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The evidential K-nearest neighbor (EK-NN) method, which extends the classical K-nearest neighbour (K-NN) rule within the framework of evidence theory, has achieved wide applications in pattern classification for its better performance. In EK-NN, the similarity of test samples with the stored training ones are assessed via the Euclidean distance function, which treats all attributes with equal importance. However, in many situations, certain attributes are more discriminative, while others may be less irrelevant, so attributes should be weighted differently in distance function. In this paper, a new evidential K-nearest neighbor classification method with weighted attributes (WEK-NN) is proposed to overcome the limitations of EK-NN. In WEK-NN, the class-conditional weighted Euclidean distance function is developed to assess the similarity between two objects and both a heuristic rule and a parameter optimization procedure are designed to derive the attribute weights. Several experiments based on simulated and real data sets have been carried out to evaluate the performance of the WEK-NN method with respect to several classical K-NN approaches.

I. INTRODUCTION

Pattern classification is an active field in machine learning (or artificial intelligence). Its main purpose is to assign the objects, represented by attribute (or feature) vectors to predefined groups of classes [START_REF] Mclachlan | Discriminant Analysis and Statistical Pattern Recognition[END_REF]. Different from data clustering, some training samples with known class labels are usually available to construct the classification rule. One such procedure has been introduced by Fix and Hodges [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF], [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Small Sample Performance[END_REF], and has since become well-known as the K-nearest neighbor (K-NN) rule. In the original K-NN, an unclassified sample is assigned to the class represented by a majority of its K nearest neighbors (KNNs) in the training set and the distances between the sample and its neighbors are ignored. In [START_REF] Dudani | The distance-weighted k-nearest-neighbor rule[END_REF], a distanceweighted K-NN rule taking into account the distance between the sample and its KNNs has been proposed by Dudani, and it can provide better performance than the original K-NN method for data classification. However, in the classification of close data sets, some similar data points originating from different classes are difficult to classify correctly into a specific class, in which case, the classical K-NN methods cannot well deal with ambiguity and imprecise information because of the limitation of the probabilistic framework.

The classical K-NN methods have been extended within the framework of Dempster-Shafer theory (DST) or evidence theory [START_REF] Dempster | Upper and lower probabilities induced by multivalued mapping[END_REF], [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] by Denoeux [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer Theory[END_REF] (referred as EK-NN) to better model the uncertain information. In EK-NN, each neighbor of a sample to be classified is considered as an item of evidence supporting certain hypotheses concerning the class membership of that sample. Based on this evidence, basic belief masses are assigned to each subset of the set of classes. Such masses are obtained for each of the KNNs of the sample under consideration and aggregated using the Dempster's rule of combination. In many situations, this method is found experimentally to yield lower error rates than other methods using the same information.

For all the nearest-neighbor based pattern classification methods mentioned above, assessing the similarity between objects is the prerequisite for classification. In EK-NN, the similarity between a new object and its precedents from the training database is determined on the base of the Euclidean distance between the attribute vectors, in which case, all the attributes are treated with equal contribution. However, in many real-life pattern classification applications, the Euclidean distance function is not ideal as certain attributes may be more discriminative, while others are less relevant, and so attributes should be weighted differently in distance function. Take the benchmark Iris flower classification problem for example. It's prior-known that Virginica (class 1) and Versicolour (class 2) are more different in petal length (attribute 1) than in petal width (attribute 2). Intuitively, petal length should be assigned larger weight than petal width to calculate the similarity in order to obtain more accurate classification results. Motivated by the above consideration, in this paper, a new evidential K-nearest neighbor classification method with weighted attributes (WEK-NN) is proposed to overcome the limitations of EK-NN. In WEK-NN, the class-conditional weighted Euclidean distance function is developed to accessing the similarity between two objects and a heuristic rule is given to derive the attribute weights. Besides, a parameter optimization procedure is designed to learn the attribute weights from the training set to further improve the classification performance.

The rest of the paper is organized as follows. In the Section II, the EK-NN method is revisited and analyzed. The new WEK-NN method is developed in Section III and then two experiments are given to evaluate the performance of the proposed method in Section IV. At last, Section V concludes the paper.

II. BRIEF RECALL AND COMMENTS ON EK-NN

We consider the problem of classifying objects into 𝑀 categories or classes. The set of classes is denoted by Ω = {𝜔 1 , ⋅ ⋅ ⋅ , 𝜔 𝑀 }. The available information is assumed to consist of a training set 𝒯 = {(x (1) , 𝜔 (1) ), ⋅ ⋅ ⋅ , (x (𝑁 ) , 𝜔 (𝑁 ) )} of 𝑁 𝑃-dimensional patterns x (𝑖) , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 and their corresponding class labels 𝜔 (𝑖) , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁, taking values in Ω.

Let x be a new sample to be classified on the basis of the information contained in 𝒯 . Each pair (x (𝑖) , 𝜔 (𝑖) ) constitutes a distinct item of evidence regarding the class membership of x. If x is "close" to x (𝑖) , according to the relevant metric 𝑑(x, x (𝑖) ), it's inclined that the two patterns belong to the same class. On the contrary, if 𝑑(x, x (𝑖) ) is very large, the consideration of x (𝑖) will leave us in a situation of almost complete ignorance concerning the class of x. Consequently, this item of evidence may be postulated to induce a basic belief assignment (BBA) 𝑚(⋅ | x (𝑖) ) over Ω by

𝑚({𝜔 𝑞 } | x (𝑖) ) = 𝛼𝜙 𝑞 (𝑑 (𝑖) ) 𝑚(Ω | x (𝑖) ) = 1 -𝛼𝜙 𝑞 (𝑑 (𝑖) ) 𝑚(𝐴 | x (𝑖) ) = 0, ∀𝐴 ∈ 2 Ω ∖ {Ω, {𝜔 𝑞 }}, (1)
where, 𝑑 (𝑖) = 𝑑(x, x (𝑖) ), 𝜔 𝑞 is the class label of x (𝑖) (that is 𝜔 (𝑖) = 𝜔 𝑞 ), 𝛼 is a parameter such that 0 < 𝛼 < 1 and 𝛼 = 0.95 can be obtained to get good results on average. 𝜙 𝑞 is a decreasing function verifying 𝜙 𝑞 (0) = 1 and lim 𝑑→∞ 𝜙 𝑞 (𝑑) = 0. When 𝑑 denotes the Euclidean distance, a rational choice for 𝜙 𝑞 , shown in [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer Theory[END_REF] is

𝜙 𝑞 (𝑑) = exp(-𝛾 𝑞 𝑑 2 ), (2) 
with 𝛾 𝑞 being a positive parameter associated to class 𝜔 𝑞 and can be heuristically set to the inverse of the mean Euclidean distance between training data belonging to class 𝜔 𝑞 .

Besides, based on Euclidean distance 𝑑(x, x (𝑖) ), the KNNs of sample x in training set 𝒯 can be selected and the corresponding 𝐾 BBAs can be obtain in the above way. In EK-NN, the 𝐾 BBAs are combined using the Dempster's rule of combination to form a resulting BBA 𝑚, synthesizing the final belief regarding the class of x

𝑚 = 𝑚(⋅ | x (𝑖1) ) ⊕ ⋅ ⋅ ⋅ ⊕ 𝑚(⋅ | x (𝑖𝐾 ) ), (3) 
where, 𝐼 𝐾 = {𝑖 1 , ⋅ ⋅ ⋅ , 𝑖 𝐾 } contains the indexes of the KNNs of x in 𝒯 .

It's assumed that, based on the above evidential corpus, a decision has to be made regarding the assignment of sample x to one individual class. The decision can be made using the maximum of pignistic probability (BetP) criteria given by

BetP({𝜔 𝑞 }) = ∑ 𝐴⊆Ω,𝜔𝑞∈𝐴 𝑚(𝐴) |𝐴| , ( 4 
)
for 𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀, where, |𝐴| stands for the cardinality of the element 𝐴.

From the EK-NN classification method revisited above, it can be seen that the distance metric 𝑑(x, x (𝑖) ) is used in two stages: the selection of KNNs and the construction of BBAs. In EK-NN, the following Euclidean distance function is utilized to measure the similarity between two objects

𝑑(x, x (𝑖) ) = ⎷ 𝑃 ∑ 𝑗=1 (𝑥 𝑗 -𝑥 (𝑖) 𝑗 ) 2 .
(

) 5 
Because of the Euclidean distance function, the EK-NN method fails to take into account the importance of different attributes. Therefore, it may lead unreasonable result when the classes considered differ greatly in attributes as we will show in the following example.

Example 1. Fig. 1 illustrates a simple two-class classification problem, where the data in each class are uniformly distributed in [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF][START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF]× [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF][START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF] and [START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF]18]× [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF][START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF], respectively. (x (1) , 𝐴) and (x (2) , 𝐵) are two-dimensional data points in training set 𝒯 . x 1 is the sample data to be classified. Our illustration here is based on the 1-NN rule, but the same phenomenon occurs for K-NN rule as well. According to EK-NN method, it's obvious that the sample x 1 will be mistakenly assigned to class B because the Euclidean distance between the sample and the training data x (2) labeled class B is more shorter. Such behavior of EK-NN approach due to the utilization of Euclidean distance function is not very reasonable, nor appropriate in fact. In our opinions, in this example, the attribute value in X axis should be given larger weight rather than equal contribution. x (1) (9,6)

x (2) (11,9) x 1 [START_REF] Cao | A dissimilarity measure for the k-Modes clustering algorithm[END_REF][START_REF] Cao | A dissimilarity measure for the k-Modes clustering algorithm[END_REF] Fig. 1. A two-class classification example.

III. EVIDENTIAL K-NEAREST NEIGHBOR CLASSIFICATION METHOD WITH WEIGHTED ATTRIBUTES (WEK-NN)

To overcome the limitation of Euclidean distance function, a class-conditional weighted Euclidean distance function is developed in the following section, which is the principal improvement of the WEK-NN method. Then, the attribute weights are derived with a heuristic rule. Besides, a parameter optimization procedure is designed to learn the attribute weights from the training set automatically.

A. Class-Conditional Weighted Euclidean Distance

Actually, as a prerequisite for many data mining techniques like case-based reasoning [START_REF] Cunningham | A taxonomy of similarity mechanisms for case-based reasoning[END_REF] and cluster analysis [START_REF] Cao | A dissimilarity measure for the k-Modes clustering algorithm[END_REF], [START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF], assessing the similarity between objects concerning the weight of attributes have already been studied. The following weighted Euclidean distance function was proposed to reflect the importance of different attributes

𝑑(x, x (𝑖) ) = ⎷ 𝑃 ∑ 𝑗=1 𝜆 2 𝑗 (𝑥 𝑗 -𝑥 (𝑖) 𝑗 ) 2 , ( 6 
)
where, 𝜆 𝑗 is a constant that weights the role of the 𝑗 th attribute in the similarity function and can be learnt through maximizing the clustering [START_REF] Eick | Using clustering to learn distance functions for supervised similarity assessment[END_REF] or classification [START_REF] Han | Text categorization using weightadjusted nearest-neighbor classification[END_REF] of the objects in training set belonging to the same class. Now, it may seem straightforward to overcome the limitation of EK-NN method indicated in the previous section by replacing Euclidean distance function with the weighted one displayed as Eq.( 6). However, as illustrated in the following example, this idea is also unreasonable because the weights of attributes in Eq.( 6) are irrelevant with the prior-known class label of x (𝑖) .

Example 2. Fig. 2 illustrates a simple three-class classification problem, where class C, uniformly distributed in [START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF]18]× [START_REF] Kaur | Robust kernelized approach to clustering by incorporating new distance measure[END_REF]18] is added on the basis of Example 1. (x (3) , 𝐶) is additional two-dimensional data point in training set 𝒯 and x 2 is another sample data to be classified. As the conclusion of Example 1, considering the classification of sample x 1 (between class A and class B), the attribute value in X axis should be given larger weight. While, in classifying sample x 2 (between class C and class B), it's reasonable that the attribute value in Y axis should be given larger weight. In other words, the weights of attributes are related to the two classes to be discriminated. x (1) (9,6)

x (2) (11,9)

x (3) [START_REF] Coleman | Optimization Toolbox -For Use With MATLAB[END_REF][START_REF] Eick | Using clustering to learn distance functions for supervised similarity assessment[END_REF] x 1 [START_REF] Cao | A dissimilarity measure for the k-Modes clustering algorithm[END_REF][START_REF] Cao | A dissimilarity measure for the k-Modes clustering algorithm[END_REF] •

x 2 [START_REF] Eick | Using clustering to learn distance functions for supervised similarity assessment[END_REF][START_REF] Eick | Using clustering to learn distance functions for supervised similarity assessment[END_REF] Fig. 2. A three-class classification example.

In the following, we would like to develop a new similarity measure with weighted attributes concerning the class labels of the two objects.

Definition 1 (class-conditional weighted Euclidean distance):

Suppose x (𝑚) and x (𝑛) are two 𝑃 -dimensional objects with class labels 𝜔 𝑝 and 𝜔 𝑞 , then the class-conditional weighted Euclidean distance between x (𝑚) and x (𝑛) is

𝑑(x (𝑚) , x (𝑛) ) = ⎷ 𝑃 ∑ 𝑗=1 𝜆 2 𝑝,𝑞,𝑗 (𝑥 (𝑚) 𝑗 -𝑥 (𝑛) 𝑗 ) 2 , ( 7 
)
where, 𝜆 𝑝,𝑞,𝑗 is a constant that weights the role of the 𝑗 th attribute in the similarity measure between class 𝜔 𝑝 and class 𝜔 𝑞 .

Remark 1:

The proposed class-conditional weighted Euclidean distance provides more accurate similarity measure than the weighted Euclidean distance displayed as Eq.( 6), because it reflects the difference in attribute weights for different classes to be classified, which is significant for the usual multiclass problems.

In Eq.( 6), the similarity measure for two objects with known class labels is given. However, for K-NN rule, it demands to assess the similarity between a sample and a training data, in which case, the class label of the sample is unknown. So, the distance between a sample x and the training data x (𝑖) with class label 𝜔 𝑞 can be displayed as

𝑑(x, x (𝑖) ) = ⎷ 𝑃 ∑ 𝑗=1 𝜆 2 𝑞,𝑗 (𝑥 𝑗 -𝑥 (𝑖) 𝑗 ) 2 , ( 8 
)
where, 𝜆 𝑞,𝑗 is the weight of the 𝑗 th attribute in the similarity measure between a sample and the training data belongs to class 𝜔 𝑞 .

B. Derivation of Attribute Weights

In this section, we will give the derivation of the attribute weights 𝜆 𝑞,𝑗 , 𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃 .

Suppose the training subset 𝐶 𝑞 contains all the 𝑚 𝑞 training data labeled to the same class 𝜔 𝑞 :

𝐶 𝑞 = {x (𝑖) } (𝑖 ∈ 𝐼 𝑞 ), (9) 
where 𝐼 𝑞 is the set of indices 𝑖 of the training data x (𝑖) belonging to the class 𝜔 𝑞 .

Let us take into consideration the covariance matrix Σ 𝑞 estimated on the set 𝐶 𝑞

Σ 𝑞 = ∑ 𝑖∈𝐼𝑞 (x (𝑖) -𝜇 𝑞 )(x (𝑖) -𝜇 𝑞 ) T /(𝑚 𝑞 -1), (10) 
where, 𝜇 𝑞 = {𝜇 𝑞,1 , ⋅ ⋅ ⋅ , 𝜇 𝑞,𝑃 } is the mean vector and diag(Σ 𝑞 ) = {𝜎 2 𝑞,1 , ⋅ ⋅ ⋅ , 𝜎 2 𝑞,𝑃 } is the variance vector of the set 𝐶 𝑞 .

Here, the attribute weights of class 𝜔 𝑞 are derived mainly based on the following two assumptions:

• More closer to the other class centers (approximately represented by the mean vector), more difficult to classify.

• More dispersive of the class distribution (approximately represented by the variance), more difficult to classify.

The above assumption is straightforward so we can construct 𝜆 𝑞,𝑗 as [START_REF] Eick | Using clustering to learn distance functions for supervised similarity assessment[END_REF] and then the attribute weights should be normalized so that

𝜆 𝑞,𝑗 = 1 𝑀 -1 ∑ 𝑚∕ =𝑞 |𝜇 𝑞,𝑗 -𝜇 𝑚,𝑗 |/𝜎 𝑞,𝑗 , for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃.
𝑃 ∑ 𝑗=1 𝜆 𝑞,𝑗 = 1.
Similarly, we can get the attribute weights 𝜆 𝑞,𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃 ) for all other class sets 𝐶 𝑞 (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀).

C. Parameter Optimization

In the above section, a heuristic derivation of attribute weights 𝜆 𝑞,𝑗 (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀; 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃 ) is given and it's supposed that the performance of the classification procedure can be improved if these parameters are learnt from the training set via optimizing the performance criterion. In the following, we will give one kind of learning procedure.

Let us consider a training data x (𝑙) belonging to class 𝜔 𝑞 (i.e. 𝜔 (𝑙) = 𝜔 𝑞 ). Take x (𝑙) as a test sample, and 𝒯 (𝑙) = 𝒯 ∖ (x (𝑙) , 𝜔 (𝑙) ) as the new training set. Using the WEK-NN method proposed in previous section, one can get the classification output vector P (𝑙) = (BetP (𝑙) ({𝜔 1 }), ⋅ ⋅ ⋅ , BetP (𝑙) ({𝜔 𝑀 })). One performance criterion is proposed in [START_REF] Zouhal | An evidence-theoretic k-NN rule with parameter optimization[END_REF], in which it believes that classification output vector P (𝑙) should be as "close" as possible to the real class vector t (𝑙) = (𝑡

(𝑙) 1 , ⋅ ⋅ ⋅ , 𝑡 (𝑙) 𝑀 ) (𝑡 (𝑙) 𝑗 = 1, if 𝑗 = 𝑞 and 𝑡 (𝑙)
𝑗 = 0, otherwise), with closeness being defined according to the squared error 𝐸(x (𝑙) )

𝐸(x (𝑙) ) = (P (𝑙) -t (𝑙) )(P (𝑙) -t (𝑙) ) T = 𝑀 ∑ 𝑞=1 (BetP (𝑙) ({𝜔 𝑞 }) -𝑡 (𝑙) 𝑞 ) 2 . ( 12 
)
The mean squared error over the whole training set 𝒯 of size 𝑁 is finally equal to

𝐸 = 1 𝑁 𝑁 ∑ 𝑙=1 𝐸(x (𝑙) ). (13) 
Function min 𝜆 𝐸 can be used as a cost function for tuning the attribute weights 𝜆 𝑞,𝑗 (𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀; 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃 ) with the constraints

0 ≤ 𝜆 𝑞,𝑗 ≤ 1, 𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀; 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑃, (14) 
and

𝑃 ∑ 𝑗=1 𝜆 𝑞,𝑗 = 1, 𝑞 = 1, ⋅ ⋅ ⋅ , 𝑀. ( 15 
)
Note that, the number of learning parameters is given by 𝑆 1 = 𝑀 × 𝑃 , and the number of constraints is given by 𝑆 2 = 𝑀 × 𝑃 + 𝑀 = 𝑀 (𝑃 + 1), then it is therefore an 𝑆 1 -variable and 𝑆 2 -constraint nonlinear optimization problem, and can be solved using existing optimization software packages, such as the Matlab Optimization Toolbox [START_REF] Coleman | Optimization Toolbox -For Use With MATLAB[END_REF].

IV. NUMERICAL EXPERIMENTS

The performances of the proposed WEK-NN method is compared to original K-NN [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties[END_REF], [START_REF] Fix | Discriminatory Analysis. Nonparametric Discrimination: Small Sample Performance[END_REF] and EK-NN [START_REF] Denoeux | A k-nearest neighbor classification rule based on Dempster-Shafer Theory[END_REF], through a set of artificial and real-world benchmark classification tasks.

A. Experiment 1

Two particular tests have been done in this experiment to explicitly illustrate the difference between K-NN, EK-NN and WEK-NN. As can be seen in Fig. 3(a), K-NN has the biggest error rate and EK-NN has smaller classification error and performs more robust to the change of neighbors' number 𝐾 due to the modeling of uncertain information with belief structure. The proposed WEK-NN produces the lowest error rate because the attribute weights are considered in assessing the similarity between the test sample and the training data. To better illustrate its superiority, the classification results of the three methods for one Monte Carlo run for 𝑘 = 3 are given in Fig. 3 

B. Experiment 2

In this second experiment, two well-known benchmark data sets (Iris data and Wine data) from UCI repository [START_REF] Frank | UCI Machine Learning Repository[END_REF] are used to evaluate the performance of WEK-NN. The main characteristics of the two data sets are summarized in TABLE I, and the detailed information can be found in [START_REF] Frank | UCI Machine Learning Repository[END_REF]. The 𝑛-fold cross validation is performed on the Iris and Wine data sets by different classification methods. We use the simplest 2-fold cross validation here, since it has the advantage that the training and test sets are both large, and each sample is used for both training and testing on each fold. The samples in each class are randomly assigned to two sets 𝑆 1 and 𝑆 2 with equal size. We then train on 𝑆 1 and test on 𝑆 2 , followed by training on 𝑆 2 and testing on 𝑆 1 . The classification error rates of K-NN, EK-NN, WEK-NN, and WEK-NN with optimized attribute weights on different data sets are presented as a function of 𝑘 in Fig. 5 and Fig. 6, respectively. As can be seen from these results, the WEK-NN method, presented in this paper, always preforms as well or better than K-NN and EK-NN. Moreover, through parameter optimization, the performance of the proposed method can be further improved, especially considering its robustness with respect to the number 𝐾 of neighbors, which is difficult to make a priori in real-life application. However, when the number of classes and attributes is large, the computation of parameter optimization procedure may be a problem, in which case, attribute weights can be constructed with the heuristic rule developed in Section III-B. 

( 1 )

 1 Test 1: The two-class classification problem studied in Example 1 is evaluated here. Suppose each class has 20 training data points and 20 test data points. Values of 𝐾 ranging from 1 to 15 neighbors have been investigated and the classification error rates have been averaged on a Monte Carlo simulation for 10 runs.

  (b)-(d). For K-NN and EK-NN, which are based on Euclidean distance metric, among the three nearest training points of test point 𝑃 1 , two of them are label class B, so test point 𝑃 1 is mistakenly classified to class B. While for WEK-NN, the value in X axis has much larger weight than that in Y axis (𝜆 𝑋 = 0.91 and 𝜆 𝑌 = 0.09) in measuring the distance and the correct classification is obtained. (2) Test 2: The three-class classification problem studied in Example 2 is evaluated here. Suppose each class has 20 training data points and 20 test data points. Values of 𝐾 ranging from 1 to 15 neighbors have been investigate and the classification error rates have been averaged on a Monte Carlo simulation for 10 runs.As can be seen in Fig.4(a), the classification results are consistent with those in Test 1 approximately with WEK-NN having the lowest error rate. What's the major difference is that, in this three-class classification problem, the attribute weights are class-conditional. As shown in Fig.4(b)-(d), in calculating the distance between test point 𝑃 2 and the training points belong to class C, the value in X axis has small weight than that in Y axis (𝜆 𝐶,𝑋 = 0.29 and 𝜆 𝐶,𝑌 = 0.71). However, for the distance between test point 𝑃 3 and the training points belong to class A, the value in X axis has larger weight than that in Y axis (𝜆 𝐴,𝑋 = 0.67 and 𝜆 𝐴,𝑌 = 0.33). For class B, the two attributes have almost equal weights (𝜆 𝐵,𝑋 = 0.49 and 𝜆 𝐵,𝑌 = 0.51).

Fig. 3 .

 3 Fig. 3. Classification results for the two-class classification example. (a) Classification error for different methods. (b) Classification results by K-NN for 𝑘 = 3. (c) Classification results by EK-NN for 𝑘 = 3. (d) Classification results by WEK-NN for 𝑘 = 3. (In (b)-(d), the blue makers represent the training data, and the red makers represent the classification results of the test data, with circle for class A and square for class B, respectively. The filled makers represent the data mistakenly classified.)

Fig. 5 .

 5 Fig. 5. The classification results of different methods for Iris data.

Fig. 6 .

 6 Fig. 6. The classification results of different methods for Wine data.

Fig. 4 .

 4 Fig. 4. Classification results for the three-class classification example. (a) Classification error for different methods. (b) Classification results by K-NN for 𝑘 = 3. (c) Classification results by EK-NN for 𝑘 = 3. (d) Classification results by WEK-NN for 𝑘 = 3. (In (b)-(d), the blue makers represent the training data, and the red makers represent the classification results of the test data, with circle for class A, square for class B, and triangle for class C, respectively. The filled makers represent the data mistakenly classified.)

TABLE I .

 I THE BASIC INFORMATION OF THE USED DATA SETS.

	Name	Classes	Attributes	Instances
	Iris	3	4	150
	Wine	3	13	178
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