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The three-dimensional CMKF-U with only position measurements is extended to solve the nonlinear tracking problem with range-rate measurements in this paper. A pseudo measurement is constructed by the product of range and rangerate measurements to reduce the high nonlinearity of the rangerate measurements with respect to the target state; then the mean and covariance of the converted measurement errors are derived by the measurement conditioned method, showing better consistency than the transitional nested conditioning method; finally, the sequential filter was used to process the converted position and range-rate measurements sequentially to reduce the approximation error in the second-order EKF. Monte Carlo simulations show that the performance of the new tracking algorithm is better than the traditional one based on CMKF-D.

INTRODUCTION

In active sonar and radar systems the measurements of the position of a target is reported in polar or spherical coordinates (its range and azimuth or bearing (as well as elevation angle in 3D radar) with respect to the sensor location). However, the target motion is linearly modeled in Cartesian coordinates. In this case, tracking in Cartesian coordinates using sensor measurements is a nonlinear state estimation problem. To solve this problem, a basic idea is to convert the spherical measurements to Cartesian coordinates using the familiar nonlinear mapping between the two coordinate systems, yielding a pseudo-measurement model for classical Kalman filtering. This is called the converted measurements Kalman filtering (CMKF) method [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques, and Software[END_REF].

As shown in [START_REF] Blackman | Multiple Target Tracking with Radar Applications[END_REF], the nonlinear transformation of unbiased spherical measurements to raw Cartesian converted measurements creates a bias in the converted measurements error. Debiasing the converted measurements is hence necessary for unbiased estimate based on Kalman filtering. Lerro and Bar-Shalom [START_REF] Lerro | Tracking with debiased consistent converted measurements versus EKF[END_REF] firstly studied explicit solutions for the mean and covariance of the converted 2D measurements and presented a debiased CMKF (CMKF-D) algorithm which provides more accurate state estimate than EKF and traditional CMKF. Suchomski [START_REF] Suchomski | Explicit Expressions for Debiased Statistics of 3D Converted Measurements[END_REF] extended the CMKF-D algorithm to the 3D spherical measurements. The unbiased CMKF (CMKF-U) subsequently developed by Mo and Bar-Shalom [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] obtained an unbiased converted measurement through multiplying the raw converted measurement by a vector of bias-elimination factors. However, in [START_REF] Lerro | Tracking with debiased consistent converted measurements versus EKF[END_REF][START_REF] Suchomski | Explicit Expressions for Debiased Statistics of 3D Converted Measurements[END_REF][START_REF] Longbin | Unbiased converted measurements for tracking[END_REF], the range-rate measurement is not considered though it is widely available [START_REF] Farina | Advanced Topics and Applications[END_REF]. In other words, the accuracy of tracking is possibly further improved by using range-rate measurements.

To solve the radar target tracking problem with range-rate measurements, in [START_REF] Farina | Advanced Topics and Applications[END_REF], the product of the range and range rate measurements is used as a pseudo measurement to reduce the nonlinearity of the range-rate measurement with respect to the target state, then statistics of the converted measurement errors of this pseudo measurement are obtained by the linearization method. But as exploited in [START_REF] Lerro | Tracking with debiased consistent converted measurements versus EKF[END_REF], the converted measurement obtained by the linearization method is not consistent with its first two moments. Recently, the RCMKF-D algorithm [START_REF] Duan | Sequential Nonlinear Tracking Filter with Range-Rate Measurements in Spherical Coordinates[END_REF] was proposed by Duan, Han, and Li to solve the radar target tracking problem with range-rate measurements through extending the CMKF-D algorithm with only position measurements in [START_REF] Suchomski | Explicit Expressions for Debiased Statistics of 3D Converted Measurements[END_REF]. However, as indicated in [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] and [START_REF] Li | A Survey of Maneuvering Target Tracking-Part III: Measurement Models[END_REF], the CMKF-D algorithm which employs the nested conditioning method gives slightly biased estimates due to its nested conditional expectation operators. Meanwhile, recent research in [START_REF] Spitzmiller | Tracking with Estimate-Conditioned Debiased 3-D Converted Measurements[END_REF] and [START_REF] Spitzmiller | New Investigative Findings from the Debiased Converted-Measurement Kalman Filter[END_REF] shows that the CMKF-U algorithm with only position measurements in [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] is measurement-conditioned through directly deriving the mean and covariance of the converted measurement errors conditioned on the sensor measurements, and as a result, has better consistency and robustness for noise distribution compared with CMKF-D.

To use the range-rate measurement more sufficiently, the RCMKF-U algorithm is proposed in this paper which extends the 3D CMKF-U with only position measurements in [START_REF] Longbin | Unbiased converted measurements for tracking[END_REF] to solve the nonlinear tracking problem with range-rate measurements. A pseudo measurement is constructed by the product of range and range-rate measurement to reduce the high nonlinearity of the range-rate measurement with respect to the target state; then the mean and covariance of the converted measurement errors are derived by the measurement conditioned method, showing better consistency than the nested conditioning method; finally, since the pseudo measurement is quadratic in the target state, the Cholesky factorization is used to decorrelate the converted position and pseudo measurement errors, thus the position and pseudo measurements can be sequentially processed to reduce the approximation error in the second-order EKF further.

The rest of this paper is organized as following. Section II presents the target dynamic model and radar measurement equation. Section III derives the statistics of the converted measurement errors conditioned on sensor's spherical measurements and gives the consistency analysis. Section IV describes the sequential filtering with the converted measurements. Numerical simulations are performed in Section V and conclusions are presented in Section VI.

II. PROBLEM FORMULATION

A. Target Dynamic Model

The target dynamic model can be modeled in Cartesian coordinates as
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where, 1
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is the state vector consisting of the position and corresponding velocity components along the x , y and z coordinates at time step k , respectively. 

B. Radar Measurement Equation

In the spherical coordinates, we assume that the Doppler radar locates at the origin of Cartesian coordinates. The radar measurement equation with range-rate measurements can be expressed as
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III. MEASUREMENT CONVERSION

A. Measurement Conversion with Range-rate Measurements

The position measurements (range, bearing and elevation) in spherical coordinates can be transformed into the pseudolinear form in the Cartesian coordinates by cos cos cos sin ,
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where k

x , k y , k z are the position conversion measurement errors along x , y , z directions in Cartesian coordinates, respectively.

To reduce the strong nonlinearity between the range-rate measurement and the target state, as in [START_REF] Farina | Advanced Topics and Applications[END_REF], the following pseudo measurement conversion equation can be utilized
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where k η is the converted pseudo measurement error in the Cartesian coordinates.

From ( 3) to ( 4), conversion of the radar measurements with rang rate from the spherical coordinates to the Cartesian coordinates can be totally expressed as [ ,,,] ( ) [ ,,,] [ ,,,] .
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B. Statistics of Converted Measurement Errors Conditioned on the Spherical Measurements

In RCMKF-D algorithm [START_REF] Duan | Sequential Nonlinear Tracking Filter with Range-Rate Measurements in Spherical Coordinates[END_REF], the nested conditioning method is used to get the statistics of converted measurement errors, which is to find the mean and covariance conditioned on

the unknown ideal measurement [ ] , , , T k k k k k Z r r θ ϕ = first (i.e., [ | ] t c k k k E V Z μ = and cov[ | ] t c k k k R V Z =
) and then find their expectations conditioned on the noisy measurement [ , , , ] 
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). However, this method gives slightly biased estimates due to its nested conditional expectation operators and has a consistency problem for large noise distribution. This part derives explicit expressions for the converted measurement errors mean and covariance, when those quantities are conditioned on the spherical measurements directly.

Using (2) and ( 5), we can derive the practical bias and covariance of the converted measurement errors conditioned on the spherical measurements with range rate as
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The mean and covariance of converted pseudo measurement error
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C. Consistency Analysis of New and the Nested Conditioning Method

In this part the statistical consistency of the unbiased measurement conversion given above is tested compared with the nested conditioning method. In order to perform the consistency test, the following sample average of the normalized error squared (NES) [START_REF] Blackman | Multiple Target Tracking with Radar Applications[END_REF][START_REF] Bar-Shalom | Tracking and Data Association[END_REF] associated with converted measurement errors is considered.
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where, i z denotes the vector of converted measurement errors in realization i , compensated for the hypothesized bias, zz P is the hypothesized covariance of the errors, and N denotes the assumed number of test samples.

It should be noted that this statistical consistency check is based on a theorem in statistics that the sum of independent zero-mean unity-variance Gaussian variables squared has a chisquare distribution. So the evaluation here is approximate since the converted measurement errors are not independent and not Gaussian as well in general. Considering the measurements obtained from a 2D radar, which consists of the range m k r , the bearing m k θ , and the range rate m k r . The mean value of the statistic (16) is equal to 3 when there is no bias and the assumed hypothesized covariance is matched to the actual error covariance. If the errors are jointly Gaussian then the distribution of Nψ is chi-square with 3N degrees of freedom. Using 1000 N = samples of converted measurements one obtains the following acceptance region for the 99.8% probability bounds [START_REF] Bar-Shalom | Tracking and Data Association[END_REF] 

IV. TRACKING WITH CONVERTED MEASUREMENTS

It can be seen from ( 5) that the range-rate converted measurements are still nonlinear function of the target state, while the position converted measurements are linear functions of the target state. The sequential filter (SF) [START_REF] Wang | Use of the Radial Velocity Measurement in Target Tracking[END_REF] was used to process position and range-rate measurements sequentially, that is, the position conversion measurements are processed first to obtain the target state estimate 

A. Decorrelation between Position and Pseudo

Measurements From (7), the converted measurement errors of position and pseudo measurement c k η are correlated, so they should be decorrelated first before sequential filtering.

Covariance matrix c k R of the converted measurement errors can be rewritten as ( )
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Left-multiplying k B on both sides of (5), from Cholesky factorization [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques, and Software[END_REF], one can get , , , ( )
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B. SF with EKF

The SF means that the Kalman filter (KF) is suited for the converted position measurements since its linear characteristic, the EKF, is used to update the mean and covariance from the KF by using the pseudo measurement.

1) Position Measurement Filtering -KF Stage

Time update and measurement update of the target state by position measurements , c p k Z , can be implemented as follows. 
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2) Update with Pseudo Measurement -EKF Stage

From (18), the pseudo measurement c k ε is a quadratic function of the target state, and so the nonlinear filtering estimation for the target state can be achieved by the secondorder EKF in [START_REF] Farina | Advanced Topics and Applications[END_REF] as
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, and the sampling interval 1s T = . Case 1: The target moves with nearly constant velocity. The target's initial location is (80km, 80km) and the initial velocity is (200m/s, 200m/s). The target's real trajectory is shown in Fig. 2.

Case 2: The target moves with high maneuvers. The target's initial location is (80km, 80km) and the initial velocity is (0m/s, 200m/s). It maneuvers at 31s, 38s, 49s, 61s, 65s, 66s, and 81s with the acceleration of The position root-mean-squared errors (RMSE) of the proposed nonlinear tracking algorithm base on unbiased converted measurements (RCMKF-U), compared with the method based on debiased converted measurements (RCMKF-D) in [START_REF] Duan | Sequential Nonlinear Tracking Filter with Range-Rate Measurements in Spherical Coordinates[END_REF], are shown in Fig. 45. From the simulation results we can see that the proposed RCMKF-U is robust and performs better for both cases compared with RCMKF-D. This proves that the unbiased converted measurement improves the accuracy of nonlinear tracking filter.

VI. CONCLUSIONS

A new nonlinear tracking algorithm with range-rate measurements is presented in this paper. Different from the traditional method, the consistent mean and covariance of the converted measurement errors are derived conditioned on the spherical measurements. Monte Carlo simulations show that the performance of the new tracking algorithm is better than the traditional one based on CMKF-D.

2 r

 2 the measurement vector obtained from radar at time step k , which consists of the rang m k r , the bearing m k θ , the elevation m k ϕ , and the range rate m k r . m k V is the corresponding measurement noise vector, the elements of which are all assumed to be zero-mean white Gaussian noises with known variances k ϕ are statistically independent, and k r and k r are correlated with correlation coefficient ρ .
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  The results of the consistency check in this case for the measurement conditioned conversion and the nested conditioning conversion are shown in Fig.l. It is easily see that the proposed conversion, is consistent (at least approximately since the errors are not Gaussian) even for relatively large measurement errors, while the nested conditioning conversion results in consistent characteristics only for a narrower range of measurement errors.
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