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This paper proposes a robust converted measurement Kalman filter (CMKF) algorithm to realize the target tracking with nonlinear measurement equations. At each processing index, the new algorithm chooses the more accurate state estimate from the state prediction and the sensor's measurement. The new algorithm then computes the converted measurement's error mean and the corresponding debiased converted measurement's error covariance conditioned on the chosen state estimate. Simulation results demonstrate the new CMKF's robust tracking performance as compared to the traditional DCMKF and MUCMKF. As a conclusion, the proposed algorithm can realize the target tracking with the non-linear measurement equations with well performance in different scenarios.

Introduction

In active sonar and radar systems the measurement of the position of a target is reported in polar coordinates (its range and azimuth or bearing (as well as elevation angle in 3D radar) with respect to the sensor location). However, in target tracking the target motion can be best modeled in Cartesian coordinates. Tracking in Cartesian coordinates using polar measurement can be handled in two ways. One method is to use an extended Kalman filter (EKF), which incorporates the original measurement in a nonlinear fashion into the target state estimate, resulting in a mixed coordinate filter. However, it has been found that in case cross-range measurement errors of the target position are large, the performance of EKF degrades considerably due to nonnegligible nonlinear effects. The other approach is to use converted measurement Kalman filter (CMKF), which converts the polar position measurement to Cartesian coordinates using the familiar nonlinear mapping between the two coordinate systems, yielding a measurement model that is a linear function of the target's Cartesian state, after which the classical Kalman filtering algorithm can be used to track target entirely in Cartesian coordinates [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques, and Software[END_REF].

As shown in [START_REF] Blackman | Multiple Target Tracking with Radar Applications[END_REF], the nonlinear transformation of unbiased polar measurement to raw Cartesian converted measurement creates a bias in the converted measurement's error. Debiasing the converted measurement with this bias produces an unbiased converted measurement for the classical Kalman-filter tracking algorithm. Most of the research about CMKF focus on the analysis of the converted measurement's error and try to debiase the converted measurement. Lerro and Bar-Shalom [START_REF] Lerro | Tracking with debiased consistent converted measurements versus EKF[END_REF] firstly studied explicit solutions for the mean and covariance of the converted 2D measurement and presented a debiased CMKF (DCMKF) algorithm which provides more accurate state estimate than EKF and traditional CMKF. Suchomski [START_REF] Suchomski | Explicit Expressions for Debiased Statistics of 3D Converted Measurements[END_REF] extended the DCMKF algorithm to the 3D spherical measurement.

The unbiased CMKF (UCMKF) subsequently developed by Mo and Bar-Shalom [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] utilized a practical measurement conversion that produced an unbiased converted measurement by multiplying the raw converted measurement by a vector of bias-elimination factors. Duan, Han, and Li [START_REF] Duan | Comments on 'Unbiased converted measurements for tracking[END_REF] later showed the approach of [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] to have a mathematical incompatibility between the derivations of the UCMKF's unbiased converted measurement and the approximate converted measurement error covariance and proposed the modified unbiased CMKF (MUCMKF).

However, for both of DCMKF and MUCMKF, the true bias and covariance are functions of the target's true position coordinates which are clearly unavailable in practice. Specifying the analysis of the converted measurement's error for both methods, we find that DCMKF conditioned the mean and covariance of the raw converted measurement's true error on the readily available state prediction to obtain practical bias and covariance approximations while MUCMKF conditioned strictly on the spherical measurement and because of this difference, the two method present different tracking performance for different target's maneuvers. Generally, for the target with low maneuvers (i.e. CV model), DCMKF is superior to MUCMKF, while for the target with high maneuvers, MUCMKF gets better performance. Inspired by this difference, this paper presents a robust CMKF algorithm, which automatically chooses the more accurate state estimation from the state prediction and the sensor's measurement to compute the practical bias and covariance approximations so as to obtain more accurate and robust estimates about target state.

Section 2 reviews the technical background about spherical-to-Cartesian measurement conversion and the analysis of the converted measurement error for DCMKF and MUCMKF. Section 3 provides a detailed mathematical description of the new CMKF algorithm. Section 4 presents simulation results which demonstrate the new CMKF algorithm's improved tracking performance over DCMKF and MUCMKF. Section 5 summarizes the paper's significant contributions and the new CMKF algorithm's advantages and disadvantages.

Technical Background

In 3D target tracking scenario, a sensor measures a target's position, producing the spherical position measurement
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The spherical measurement is transformed to Cartesian coordinate measurement using the classical conversion cos cos : cos sin sin 
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Form Equation ( 4) we can see that the converted measurement error is no longer zero-mean Gaussian distributed because of the nonlinear coordinate transformation. So, debiasing the raw converted measurement is necessary before the classical Kalman filtering.

As mentioned in the Introduction section, by now there are mainly two approaches to compute the practical bias and covariance approximations of the converted measurement's error. Next, we will specify the analysis of the converted measurement's error for both methods.

Converted Measurement Error Statistics Conditioned on the State Prediction

It is difficult to condition the mean and covariance of the raw converted measurement's true error bias on the state prediction directly. Usually, we first condition the mean and covariance of the raw converted measurement's true error bias on the real state to obtain real mean and covariance and then replace the real state with the state prediction.

Let
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Then, the real mean of converted measurement error is
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Then, the real covariance of debiased converted measurement error is 
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Substituting the state prediction ( , , ) 6) and (9), we can get the mean and covariance of the converted measurement error conditioned on the state prediction , ,
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Converted Measurement Error Statistics Conditioned on the Spherical Measurement

This part derives explicit expressions for the converted measurement error mean and the debiased converted measurement error covariance, when those quantities are conditioned on the spherical measurement.

The spherical-measurement-conditioned mean of the converted measurement error is
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The spherical-measurement-conditioned covariance of the debiased converted measurement's error is
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respectively. Generally, better CMKF performance results from conditioning the converted measurement error mean and the debiased converted measurement error covariance on the most accurate available target position estimate [START_REF] Spitzmiller | Tracking with Estimate-Conditioned Debiased 3-D Converted Measurements[END_REF]. Base on this theory, a robust CMKF (RCMKF) is proposed, which automatically chooses the more accurate state estimation from the state prediction and the sensor's measurement to compute the practical bias and covariance approximations. Next section, we will give the detailed mathematical description of the new CMKF algorithm 3 Robust CMKF Consider the following target motion model described in a Cartesian coordinate system by a linear discrete-time difference equation with additive noise that models unpredictable disturbances
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So, the measurement equation can be described as
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and measurement noise ( ) V k is assumed to be zero-mean with covariance [ ( ) ( ) ] ( )
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Now, the filter equations are described entirely in Cartesian coordinates and the classical Kalman filtering algorithm can be used to track target entirely in Cartesian coordinates. In the filtering process, the computation of converted measurement error mean ( ) k μ and the debiased converted measurement error covariance ( ) R k has crucial effects on the estimation performance.

We develop a simple rule for choosing between the sensor's spherical measurement and the state prediction for the target state estimate on which to condition the converted measurement's error mean and the debiased converted measurement's error covariance.
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Specifically, if the determinant of ( | 1) T HP k k H  is less than or equals the determinant of ( 1) R k  , the test judges the state prediction as the less uncertain target state estimate, and it computes the converted measurement error mean and the debiased converted measurement's error covariance conditioned on state prediction. Otherwise, the test judges the sensor's spherical measurement as the less uncertain target state estimate, and it computes the converted measurement error mean and the debiased converted measurement error covariance conditioned on the sensor's spherical measurement.

To test the robust performance of the RCMKF against DCMKF and MUCMKF, we consider two test cases with different maneuvering characteristics with 500 Monte-Carlo runs. The sensor is assumed fixed at the origin and takes 100 range and azimuth measurements with a measurement interval of 1 s. The sensor's range-error standard deviation is 200 m, and the azimuth-error is 2.5°. The target's acceleration-disturbance components are independent, zero-mean, white, Gaussian noises with standard deviation 2 0.01m/s .

Case 1: The target moves with nearly constant velocity. The target's initial location is (80km, 80km) and the initial velocity is (200m/s, 200m/s). The target's real trajectory is shown in Fig. 1.

Case 2: The target moves with high maneuvers. The target's initial location is (80km, 80km) and the initial velocity is (0m/s, 200m/s). It maneuvers at 31s, 38s, 49s, 61s, 65s, 66s, 81s with the acceleration of Fig. 3 shows the position root-mean-squared errors (RMSE) for the target of Case 1. Because the target moves with nearly constant velocity, state prediction provides more accurate state estimate than the sensor's measurement for most of the filtering process. As a result, the DCMKF provides superior tracking performance than MUCMKF. For the reason that the proposed RCMKF automatically chooses the more accurate state estimation from the state prediction and the sensor's measurement to compute the practical bias and covariance approximations, RCMKF method nearly performs as well as DCMKF. Fig. 4 shows the position RMSE for the target of Case 2. Because the target moves with nearly high maneuvers, sensor's measurement provides more accurate state estimate than state prediction for most of the filtering process. As a result, the MUCMKF provides superior tracking performance than DCMKF. For same reason mentioned above, RCMKF method nearly performs as well as MUCMKF. The percent improvement of the proposed CMKF algorithm over the original DCMKF and UMCMKF algorithms, defined as [START_REF] Spitzmiller | A Novel Data-Fusion-Based Improvement to Debiased CMKF Tracking[END_REF] Orig. alg. RMSE Prop. alg. RMSE 100 Prop. alg. RMSE
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are shown in Fig. 5 and Fig. 6 for the above two cases respectively, which gives more clear illustration about the performance improvement. 
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From the simulation results we can see that the propose RCMKF is robust to target's maneuvers, and nearly obtains the same tracking performance with the better one of DCMKF and MUCMKF in different scenarios.

The average time required to execute a single iteration of the RCMKF using MATLAB version 7.4 on an Intel® Core™ 2 Duo CPU E6550 running at 2.33 GHz with 1 GB of RAM was 0.2217 ms. The time required to execute a single iteration of the traditional DCMKF, MUCMKF using the same hardware and software were 0.1348 ms and 0.1447ms respectively, so the tracking improvement comes at the cost of increased computational time.

Conclusions

A robust CMKF algorithm is presented to realize the target tracking with nonlinear measurement equations. The proposed method automatically chooses the more accurate state estimation from the state prediction and the sensor's measurement to compute the practical bias and covariance approximations so as to obtain more accurate and robust estimate about target state. The new RCMKF generally outperformed the traditional DCMKF, MUCMKF for both considered scenarios. The proposed RCMKF achieves its improved performance, however, at the cost of additional computations.