagueness and ignorance in knowledge, as well as a rigorous infer-

ence procedure to deal with such hybrid uncertain information. It has been used 

for clinical guideline [4], nuclear safeguards evaluation [5], and new product de-

velopment [6]. 

Motivated by above consideration, to support modelling and reasoning with ra-

dar outputs information and domain knowledge under uncertainties, we propose to 

employ RIMER for developing the CVGB recognition method. The belief-rule 

base (BRB) for CVGB recognition is constructed considering the constraints 

among sub-targets in CVGB and subsequently the inference based on such hierar-

chical BRB is implemented. Furthermore, the parameters training method is de-

signed to update the BRB through accumulated historical cases in order to obtain 

higher recognition rate. 

2 Outline of RIMER 

In RIMER, BRB is used to model domain specific knowledge under uncertainty, 

and the evidential reasoning (ER) approach is employed for inference with BRB. 

In this section, we provide a brief introduction to BRB first, and then we outline 

the process of inference with BRB using the ER approach. 

2.1 Modelling Domain Knowledge Using BRB 

In order to model the uncertainty in domain knowledge, the belief rule extended 

from the traditional ‘IF-THEN’ rule with a belief structure can be described as 
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where ,j k  ( 1,2, ,j N  , 1,2, ,k L  ) is the belief degree to which jD  is be-

lieved to be the consequent if, in the k th rule, the input 
1 2[ , , , ]Mx x x x   satis-

fies the antecedent referential value vector 1 2[ , , , ]k k k

k MA A A A  . k  is the rela-

tive weight of the k th rule and 1 2, , , M    are the relative weights of the M  

antecedent attributes that are used in the k th rule. 

BRB is a collection of belief rules as described by Eq.(1) [3]. Inference with 

BRB is implemented using the ER approach, and knowledge representation para-

meters including rule weights k , antecedent attribute weights m  and consequent 

belief degrees ,j k  are usually given by domain experts. 

2.2 Inference with BRB Using the ER Approach 

The analytical format of the ER approach [7] used for inference with the BRB and 

the input data under uncertainties can be described as follows. 
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where, ( 1, , )j j N    is the final belief degree attached to the j th consequent 

jD  after combining all activated rules in BRB; ,j k  ( 1,2, ,j N  , 

1,2, ,k L  ) is the original belief degree assigned to jD  in the k th belief rule, 

and k  is the k th rule’s activation weight which can be calculated by 
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where, k

m  ( 1,2, ,m M  ) is the individual matching degree to which the input 

mx  belongs to k

mA  that is the referential value of the m th antecedent attribute used 

in the k th rule. 
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The final combined result generated by ER approach is represented by 

1 1 2 2{( , ),( , ), ,( , ), ,( , )}j j N ND D D D     , where j ( 1,2, ,j N  ) is the fi-

nal belief degree attached to the j th consequent jD  after combining all activated 

rules in the BRB. 

3 CVBG Recognition Based on RIMER 

3.1 Overview 

The outputs of OTHR are series of target tracks within the surveillance area, 

which are used as the inputs of the inference system for CVBG recognition. It’s 

believed that the most significant indication of CVBG is that the carrier-borne air-

crafts and warship formation usually operate together. So, if the OTHR can detect 

both the carrier-borne aircrafts and warship formation in the same area, it can 

make the judgement of CVBG with high confidence. Further, the warship forma-

tion can be distinguished from other targets according to its velocity and parallel 

tracks. On the other hand, the carrier-borne aircraft can be distinguished from 

other targets according to its velocity and track that initiates and terminates at sea. 

As a result, the inference logics can be formulated based on the above constraints 

using the outputs of OTHR. 

Besides, some external information, for example, the prior-known operation 

regulations, can be used as another source of evidence for CVBG recognition in-

dependent with the outputs of OTHR. 

Remark 1. This paper emphasize on the construction of BRB for CVBG recogni-

tion and the inference implementation based on BRB, and the track processing 

procedures (such as the judgment of parallel tracks) are not discussed in detail 

here. 

3.2 Construction of BRB for CVBG Recognition 

According to the above analysis of the constraints among sub-targets in CVBG, 

the structure of BRB for CVBG recognition can be constructed as Fig. 1, which is 

composed of four sub-BRBs. This BRB system uses five input variables (X3, X6, 

X7, X8, X9) and three intermediate variables (X2, X4, X5) to predict X1. For illus-

tration purposes, each of these input variables and the output variable are defined 

in terms of qualitative linguistic values (high (H), medium (M), or low (L)). 



A Belief-Rule-Based Inference Method for Carrier Battle Group Recognition 5 

X1

AND

X2 X3

AND

X4 X5

AND AND

X6 X7 X8 X9

Sub-BRB 1Sub-BRB 2

Sub-BRB 3

Sub-BRB 4

 

Fig. 1 The hierarchical BRB structure for CVBG recognition 

In Fig. 1, the parameters are defined as follows. 

 X1 -- CVBG recognition confidence. 

 X2 -- CVBG recognition confidence based on OTHR outputs. 

 X3 -- CVBG recognition confidence based on operation regulations. 

 X4 -- Warship formation recognition confidence. 

 X5 -- Carrier-borne aircraft recognition confidence. 

 X6 -- warship formation recognition confidence based on velocity. 

 X7 -- warship formation recognition confidence based on parallel tracks. 

 X8 -- Carrier-borne aircraft recognition confidence based on velocity. 

 X9 -- Carrier-borne aircraft recognition confidence based on track that initiates 

and terminates at sea. 

Based on the above hierarchical BRB structure, the CVBG recognition BRB, 

composed of 36 belief rules, can be constructed as Table 1, in which, the initial 

BRB parameters including rule weights, attribute weights and consequent belief 

degrees are usually given by domain experts. 
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3.3 Inference with Hierarchical BRB 

From previous subsection, it can be seen that the CVBG recognition BRB has hi-

erarchical structure. The inference based on this hierarchical BRB can be imple-

mented form bottom to up using the single-level inference method revisited in 

Subsection 2.2. Specifically, the output of sub-BRB 1 (X5) and the output of sub-

BRB 2 (X4) are taken as the input states to sub-BRB 3; the output of sub-BRB 3 

(X2) together with the independent input state X3 are taken as the input states to 

get the final result X1. 

Noting that the input value are usually depicted as a single probability, before 

the inference can be started, input values need to be transformed and represented 

in terms of the referential values (low, medium, and high) with belief degrees. The 

rule-based transformation technique [8] is used for the quantitative data transfor-

mation. The equivalence rules are given as 

1 is equivalently transformed to {(H, 1)}; 

0.5 is equivalently transformed to {(M, 1)}; 

0 is equivalently transformed to {(L, 1)}. 

Hence, 

0.95 is equivalently transformed to {(H, 0.9), (M, 0.1)}; 

0.6 is equivalently transformed to {(H, 0.2), (M, 0.8)}; 

0.4 is equivalently transformed to {(M, 0.8), (L, 0.2)}; 

0.1 is equivalently transformed to {(M, 0.2), (L, 0.8)}. 

3.4 BRB Training 

Practically, it is difficult to accurately determine the parameters of a BRB entirely 

subjectively, particularly, for a large-scale BRB with tens or even hundreds of 

rules. An initial BRB can be trained using historical data to improve its ability for 

representing domain knowledge. 

Real System

BRB System

Real Output

System Generated Output

ˆ
txInput

,, ,k m j k  

ˆ
ty

ty

( )V

 

Fig. 2 The flow chart for BRB system parameters training 
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The training process is implemented through minimizing the discrepancy be-

tween BRB results and sampled data. Assuming there are T  cases in a training 

sample, and the input–output pairs of the T  cases are ˆ ˆ( , )t tx y ( 1, ,t T  ), the 

process of learning from these T  datasets can be depicted as in Fig. 2, where ty  is 

produced by the BRB system, the real output ˆ
ty  is observed by experts or ac-

quired by instruments, and ( )V  represents the difference between the real output 

and the system output with ,[ , , ]z z z T

k i j kV    . In the BRB optimization model, 

the objective function is to minimize ( )V , and the constraints define what the 

knowledge representation parameters of a BRB system should follow. 

Considering the initial BRB for CVBG recognition displayed as Table 1 (col-

umns 1-4), the input 3 6 7 8 9
ˆ [ , , , , ]t t t t t T

tx X X X X X , the output 1
ˆ [ ]t

ty X  and ˆ
ty  is a 

numerical value representing the target is CVBG ( 1ty  ) or not ( 0ty  ). 

For certain input ˆ
tx , the CVBG recognition BRB system can get the following 

output after inference 

 {( , ( )),    1,2, , }.t j jy D t j N    (5) 

For comparison, it’s necessary to transform the above belief-degree structure 

into average utility as follows. 
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where, ( )jD  the utility (or score) of an individual consequent jD  and for this 

problem, the values of ( )jD  can be set as 
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So, the objective function in Fig.2 can be developed as 

 2
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The constraints are constructed according to the requirements of the application 

and if there is no additional requirement, the basic constraints can be given as fol-

lows. 
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where, Z  is the number of sub-BRBs; zL is the number of belief rules in z th sub-

BRB; zM  is the number of antecedent attributes in z th sub-BRB; zN  is the 

number of possible consequents in z th sub-BRB. The BRB training is therefore a 

nonlinear optimization problem with 
1 1

( )
Z

z z z zz
S L M N L


     variables and 

2 1
(2 )

Z

z z z zz
S L M N L


     constraints, and can be solved using existing optimi-

zation software packages. 

4 Numerical Simulations 

In this section, we would like to evaluate the proposed CVBG recognition method 

through some numerical simulations. To support BRB training and algorithm 

evaluation, a set of 50 scenarios of the over-the-horizon radar outputs is simulated 

with some scenarios having CVBG and other scenarios only containing false tar-

gets (airliners or freighters). The simulated dataset is randomly divided into two 

groups (45 scenarios and 5 scenarios) as the training dataset and test dataset, re-

spectively. 

First, the first group dataset is taken to train the BRB. Usually, the difference 

among weights of antecedent attributes is little, so for simplicity, it’s assumed that 

1z

i  ( 1,2, ,  1,2,zi M z Z   ). After parameter training using Eq.(8) and 

Eq.(9), we can get the trained CVBG recognition BRB as shown in Table 1 (col-

umns 5-6). 

Second, for comparison, the test dataset is used to conduct the inference based 

on the initial BRB and trained BRB respectively, and the results are shown in Ta-

ble 2, in which, columns 2-6 are the inputs of BRB, columns 7-8 are the inference 

results (conference / decision result) based on the initial BRB and trained BRB re-

spectively, and column 9 gives the real result. 

From the simulation results in Table 2, it can be seen that 

 Overall, the recognition rate can improve efficiently (from 60% to 100%) 

through BRB training. 

 As for the second dataset, actually the antecedent attribute X3 is not reliable, 

but in the initial BRB, X3 and X2 are treated with same importance, while in the 

trained BRB, X2 is more importance than X3. So, when the confidence input for 

X3 is high and the confidence input for X2 is low, the wrong inference result 

will be obtained based on the initial BRB. 

 As for the fifth dataset, the input confidence is high for X6 and X8, and low for 

X7 and X9, in which case, the targets are single airliner and single freighter for 

the real scenario. Noting that, after BRB training, the antecedent attributes X7 

and X9 that reflect the track parallelity, initiation and termination constraints in-
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formation, are much more important than X6 and X8, inference based on trained 

BRB will not make mistake. 

Table 1 BRB for CVBG recognition 

Rule 

No. 
Antecedent 

Initial BRB Trained BRB 

W Consequent W Consequent 

1 X8 is H∧X9 is H 1 X5 is {(H,1)} 1 X5 is {(H,1)} 

2 X8 is H∧X9 is M 1 X5 is {(H,0.5), (M,0.5)} 1 X5 is {(H,0.2), (M,0.8)} 

3 X8 is H∧X9 is L 1 X5 is {(M,1) } 0.5 X5 is {(M,0.3), (L,0.7)} 

4 X8 is M∧X9 is H 1 X5 is {(H,0.5), (M,0.5)} 0.8 X5 is {(H,0.5), (M,0.5)} 

5 X8 is M∧X9 is M 1 X5 is {(M,1)} 1 X5 is {(M,1)} 

6 X8 is M∧X9 is L 1 X5 is {(M,0.5), (L,0.5)} 0.8 X5 is {(M,0.1), (L,0.9)} 

7 X8 is L∧X9 is H 1 X5 is { (M, 1) } 0.5 X5 is {(H,0.2), (M,0.2), (L,0.6)} 

8 X8 is L∧X9 is M 1 X5 is {(M,0.5), (L,0.5)} 0.8 X5 is {(M,0.4), (L,0.6)} 

9 X8 is L∧X9 is L 1 X5 is {(L,1)} 1 X5 is {(L,1)} 

10 X6 is H∧X7 is H 1 X4 is {(H,1)} 1 X4 is {(H,1)} 

11 X6 is H∧X7 is M 1 X4 is {(H,0.5), (M,0.5)} 1 X4 is {(H,0.3), (M,0.7)} 

12 X6 is H∧X7 is L 1 X4 is {(M,1) } 1 X4 is {(H,0.3), (M,0.7)} 

13 X6 is M∧X7 is H 1 X4 is {(H,0.5), (M,0.5)} 1 X4 is {(H,0.4), (M,0.6)} 

14 X6 is M∧X7 is M 1 X4 is {(M,1)} 0.4 X4 is {(M,1)} 

15 X6 is M∧X7 is L 1 X4 is {(M,0.5), (L,0.5)} 1 X4 is {(M,0.1), (L,0.9)} 

16 X6 is L∧X7 is H 1 X4 is { (M, 1) } 0.2 X4 is {(H,0.1), (M,0.3), (L,0.6)} 

17 X6 is L∧X7 is M 1 X4 is {(M,0.5), (L,0.5)} 1 X4 is {(M,0.3), (L,0.7)} 

18 X6 is L∧X7 is L 1 X4 is {(L,1)} 1 X4 is {(L,1)} 

19 X4 is H∧X5 is H 1 X2 is {(H,1)} 1 X2 is {(H,1)} 

20 X4 is H∧X5 is M 1 X2 is {(H,0.5), (M,0.5)} 0.6 X2 is {(H,0.4), (M,0.6)} 

21 X4 is H∧X5 is L 1 X2 is {(M,1) } 1 X2 is {(H,0.2), (M,0.3), (L,0.5)} 

22 X4 is M∧X5 is H 1 X2 is {(H,0.5), (M,0.5)} 0.6 X2 is {(H,0.2), (M,0.8)} 

23 X4 is M∧X5 is M 1 X2 is {(M,1)} 0.6 X2 is {(M,1)} 

24 X4 is M∧X5 is L 1 X2 is {(M,0.5), (L,0.5)} 1 X2 is {(M,0.2), (L,0.8)} 

25 X4 is L∧X5 is H 1 X2 is { (M, 1) } 1 X2 is {(H,0.1), (M,0.2), (L,0.7)} 

26 X4 is L∧X5 is M 1 X2 is {(M,0.5), (L,0.5)} 1 X2 is {(M,0.2), (L,0.8)} 

27 X4 is L∧X5 is L 1 X2 is {(L,1)} 1 X2 is {(L,1)} 

28 X2 is H∧X3 is H 1 X1 is {(H,1)} 1 X1 is {(H,1)} 

29 X2 is H∧X3 is M 1 X1 is {(H,0.5), (M,0.5)} 0.2 X1 is {(H,0.3), (M,0.7)} 

30 X2 is H∧X3 is L 1 X1 is {(M,1) } 0.8 X1 is {(H,0.1), (M,0.3), (L,0.6)} 

31 X2 is M∧X3 is H 1 X1 is {(H,0.5), (M,0.5)} 1 X1 is {(H,0.2), (M,0.8)} 

32 X2 is M∧X3 is M 1 X1 is {(M,1)} 0.4 X1 is {(M,1)} 

33 X2 is M∧X3 is L 1 X1 is {(M,0.5), (L,0.5)} 1 X1 is {(M,0.3), (L,0.7)} 

34 X2 is L∧X3 is H 1 X1 is { (M, 1) } 1 X1 is {(H,0.1), (M,0.2), (L,0.7)} 

35 X2 is L∧X3 is M 1 X1 is {(M,0.5), (L,0.5)} 1 X1 is {(M,0.2), (L,0.8)} 

36 X2 is L∧X3 is L 1 X1 is {(L,1)} 1 X1 is {(L,1)} 

Table 2 Recognition results (X1I—Initial BRB based, X1T—Trained BRB based, X1R—Real) 

Dataset X3 X6 X7 X8 X9 X1I X1T X1R 

1 0.6 0.9 0.8 0.9 0.8 0.9022/ 1 0.8098/ 1 1 

2 0.8 0.3 0.2 0.3 0.2 0.5061/ 1 0.1501/ 0 0 

3 0.3 0.5 0.3 0.5 0.2 0.0638/ 0 0.2852/ 0 0 

4 0.5 0.8 0.8 0.2 0.2 0.4867/ 0 0.1438/ 0 0 

5 0.5 0.9 0.3 0.9 0.3 0.5015/ 1 0.2767/ 0 0 
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5 Conclusions 

The recognition of CVBG is critical for early warning. This paper proposes a be-

lief-rule-based inference method for CVBG recognition with over-the-horizon ra-

dar outputs under uncertainty. The BRB for CVBG recognition is constructed con-

sidering the constraints among sub-targets in CVBG and subsequently the 

inference according to such hierarchical BRB is implemented. Moreover, the pa-

rameters training method is designed to update the BRB through accumulated his-

torical cases. The simulation results show efficiency of the proposed method to 

address the uncertainties in both radar outputs and domain knowledge, and the 

method performs much better after BRB training.  
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