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Abstract

In this paper, we propose a full process to track ground targets and correct the ground tactical

situation. The ground target tracking is done at each scan time of a Ground Moving Target Indicator

(GMTI) airborne sensor. The algorithm takes into account the road network in the tracking process

to improve the track precision and an Interacting Multiple Model (IMM) to deal with maneuvers of

the targets. The multiple target tracking algorithm based on Structured-Branching Multiple Hypothesis

Tracker (SB-MHT) improves significantly the track precision and continuity. However, because of

subversive target maneuvers (a target can deliberately stop to avoid to be detected by GMTI sensor),

the airborne sensor maneuver who carries along the cut-off of the sensor, or because of a possible poor

road network modelling, the obtained tracks are not always properly updated and can be automatically

and erroneously deleted by classical algorithms. To circumvent this serious problem, we propose an

extension of our previous work to correct the current situation with past situation in order to correlate

current tracks with past tracks and solve the track segment association problem. The correlation between

current tracks with old ones is based on kinematic and classification information. The performances of

this global process are quantified on a simulated scenario considering twenty maneuvering ground targets

observed by one airborne with a GMTI sensor and Unattended Ground Sensor (UGS).

Index Terms

Ground target tracking, track segment association, information fusion.
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I. INTRODUCTION

Tracking ground targets with several sensors is crucial in order to establish the situation

awareness and the threat assessment on the battlefield. Since several years, ground targets tracking

algorithms have been studied and integrated in fusion stations. The principal challenge is to

adapt or develop new ground tracking algorithms to ensure the track continuity and improve the

intelligence functionality.

Ground tracking algorithms are used in a special environment: the high traffic density and

the large number of false alarms, that brings about a significant data quantity, the strong and

fast target maneuvers which compromise target tracking due to the association problem and the

terrain elevation that generates undetected areas in which ground targets cannot be detected. In

a Ground Moving Target Indicator (GMTI) surveillance context, we propose to use the road

network information as a prior information in order to improve the tracking quality. Under the

assumption that the targets are evolving on the road network and using a Bayesian approach, we

introduce the event that the target state belongs to a road segment (i.e. the position is on the road

segment and the velocity in the road segment direction). In previous work, it has been shown

that an adequate constrained motion model followed by the pseudo projection of the estimated

state is a good approach to constraint the state to the road [1].

In addition, the use of identification information is necessary in a context where the target
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evolve in the same area. Because of the ground target proximity and the sensor precision, the

kinematic discrimination is not sufficient to maintain the correct association between tracks

and measurement. In [2], a general expression for multi-sensor data association that includes

attribute information is presented. In [3], [4], the authors present a new tracking algorithm

called Joint Belief Probabilistic Data Association Filter (JBPDAF), which uses both track fusion

and target identification features. The features are obtained according the High Range Radial

Resolution (HRRR) of the GMTI sensor. This approach was extended and adapted later to the

EO/IR sensor in [5]. In [6], the authors propose a bayesian inference to update the classification

vector of a target and they modify the cost of the assignment by using kinematic information

and classification information. The adaptation of d the previous approach to the Structured-

Branching Multiple Hypothesis Tracker (SB-MHT) [2] has been done in [7] with the use of

Dezert-Smarandache Theory (DSmT) to update and to modify the assignment cost. The feature

information was provided by an aerial EO/IR system.

Despite of the track assignment improvement due to joint use of identification and kinematic

information, the use of the tracker is limited in time due to the Unnamed Aerial Vehicle (UAV)

performances (maneuvers, autonomy, . . . ) and the classification information given by the GMTI

sensor are weak. In fact, in the first case, the GMTI sensor is shut down during a long time period

that implies to reboot the tracker and therefore we cannot avoid the track breakage between the

past situation and the current situation. In the second case, we work with the constraint of

non-using HRRR (so the track obtained with GMTI sensors have a weak classification level).

In addition, the proportion of well-classified tracks obtained after the fusion between GMTI

tracks and EO/IR UAV detections is very small (the number of track given by the GMTI sensor

is significantly higher than the track number combined with the EO/IR detections because the

sensor area coverage of this sensor is negligible with respect to the coverage of the GMTI sensor).

To palliate the track breakage and the weak track classification, we propose in this paper a new

approach to solve the Track Segment Association (TSA) problem presented in [8] by using

classification information obtained with Unattended Ground Sensor (UGS). The advantage to

use UGS is the repartition of several in-situ sensors on a big area surveillance that are able to

provide a well-classification information about targets.

The TSA is topic of interest to correlate or to correct current tactical situation with past

situation. This is the case if the sensors can’t provided data in an area of interest or if we want
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to use a tactical situation given by another system in a distributed network.

The part II of this paper presents a brief description of the contextual information and the

modeling of the target state under constraint in the two dimensional space, and the mathematical

expressions of the Moving Target Indicator (MTI) and Unattended Ground Sensor (UGS)

measurements. The part III is devoted to: 1) the construction of the IMM with a variable set

of constraint motion models in order to track the maneuvering targets on the road network,

2) the description of the detection of the off-road dynamic, and 3) the integration of the

classification information in the Structured-Branching Multiple Hypothesis Tracker (SB-MHT)

to improve the discrimination between the tracks and measurement. In the part IV, the Track

Segment Association (TSA) algorithm is detailed to show how we integrate the track classification

information in the score association used for the TSA. Simulation results obtained in a complex

realistic Multiple Ground Targets Tracking Scenario within a real environment are presented and

analyzed in Part V, before concluding this paper.

II. MOTION AND OBSERVATION MODELS

A. GIS description

The Geographic Information System (GIS) used in this work contains the following informa-

tion: the segmented road network and Digital Terrain Elevation Data (DTED). The road network

is connected and each road segment is indexed by the road section it belongs to. A road section is

defined by a finite set of connected road segments delimited by a road end or a junction. For the

topographic information we use the database called: BD TOPO1. This Geographic Information

System (GIS) has a metric precision on the roads segments location. At the beginning of a

surveillance battlefield operation, a Topographic Coordinate Frame (TCF) and its origin O are

chosen in the manner that the axes X, Y and Z are respectively oriented in the east, north and up

local direction. The target tracking process is carried out in the Topographic Coordinate Frame

(TCF). In addition, starting from the DTED and the sensor location at the current time, it is

possible to compute the perceivability (noted Pe) at any point of the DTED. A function named

Pe(x, y, k) indicates if the pixel of the DTED at the location (x, y) is observable by the sensor

or not at time k.

1See www.ign.fr/rubrique.asp?lng id=EN&rbr id1̄621 for a description of this Geographic Information System (GIS).

file:www.ign.fr/rubrique.asp?lng_id=EN&rbr_id\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {1\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 1\egroup \spacefactor \accent@spacefactor 621
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B. Constrained motion model

The target state at the current time tk is defined in the local horizontal plane of the Topographic

Coordinate Frame (TCF) by the vector:

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T (1)

where (xk, yk) and (ẋk, ẏk) define respectively the target location and velocity in the local

horizontal plane. The dynamics of the target evolving on the road are modeled by a first-order

differential system. The target state on the road segment s is defined by xs
k where the target

position (xs
k, y

s
k) belongs to the road segment s and the corresponding heading (ẋs

k, ẏ
s
k) in its

direction.

The event that the target is on road segment s is noted esk = {xk ∈ s}. Given the event esk

and according to a motion model Mi, the estimation of the target state can be improved by

considering the road segment s. For a constant velocity motion model, it follows:

xs
k = Fs,i(∆k) · x

s
k−1 + Γ(∆k) · v

s,i
k (2)

where ∆k is the sampling time, Fs,i is the state transition matrix associated to the road segment

s and adapted to a motion model Mi; v
s,i
k is a white zero-mean Gaussian random vector with

covariance matrix Q
s,i
k chosen in such a way that the standard deviation σd along the road

segment is higher than the standard deviation σn in the orthogonal direction. It is defined by:

Q
s,i
k = Rθs ·





σ2
d 0

0 σ2
n



 ·R
′

θs
(3)

where Rθs is the rotation matrix associated with the direction θs defined in the plane (O,X, Y )

of the road segment s. The matrix Γ(∆k) is defined in [9].

To improve the modeling for targets moving on a road network, we have proposed in [10] to

adapt the level of the dynamic model’s noise based on the length of the road segment s. The

idea is to increase the standard deviation σn defined in (3) to take into account the error on the

road segment location. After the state estimation obtained by a Kalman filter, the estimated state

is then projected according to the road constraint esk. This process is detailed in [11].
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C. Measurement model

1) MTI report segment: According to the GMTI STAndardization Nato AGreement

(STANAG) [12], the MTI reports received at the fusion station are expressed in the World

Geodetic System 1984 (WGS84) coordinates system. The MTI reports must be converted in the

TCF. A MTI measurement zMTI
k at the current time tk is given in the TCF by:

zMTI
k = [xk yk ρ̇k]

T (4)

where (xk, yk) is the location of the MTI report in the local frame (O,X, Y ) and ρ̇k is the

associated range radial velocity measurement expressed by:

ρ̇k =
(xk − xc,k) · ẋk + (yk − yc,k) · ẏk
√

(xk − xc,k)2 + (yk − yc,k)2
(5)

where (xc,k, yc,k) is the sensor location at the current time in the TCF.

Because the range radial velocity is correlated to the MTI location components, the use of

an Extended Kalman Filter (EKF) is not adapted. In the literature, several techniques exist

to uncorrelate the range radial velocity from the location components. We prefer to use the

Alternative Extended Kalman Filter (AEKF) proposed by Bizup and Brown in [13], because

the implementation is easier by using the alternative linearization than another algorithms to

decorrelate the components. Moreover, AEKF remains invariant by translation when working

in the sensor referential/frame. The Alternative Extended Kalman Filter (AEKF) measurement

equation is given by:

zMTI
k = HMTI

k · xk +wMTI
k (6)

where wMTI
k is a zero-mean white Gaussian noise vector with a covariance RMTI

k . The

observation matrix HMTI
k is defined by:

HMTI
k =











1 0 0 0

0 0 1 0

0 ∂ρ̇k
∂ẋ

0 ∂ρ̇k
∂ẏ











(7)

The explicit expression of (7) is given in [13]. However, due to the STANAG 4607 it is

impossible to know the correlation coefficient between the location (xk, yk) and range radial

velocity components ρ̇. In fact, the components are dependent because the range radial velocity

depends on the Doppler measurement and the location is obtained with Doppler measurement
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too. Then a crude assumption is used in order to built the covariance RMTI
k of wMTI

k : we assume

here that the correlation factor is null. So the covariance is approximated by :

RMTI
k =











σ2
x σ2

xy 0

σ2
xy σ2

y 0

0 0 σ2
ρ̇











(8)

where the left upper 4×4 submatrix represents the well-known covariance in location expressed

in the TCF. σ2
ρ̇ is the standard deviation of the modified range radial velocity and σ2

xy is the cross-

covariance. Each MTI report is characterized both with the location and velocity information

and also with the attribute information and the probability that it is correct. We denote CMTI the

frame of discernment on target ID based on MTI data. CMTI is assumed to be constant over the

time and consists in a finite set of exhaustive and exclusive elements representing the possible

states of the target classification. In this paper, we consider only 3 elements in CMTI defined as

CMTI = {Tracked vehicle,Wheeled vehicle,Rotary wing aircraft}.

We consider also the probabilities P (ck) (∀ck ∈ CMTI) as input parameters of our tracking

systems characterizing the global performances of the classifier. The values ck and P (ck) are the

outputs of the classifier. The vector of probabilities [P (ck = 1) P (ck = 2) P (ck = 3)] represents

the diagonal of the “confusion matrix” Ck = [ci,jk ] of the classification algorithm assumed to be

used. As in [6], the elements of the “confusion matrix” is the likelihood of the true class being

i when the classifier output is j.The other terms of this matrix are unknown. So, the other terms

are extrapolated in the manner the sum of column i is equal to one.

We denote by zMTI⋆
k the extended MTI measurements including both kinematic part and

attribute part defined by

zMTI⋆
k , {zMTI

k , ck, P (ck)} (9)

2) UGS report segment: For the UGS intelligence systems, we consider two sensor types:

a video EO/IR sensor and an acoustic sensor fixed on a Unattended Ground Sensor (UGS).

We assume that the reports are expressed in the reference frame (O,X, Y ) and give a location

information and type information of the target. A UGS measurement zUGS at the current time

tk is given in the TCF by

zUGS
k = [x(k) y(k)]′ (10)
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The measurement equation is given by:

zUGS
k = HUGS

k · x(k) +wUGS
k (11)

where HUGS
k is the observation matrix of the video sensor given by

HUGS
k =





1 0 0 0

0 0 1 0



 (12)

The white noise Gaussian process wUGS
k is centered and has a known covariance RUGS

k given

by the ground station.

We denote zUGS⋆
k the extended video measurements including both kinematic part and attribute

part defined ∀ck ∈ CUGS by

zUGS⋆
k , {zUGS

k , ck, P (ck)} (13)

The attribute type of the Unattended Ground Sensor (UGS) sensors belongs to a different and

better classification than the Moving Target Indicator (MTI) sensors. This classification set is

based on a taxonomy presented in the following subsection.

D. Taxonomy

In our work, the symbology 2525C [14] is used to describe the links between the different

classification sets CMTI and CUGS . Figure 1 represents a short part of the 2525C used in this

paper. The red elements underlined in italic style are the atomic elements of our taxonomy and

define the common classification set denoted C2525C . Each element of both sets can be placed in

Figure 1. For example, the “wheeled vehicle” of the set CMTI is placed at the level “Armoured

→ Wheeled” or the “Volkswagen Touareg” given by the Unattended Ground Sensor (UGS)

is placed at the levels “Armoured → Wheeled→ Medium” and “Civilan Vehicle → Jeep →

Medium”. In general, each elements of CMTI and CUGS are associated to a sub-set of C2525C .

The associated probability at current time tk is obtained by the following refinement process:

(∀ck ∈ CMTI)(∃J ⊂ C2525C)(∀a
j
k ∈ J)

⋃

j∈J

ajk = ck, PJ(a
j
k) =

P (ck)

N
(14)

where J is the list of attributes that characterize the element ck of CMTI and N =|
⋃

j∈J a
j
k |.

The likelihood function obtained after the refinement process respects the following condition:

∑

j∈C2525C

PJ(a
j
k) = 1 (15)
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Figure 1: 2525C (light version).

The refinement process is similar for the set CUGS .

For notation convenience, the measurements sequence Zk,l = {Zk−1,n, zjk} represents a

possible set of measurements generated by the target up to time k. Zk,l consists in a subsequence

Zk−1,n of measurements up to time k − 1 and a validated measurement z
j
k available at time k

associated with the track T k,l. At the current time k, the track T k,l is represented by a sequence

of the state estimates.

III. VARIABLE STRUCTURE INTERACTING MULTIPLE MODEL UNDER CONSTRAINT

A. IMM under road segment constraint

The IMM is an algorithm for combining estimated states from multiple models to get a better

state estimate when the target is maneuvering. The IMM is near optimal with a reasonable

complexity. In section II-B, a constrained motion model i to segment s, noted Ms,i
k , was defined.

There is a distinction between the definition of a motion model Ms,i
k (i.e. motion model type,

noise,. . . ) and the event M s,i
k that the target is moving on the road according the motion model
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i at time k. Here we extend the segment constraint to the different dynamic models (among

a set of r + 1 motion models) that a target can follow. The model indexed by r = 0 is the

stop model. The transition between the models is modelled as a Markovian process. In general

when the target moves from one segment to the next, the set of dynamic models changes. In a

conventional IMM estimator [15], [16], the likelihood function of a model i is given, for a track

T k,l, associated with the j-th measurement, j ∈ {0, 1, . . . ,mk} by:

Λi
k = p{zjk|M

s,i
k , Zk−1,n}, i = 0, 1, . . . , r (16)

where Zk−1,n is the subsequence of measurements associated with the track T k,l.

Using the IMM estimator with a stop motion model, we get the likelihood function of the

moving target mode for indexes i ∈ {0, 1, . . . , r} and for j ∈ {0, 1, . . . ,mk} by:

Λi
k = PD · p{zjk|M

s,i
k , Zk−1,n} · (1− δj,0) + (1− PD) · δj,0 (17)

The likelihood of the stopped target mode (i.e. r = 0) is:

Λ0
k = p{zjk|M

s,0
k , Zk−1,n} = δj,0 (18)

where δj,0 is the Kronecker function defined by δj,0 = 1 if j = 0 and δj,0 = 0 otherwise.

The combined (global) likelihood function Λk of a track including a stopped model is then

given by:

Λk =
r

∑

i=0

Λi
k · µ

i
k|k−1 (19)

where µi
k|k−1 is the predicted model probabilities [15].

The steps of the IMM under road segment s constraint are the same as for the classical IMM

1) Step 1. Under the assumption of several possible models for segment s as defined

previously, the mixing probabilities are given for (i, l) ∈ {0, 1, . . . , r}2 by:

µ
i|l
k−1|k−1 =

pil · µ
i
k−1

c̄l
(20)

where c̄l is a normalizing factor. The probability of model switch depends on the Markov

chain according to the a priori transition probability pil which does not depend on the

constraint s.
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2) Step 2. The mixed estimate of the target state under the road segment s constraint is

defined for i ∈ {0, 1, . . . , r} by:

x̂
0i,s
k−1|k−1 =

r
∑

l=0

µ
i|l
k−1|k−1x̂

l,s

k−1|k−1 (21)

The covariance of the estimation error is given by

P
0i,s
k−1|k−1 =

r
∑

l=0

µ
i|l
k−1|k−1 · [P

l,s

k−1|k−1

+ (x̂l,s

k−1|k−1 − x̂
0i,s
k−1|k−1) · (x̂

l,s

k−1|k−1 − x̂
0i,s
k−1|k−1)

T
] (22)

Despite of the constraint on local state estimates, the mixed state estimates do not belong

to the road section s. That is why the optimized projection proposed in [1] is used to

constrain the mixed estimate (21) and its associated covariance (22).

3) Step 3. The motion models are constrained to the associated road segment. Each constrained

mixed estimate (21) is predicted and then associated to a new segment, or to several new

ones (in crossroad case) which yields to the modification in the dynamics according to the

new segments. The mixed estimates (21) and (22) are used as inputs for the filter matched

to Mi,s, which uses the MTI report associated to the track T k,l to calculate x̂
i,s

k|k, P
i,s

k|k

and the corresponding likelihood (19). The estimates of each filter are obtained with a

constrainted Kalman filter (see [1] for more details).

4) Step 4. The model probability update is done for i ∈ {0, 1, . . . , r} by

µi (k) =
1

c
· Λi (k) · c̄i (23)

where c is a normalization coefficient and c̄i is given in (20).

5) Step 5. The combined state estimate, called global state estimate, is the sum of each

constrained local state estimate weighted by the model probability, i.e.

x̂k|k =
r

∑

i=0

µi
kx̂

i,s

k|k (24)

Here, one has presented briefly the principle of the IMM algorithm constrained to only one

road segment s. However, a road section is composed with several road segments. When the target

is making a transition from one segment to another, the problem is to choose the segments with
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the corresponding motion models that can better fit the target dynamics. The choice of a segment

implies the construction of the directional process noise. That is why the IMM motions model

set varies with the road network configuration and Variable Structure Interacting Multiple Model

(VS IMM) offers a better solution for ground target tracking on road networks as explained in

next sections.

B. Variation of the set of constrained motion models

1) Variation on a road section: In the previous subsection, we have proposed a classical

IMM with a given set of motion models. We have noted that the predicted state could give a

local estimate under another road segment than the segment associated to the motion model (a

road turn for example). The change to another road segment causes the generation of a new

constrained motion models. In the literature, several approaches have been proposed to deal

with the constrained motion models [17], [18]. In [1], we have proposed an approach to activate

the most probable road segments sets. Based on the work of Rong Li [19], we consider r + 1

oriented graphs which depend on the road network topology. For each graph i, i = 0, 1, . . . , r,

each node is a constrained motion model Mi,s. The nodes are connected to each other according

to the road network configuration. For instance, if we consider a road section Rh composed by

three road segments s1, s2 and s3, the ith associated graph is composed by three nodes (Mi,s1 ,

Mi,s2 and Mi,s3) where the nodes Mi,s1 and Mi,s3 are connected with the node Mi,s2 . In [1],

the activation of the motion model at the current time depends on the local constrained predicted

state location of the track T k,l. In our example, the predicted constrained state belongs to the

road segment s1. So, we obtain x̂
i,s1
k|k−1. The activation of the constraint motion model generates

the constraint covariance matrix P
i,s1
k|k−1 according to the road segment location and road segment

length (see section II-B). Consequently, we obtain a finite set of r+1 motion models constrained

to a road section Rh (we recall that a road section is a set of connected road segments). Each

local state is constrained on different road segments of the road section and several constrained

motion models are activated.

2) Variation in a junction: However, an ambiguity arises when there are several road sections

(i.e. when the target approaches a crossroad). In fact, the number of constrained motion models

increases with the number of road sections present in the crossroad/junction. If we consider the

r + 1 graphs, the activation of the constraint motion model is done according to the predicted
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Figure 2: Structured-Branching Multiple Hypothesis Tracker (SB-MHT) logic flowchart with

GIS.

states location. Consequently the number of motion models increases with the number of road

sections. We obtain several constrained motion model sets. Each set is composed of r + 1

models constrained to road segments which belong to the road section. In order to select the

most probable motion model set (i.e. in order to know on which road section the target is moving

on), a sequential probability ratio test named Road Set Segment based on Sequential Probability

Ratio Test (RSS SPRT) is proposed in [1] in order to select the road section taken by the target.

C. Multiple ground target tracker

We briefly describe here the main steps of the Variable Structure Interacting Multiple Model

under Constraint (VS IMMC) Structured-Branching Multiple Hypothesis Tracker (SB-MHT).

More details can be found in chapter 16 of [2].

1) The first functional block of the SB-MHT in figure 2 is the track confirmation and the

track maintenance. When the new set Zk of measurements is received, a standard gating

procedure [2] is applied in order to determine the valid MTI reports to track pairings.

The existing tracks are updated with VS IMMC and extrapolated confirmed tracks are

formed. When the track is not updated with MTI reports, the stop-model is activated.

2) In order to palliate the association problem, we need a probabilistic expression for the

evaluation of the track formation hypotheses that includes all aspects of the data association
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problem. It is convenient to use the Log-Likelihood Ratio (LLR) or track score of a track

T k,l which can be expressed at current time k in the following recursive form [2]:

Lk,l = Lk−1,n +∆Lk,l (25)

with

∆Lk,l = log

(

Λk

λfa

)

(26)

and

L(0) = log

(

λfa

λfa + λnt

)

(27)

where λfa and λnt are respectively the false alarm rate and the new target rate per unit

of surveillance volume. Λk is the global likelihood function described in (19). After the

track score calculation of the track T k,l, the Sequential Probability Ratio Test (SPRT)

[20] is used to set up the track status either as deleted, tentative or confirmed track.

The tracks that fail the SPRT are deleted and the surviving tracks are kept for the next stage.

3) The process of clustering is to put altogether the tracks that are linked by a common

measurement. The clustering technique is used to limit the number of hypotheses to

generate, and therefore to reduce the complexity of tracking system. The result of

the clustering process is a list of tracks that are interacting. The next step is to form

hypotheses of compatible tracks.

4) For each cluster, multiple coherent hypotheses are formed to represent the different

compatible tracks scenarios. Each hypothesis is evaluated according to the track score

function associated to the different tracks. Then, a technique is required to find the set of

hypotheses set that represents the most likely tracks collection. The unlikely hypotheses

and associated tracks are deleted by a pruning process and only the NHypo best hypotheses

are conserved.

5) For each track, the a posteriori probability is computed and a classical N-Scan pruning

approach [2] is used to select the confirmed and delete the most unlikely tracks. With this

approach the most likely tracks are selected to reduce the number of tracks. However, the
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N-Scan technique combined with the constraint implies that other tracks hypotheses (i.e.

constrained on other road segments) are arbitrary deleted. To avoid this problem, we modify

the N-Scan pruning approach in order to select the Nk best tracks on each Nk road sections.

6) Wald’s SPRT proposed in section III-B is used to delete the unlikely hypotheses among

the Nk hypotheses. The tracks are then updated and projected on the road network. In

order to reduce the number of tracks to keep in the memory of the computer, a merging

technique (selection of the most probable tracks which have common measurements) is

also implemented.

D. Target type tracker

The target type tracker presented in [6] is used to improve the performance of the data

association in the SB-MHT. The principle consists to update the posterior class probability

vector at each scan time tk, with the classifier output. After the refinement process presented in

II-D, the classifier gives the probability vector βk,l of a track T k,l given by :

βk,l =
PJ ⊗ βk−1,n

P ′
Jβk−1,n

(28)

where PJ is the likelihood function of the subset J , βk−1,n is the prior probability provided by the

previous updated track T k−1,n and ⊗ is the Schur-Hadamard product. The initial classification

vector is given by :

β0 = PJ (29)

In assuming the independence of the kinematic and classification observations, the augmented

logarithm likelihood ratio ∆La
k,l for zMTI⋆

k or zUGS⋆
k defined respectively in (9) and (13) is the sum

of the logarithm kinematic likelihood ∆Lk,l ratio given in (26) and the logarithm classification

ratio ∆Lc
k,l. The equation (25) is rewritten by

Lk,l = Lk−1,n +∆La
k,l (30)

with

∆La
k,l = ∆Lk,l +∆Lc

k,l (31)

where ∆Lk,l is defined in (26).
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The log-likelihood ratio of the classification belonging to the track T k,l versus belonging to

a false or new target is :

∆Lc
k,l = log(

P ′
Jβk−1,n

P ′
Jβe

) (32)

where e defines an extraneous target. If the track is not associated to a measurement at the

current time tk we have ∆Lc
k,l = 0.

Finally the updated target type ĉk,l of the track T k,l is chosen as the maximum probability of

updated classification vector (28). However, if this probability is not superior to 0.7, we use the

taxonomy 2525C presented in the figure 1 to choose the target class that satisfies this condition.

We calculate the probability of each node in the tree given the set node = {e1, . . . , en} of n

children nodes such that

Pnode = P{
n
⋃

i=i

ei} (33)

The target class of a track T k,l is obtained by taking the node that has a probability superior to

0.7:

Ĉlassk,l = {node, node ∈ 2525C, Pnode > 0.7} (34)

We remark that the first node “Ground Track” is always equal to one.

IV. TRACK SEGMENT ASSOCIATION

A. Problem formulation

The goal of the Track Segment Association (TSA) is to reduce the number of broken tracks by

using a correlation approach between tracks associated to the same target. In this first approach

we do not consider the fusion of track segments based on feature element. We only consider

an airborne GMTI sensor that gives MTI reports without Signal to Noise Ratio (SNR) or High

Range Radial Resolution (HRRR) information. We recall that the MTI classification attributes

are reduced to few elements and are not discriminant for the correlation function. So, to improve

the TSA performances, we study a correlation function based on kinematics information and the

track classification information updated with the UGS classification information.

In the multi-target tracking approaches, a data association algorithm (Multiple Hypothesis

Tracker (MHT), Joint Probabilistic Data Association Filter (JPDAF), SD-Assignment, . . . ) is
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used to associate measurements with predicted tracks in the presence of clutter. The problem is

similar here because we try to associate a current track with an old track set in presence of false

tracks (the tracker is not perfect and false tracks can appear in dense clutter area). Based on the

works of [8], [21] on the track segment association, we propose an approach to solve the track

segment association taking into account the road network and an IMM-smoother.

Two track sets are considered: an old track set Ok which contains the terminated track (“dead”

or “stopped” tracks) at time tk due to lack of measurement, and a current track set Ck which

contains current updated tracks (the stop model is not activated) at time tk.

The two sets Ok and Ck are updated at each sensor scan time by the following process:

1) Track sets selection. The first step is to build the tracks set Ck of current tracks and the

tracks set Ok.

2) Smoothing. The tracks contained in Ok and in Ck are smoothed.

3) Track correlation. On user’s request or after a sliding window (in automatic mode), a

retrodiction and prediction process are respectively done on tracks contained in Ck and old

tracks contained in Ok. At each scan time track segments are associated based on cost

function.

4) Track assignment. The Auction algorithm [2] is used to solve the track segment association

problem.

Each step of this TSA algorithm are detailed in the next sections

B. TSA Algorithm

1) Track sets selection: At each time tk, the terminated and updated tracks are extracted

from the tracker. An updated track T k,l at the current time tk is defined by the sequence of its

estimated states and associated covariance. Its initialization time is noted tkli .

∀T k,l ∈ Ck, T k,l , {x̂l
t|t,P

l
t|t, t = kl

i, . . . , k} (35)

Starting from an empty set Ck, the confirmed tracks are added to this one. In the set Ok, there are

all terminated tracks since the beginning of the surveillance mission. The deleted tracks T kme ,m,

are defined with a termination time tkme and a start time tkmi . An old track is defined by

∀T kme ,m ∈ Ok, T kme ,m , {x̂l
t|t,P

l
t|t, t = km

i , . . . , k
m
e } (36)
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The times tke and tki are not necessarily the same for each track contained in Ok−1. The current

old track set Ok is based on the previous set Ok−1 updated with the current deleted tracks. The

tracks deleted by the SB-MHT at the current time tk are added to set Ok. In addition, to palliate

the track discontinuity due to the stop-model activation we add to the set Ok the stopped tracks.

If a stopped track present in Ok−1 is moving at time tk, it is extracted from Ok and added to

Ck. In our simulation, a track is declared as “stopped” if the confirmed track has a stop-model

probability greater than 0.9. The cardinality of the sets Ck and Ok are not necessarily the same.

2) IMM fixed-lag smoother: The Interacting Multiple Model (IMM) estimator presented in

this paper has been proven to be effective for tracking maneuvering ground targets with a GMTI

sensor. This is more significant if the contextual information is taking into account in the tracking

process. For intelligent system, the real-time application for tactical situation establishment is

primordial. The second main point is to understand the situation assessment in constrained time.

So we can use this time period to achieve the best estimates of the target states at a given

time based on all measurements up to the current time. In addition, the achievement process

contributes to improve the initial estimated state and consequently the track retrodiction precision.

For this, we must take into account all the measurements of a track available in a sliding

window. According to the IMM estimator, we use a Rauch Tung Striebel (RTS) IMM smoothing

algorithms presented in [22], [23] which involves forward filtering followed by backward

smoothing. The forward recursion is performed using the VS IMMC algorithm. The backward

recursion keeps the selected model set of the track and imitates the IMM estimator in the forward

direction. In this subsection we describe the IMM smoothing method presented in [22], [23]. In

addition we use the smoothing step to constraint the past of the current tracks to belong to the

road network when possible.

a) Interacting Multiple Model Smoother: The steps of the smoothing method for multiple

approach are briefly presented here. In the backward smoothing, we calculate the smoothed state

at time tt given the measurement up to time tk, considering the length L of a sliding window,

where tk−L ≤ tt ≤ tk. As for the IMM forward recursion, the IMM backward recursion consists

of four parts: mode probability calculation, mixing, smoothing and combination.

- Mode probability calculation: the backward transition probability π is computed by ∀(i, j) ∈
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{1, . . . , r}2:

πij =
pjiµ

j

t|t

ci
(37)

where

ci =
r

∑

l=1

pliµ
l
t|t (38)

- Mixing: the backward mixing probability is computed by ∀(i, j) ∈ {1, . . . , r}2:

µ
i|j
t+1|k =

πijµ
i
t+1|k

dj
(39)

where

dj =
r

∑

l=1

πljµ
l
t+1|k (40)

The smoothed state of the ith motion model and its associated covariance are given by:

x̂
0i,s
t+1|k =

r
∑

i=1

µ
i|j
t+1|kx̂

i,s

t+1|k (41)

P
0i,s
t+1|k =

r
∑

i=1

µ
i|j
t+1|k{P

i,s

t+1|k +
[

x̂
i,s

t+1|k − x̂
0i,s
t+1|k

] [

x̂
i,s

t+1|k − x̂
0i,s
t+1|k

]T

} (42)

- Model-Smoothing: according to the RTS recursive formula [22], [23], the smoothing

equations for each motion model i are given by:

x̂
i,s

t|k = x̂
i,s

t|t + C i
t(x̂

0i,s
t+1|k − x̂

i,s

t+1|t) (43)

P
i,s

t|k = P
i,s

t|t + C i
t(P

0i,s
t+1|k −P

i,s

t+1|t)C
i
t

T
(44)

where x̂
i,s

t+1|t and P
i,s

t+1|t are the predicted state and covariance corresponding to the ith model

and C i
t is the smoothing gain given by :

C i
t = P

i,s

t|tF
i,s
t

T
(Pi,s

t+1|t)
−1 (45)

The estimated states and covariances are constrained to the road segment associated with

the constraint motion model Mi,s.

- Combination: the smoothed mode probability is defined by:

µj

t|k =
Λj

t|k

c
µj

t|t (46)
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where the normalizing constant c is equal to

c =
r

∑

i=1

Λi
t|kµ

j

t|t (47)

and

Λj

t|k =
r

∑

i=1

pjiN (x̂i,s

t+1|k; x̂
i,s

t+1|t,P
i,s

t+1|t) (48)

Finally, the smoothed state and its associated covariance matrix are given by:

x̂s
t|k =

r
∑

i=1

µi
t|kx̂

i,s

t|k (49)

Ps
t|k =

r
∑

i=1

µi
t|k{P

i,s

t|k + [x̂i,s

t|k − x̂s
t|k][x̂

i,s

t|k − x̂s
t|k]

T} (50)

b) On-road track correction: After the smoothing process the constrained tracks are always

on the road network, but some unconstrained tracks can also belong to the road network. For

each unconstrained smoothed state we use the statistical test presented in [11] to project the

smoothed states and their covariances on the most probable road segment.

3) Track correlation:

a) Retrodiction and association: The retrodiction is the backward prediction of each track

contained in Ck. From each starting time tkli of each track T k,l, we use a back propagation

equation of a constant velocity motion model given in (2). For each track T k,l, a sequence of

retrodicted states is obtained at previous times for each deleted tracks of Ok. The set of candidate

track pairs for TSA is obtained according a two-step validation procedure:

1) The first step of tracks pairing consists of a velocity gating. As illustrated in the figure 3,

we associate the current track with old tracks if the maximum ground target speeds are

below vmax. The set of pairing tracks satisfying this condition is defined by

Φv = {(T kli,l, T ko,m) such that
|x̂l

kc|kli
− x̂m

kc|ko
|

tki − tko
≤ vmax,

|ŷl
kc|kli

− ŷmkc|kc |

tki − tko
≤ vmax,

T k,l ∈ Ck, T
ko,m ∈ Ok, tkmi < tko < tkme , tkc =

tkli − tko

2
}

(51)

where (x̂l
.|kli

, ŷl
.|kli

) is the retrodicted location of the track T k,l and (x̂m
kc|ko

, ŷmkc|ko) is the

predicted location of the track T ko,m as described in II-B.
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Figure 3: Track segment association principle.

This is the approach used in [8] where the track pairing of the old track T kme ,m is done at

each time {tkmi , . . . , tkme } and not only at the time end tkme .

2) The second step is done to limit the number of track pairings. Under the statistical noise

independence between the current tracks of Ck and the old tracks Ok, we use a classical

χ2
n test (n, the state vector dimension, is the degree of freedom) to validate the pairs in Φv.

At time tkc the difference between the retrodicted tracks of T kli,l, (T k,l ∈ Ck) and predicted

tracks of T ko,m, (T kme ,m ∈ Ok) is defined by:

∆l,m
kc

= x̂l
kc|kli

− x̂m
kc|ko (52)

with the covariance:

P
l,m
kc

= Pl
kc|kli

−Pm
kc|ko (53)

The new set of track pairing candidate is defined by the following statistical test:

Φs = {(T kli,l, T ko,m) | (∆l,m
kc

)T [Pl,m
kc

]−1(∆l,m
kc

) ≤ χ2
n(1−Q),

(T kli,l, T ko,m) ∈ Φv, tkmi < tko < tkme , tkc =
tkli − tko

2
}

(54)
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where Q is a fixed tail probability. The counterpart of this approach is in the set Φs,

where several pairs can correspond to the same tracks pairing between T .,l, (T k,l ∈ Ck)

and T .,m, (T kme ,m ∈ Ok). In order to limit the complexity in the assignment algorithm we

keep the pairs which have the minimal statistical distance among all pairs of the same

tracks.

b) Track assignment: After applying the gating (54), we obtain a set of track pairs

candidates between current track in Ck and deleted or stopped tracks in Ok. The association

is formulated as a 2-D assignment problem. For this, we define a binary assignment variable as

a(T kli,l, T ko,m) =











1 track T kli,l is originated from the track T ko,m at time tko

0 otherwise.

(55)

The cost of the track association between T kli,l and T ko,m is denoted by c(T kli,l, T ko,m), and is

defined by

c(T kli,l, T ko,m) =











− log
N (∆l,m

kc
;0,Pl,m

kc
)

µ
if (T kli,l, T ko,m) ∈ Φs

− log(1− PDs
) otherwise.

(56)

where µ is given by the spatial density of the extraneous tracks in the state space and PDs
is

the probability that a target is tracked [8].

The optimal set of track pairs (optimal assignment) is obtained by minimizing the following

global cost C:

C =
Mc
∑

l=1

No
∑

m=1

a(T kli,l, T ko,m)c(T kli,l, T ko,m) (57)

under the constraints:
Mc
∑

l=1

a(T kli,l, T ko,m) = 1,m = 1, . . . , No (58)

No
∑

m=1

a(T kli,l, T ko,m) = 1, l = 1, . . . ,Mc (59)

where Mc and No are respectively the number of current associated tracks and the number dead

associated tracks. This 2-D assignment problem is solved using the Auction algorithm [2].
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c) Track segment association algorithm execution: In our application, the track segment

association algorithm is applied every minute. The track retrodiction is done for each current

track after the smoothing process. We use the validation tests to determine the cost between

current track segment and dead track segments. A new current track segment is obtained after

the TSA algorithm. A dead track at the current time tk is extracted from the set Ok if it is not

used for the track segment association during two minutes.

C. Introduction of the target type information in the TSA algorithm

We propose also to introduce the track classification information in the Track Segment

Association (TSA) process in order to increase the discrimination between the old and current

tracks. Two methods are presented for such purpose.

1) Track classification gating: this first method is the easiest. We propose to add a new test in

the track pairing test (54). This test consists to validate only the track with the same classification

level between a current track T k,l and a old track T kme ,m. So, we add the following new condition

in (54)

Ĉlassk,l = Ĉlasskme ,m (60)

Remark: it is more efficient to choose the updated type at the current time tk for the track T k,l

even if the kinematic test is done on the initial smoothed state at time tkli .

2) Track classification scoring: the second method consists to modify the cost association

presented in (56) by introducing a track classification cost. After the pairing test (54) between

the current track T k,l and the old track T kme ,m, the track class vectors βkli,l
and βkme ,m are

compared based on the Bhattacharyya distance:

c(βk,l, βkme ,m) = − log
∑

√

βk,l · βkme ,m (61)

The global cost association becomes:

c(T kli,l, T ko,m) =











− log
N (∆l,m

kc
;0,Pl,m

kc
)

µ
+ c(βk,l, βkme ,m) if (T kli,l, T ko,m) ∈ Φs

− log(1− PDs
) otherwise.

(62)

V. SIMULATION AND RESULTS

In this paper, we evaluate the impact of the classification information introduced in the TSA

algorithm for multiple ground target tracking. The results presented are based on a Monte-Carlo

simulation with 100 runs.
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A. Measures of performance

Several Measures Of Performance (MOP) have been used in simulations to evaluate our

approach for the Track Segment Association (TSA) algorithm. Each confirmed track is associated

to at most one target. For this, we calculate the error at each scan time between the trajectory

of the targets and the confirmed track and if this error is less than 30m we associate the track

to the target that has the shortest error in distance. A confirmed track is obtained after the track

confirmation level in the SB-MHT.

1) Track Segment Purity (TSP) measures the correct association between a track and a

measure of the target. This measure is directly averaged by the number N of tracks

associated to the same target. Mathematically, TSP is defined by

TSP =
1

N

N
∑

l=1

n(T k,l)/nT (63)

where n(T k,l) is the number of measurements of the track T k,l generated by the target

associated to the track, nT is the number of measurements in the track T k,l.

2) Mean Track Life (MTL) measures the track continuity. If the MTL of a target is near to

one, we can conclude that the target is well tracked. This MOP is directly averaged by the

number N of tracks associated to the same target. Mathematically, the MTL is defined by

MTL =
1

N

N
∑

l=1

l(T k,l)/lT (64)

where l(T k,l) is length of the track T k,l associated to the target, and lT is the length of

the target trajectory.

3) Percentage of Correct Classification (PCC) measures is the third MOP used in this work

to evaluate this new TSA method. To calculate the PCC we observe at each scan time

the updated class given by the relation (34). We sum at each scan time the class of the

track similar to the class of the target divided by the track length. This measure is directly

averaged by the number N of tracks associated to the same target. Mathematically, the

PCC is defined by

PCC =
1

N

N
∑

l=1

nc(T
k,l)/lT k,l (65)

where nc(T
k,l) is the number of correct classification of the track T k,l associated to a

target and lT k,l is the length of tre track T k,l.
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B. Scenario description

The scenario duration is limited to 10 minutes.

1) Targets description: We consider 20 targets that are able to maneuver (acceleration,

deceleration, stop), pass and cross the others targets. The relations between target type, the

target classification set and the taxonomy 2525C are given in the table I. We recall that the

frame of discernment CUGS is similar to C2525C . In figure 4, we present the target trajectories

at different time.

Target Target type Target class in CMTI Target class in C2525C

1 TWINGO Wheeled Compact Automobile

2 Citroen xsara Wheeled Midsize Automobile

3 Small Bus Wheeled Small Bus

4 Renault Scenic Wheeled Sedan Automobile

5 Peugeot 206 Wheeled Compact Automobile

6 Laguna II Wheeled Midsize Automobile

7 Van Wheeled Van

8 Large Bus Wheeled Large Bus

9 4x4 TOYOTA Wheeled Jeep Medium

10 civilian heavy truck Wheeled Large Box Truck

11 Midsize Bus Wheeled Small Bus

12 civilian heavy truck Wheeled Large Box Truck

13 VBL Wheeled Light Wheeled

14 VAB Tracked Medium Tracked

15 VAB Tracked Medium Tracked

16 Renault Scenic Wheeled Sedan Automobile

17 AMX-30 Tracked Heavy Tracked

18 AMX-30 Tracked Heavy Tracked

19 TWINGO Wheeled Compact Automobile

20 Military Van Wheeled Bus

Table I: Correspondence between target type and target classification in CMTI and C2525C .

2) Sensor parameters: The GMTI sensor is located at (−40km, 40km) in the TCF and is

moving at 5km in altitude according a trajectory represented on the figure 5. The sampling

period is fixed at 0.25Hz (i.e. 4 seconds), the azimuth standard deviation is 0.001rad, the

range standard deviation is 10m and the range rate standard deviation is 1m.s−1. The detection
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(a) Location of the targets at time 184 s. (b) Location of the targets at time 349 s.

(c) Location of the targets at time 540 s.

Figure 4: Screen shots of the target’s location.
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Figure 5: GMTI sensor trajectory. The red segments are the activated sensor location, the cyan

area is the sensor coverage, the yellow parallelogram is the area of interest, the red and blue

dots are the MTI reports with positive and negative radial velocity.

probability is fixed to 0.9 with a Minimal Detectable Velocity (MDV) equal to 1m.s−1. The

false alarm probability is equal to 10−7. The confusion matrix of each class of CMTI is

Ck =











0.8 0.1 0.1

0.15 0.7 0.15

0.05 0.05 0.9











(66)

The figure 6 represents the cumulated MTI reports over the time scenario (i.e. 10 minutes).

In order to simulate the cut-off of the GMTI sensor during its maneuvers, we consider that every

3 minutes, the UAV changes its trajectory and cut-off the GMTI sensor during 40 seconds.

The parameters of the UGS are simplified and characterized by a standard deviation equal to

2m, a false alarm probability fixed to 10−9, and a sampling time fixed to 1Hz. The location

and the sensor area coverage are given on the figure 7 and 8 respectively. The UGS are always
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Figure 6: Cumulated MTI reports. The red and blue dots are the MTI reports with positive and

negative radial velocity.

activated. Each detection is provided with the diagonal element of the confusion matrix CUGS

equal to 0.8. The other terms of the column are equi-distributed in the manner that the sum

without the diagonal element is equal to 0.2.

The sensor activation or desactivation time and the presence time of the targets are represented

in the figure 9.

3) Filter parameters: We have used VS IMMC SB-MHT for multiple target tracking. The

parameter settings are given as follows:

a) VS IMMC parameters: The motion models are constant velocity motion models. A

motion model Ms,1 to track the targets which move with constant velocity on the road, a motion

model Ms,2 with a big state noise to palliate the maneuvers of the target and a stop-model Ms,0.

The noises of the previous motion models are the following :σd = 0.1m.s−2, σn = 0.1m.s−2

for Ms,1 , σn = 1m.s−2, σn = 0.5m.s−2 for Ms,2 and σd = 0.1m.s−2, σn = 0.05m.s−2

for Ms,0. For the unconstrained motion models M1, M2 and M0, we use the noises with
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Figure 7: Location of the UGS.

Figure 8: Screen shot of the cumulated reports of the UGS 7, 8, 9 and 10.



32

Figure 9: Sensor activation time and illumination target time by the sensors. The green time slot

is associated to the GMTI sensor and the red time slot is associated to the set of UGS.

σ = 0.1m.s−2, σ = 2m.s−2 and σ = 0.5m.s−2 respectively. The initial model probabilities and

transition probability matrix were

µ(0) = [0.9 0.1 0]T (67)

π =











0.9 0.095 0.005

0.3 0.65 0.15

0.1 0.6 0.3











(68)

b) SB-MHT parameters:

• For the track initialisation: each MTI report at every scan is considered as a new track.

The initialised track is declared as “tentative track”. The MTI reports are validated with a
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classical gating procedure (a Chi2 test with a probability of gating equal to Pg = 0.95).

• For the track termination step, a track is declared as “deleted track” if the probability of the

stop-model is greater than 0.9, and if the track is not associated to measurements during

30seconds.

• For the track association step: a track is associated to a report if the MTI report is validated

according the previous test (with a gating probability equal to Pg = 0.95 for unconstrained

tracks and Pg = 0.99 for constrained tracks), and if the maximum velocity allowed for a

ground target is less than 35m.s−1.

• In the hypothesis generation step of the MHT: the threshold used to keep a track hypothesis

is fixed to 0.01, and the track is maintained if its global track probability is greater than

0.1. The number of scans before the N-Scan pruning process is equal to 3.

• For the TSA algorithm, the smoothing process is realized every minute.

C. Results

To evaluate the impact of the classification information introduced in the TSA algorithm,

we test the VS IMMC SB-MHT with three TSA versions: the first version is a TSA algorithm

without classification information represented in red color, the second version is a TSA algorithm

including the classification distance in the cost function (presented in IV-C2) represented in blue

color, and the third version is a TSA algorithm including the classification gating procedure

(presented in IV-C1) represented in yellow color. We recall the results are based on a 100 runs

Monte-Carlo simulation.

The figure 10 represents the average MTL of each target. We observe that globally the

introduction of classification information improves the performance of the track segment

association algorithm because the length of tracks with respect to the length trajectory of the

associated target is greater with the classification information (blue and yellow bars) than without

(red bars). We observe also a large difference of performances between the tracks associated to

the targets 19 and 20. This difference is due to the UGS illumination of the targets. In fact, the

UGS provide a better classification information and the target 20 is illuminated by this sensor

type during 15 seconds. According the UGS sampling time, the illumination duration is very

sufficient to obtain a good and precise estimation of the class. The target 19 is never illuminated

by the UGS sensor but it evolves at the proximity of the target 20. So, when the TSA algorithm
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is executed, the targets 19 and 20 are well discriminated in class information. A similar remark

applies for the targets that have a correct class estimator due to a long illumination time by UGS

sensors. However, the gating procedure doesn’t take into account the sensor type uncertainty.

We reveal also the limits of the gating procedure because the MTL of the TSA algorithm

with the gating procedure is inferior to TSA algorithm with the scoring procedure. In addition,

the table II shows the TSP and PCC of tracks associated to each target. Introduction of the

classification information improves the association between tracks and measurements originated

from the corresponding target. In fact, the TSP of the TSA algorithm without class information

is inferior to the TSA algorithms with scoring and gating class information expected for the

targets 16, 19 and 20. The TSP values for those targets are higher than TSP values with scoring

technique. This phenomenon is due to bad classification results because the target type is not

discriminant, or because the targets are not illuminated sufficiently by a UGS. The introduction

of the class cost decreases the performances of the TSA algorithm if the class likelihood can’t

select the good class or discriminate the targets in the same cluster. So, if an ambiguity occurs

on the track class, or if the tracks are not illuminated by UGS we recommend to not use the

class information in the cost function, otherwise the TSA performances will degrade.

VI. CONCLUSIONS

We have presented a complete process to track multiple ground targets with airborne GMTI

sensors. The first step is to track maneuvering targets in a complex ground environment with

the only information in target location and range radial velocity. We have proposed, in the

first part, to adapt the Interacting Multiple Model (IMM) algorithm by taking into account the

road network and the Structured-Branching Multiple Hypothesis Tracker (SB-MHT) to obtain

several association scenarii in road intersection. In this paper, we focus on the Track Segment

Association (TSA) algorithm in order to associate the track segments obtained by after several

fly paths. In fact, when the airborne GMTI sensors observes an area of interest, the Unnamed

Aerial Vehicle (UAV) maneuvers after few minutes to obtain a new trajectory in order to conserve

its capacity to observe its surveillance area. During the maneuvers and due to sensor constraint

the GMTI sensor is shut down. The tracker is reinitialized to avoid track association errors.

To improve the track continuity we have studied and developed a Track Segment Association

(TSA) algorithm. However, due to the ground targets density and targets proximity, the Track
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Figure 10: Mean Track Life (MTL) of each target.

Segment Association (TSA) algorithm is perfectible because the cost function is based only on

kinematic information. That is why it appears interesting to deploy Unattended Ground Sensor

(UGS) sensors and to develop methods to deal with the uncertain and imprecise identification

information of the observed target. We have proposed to modelize the classification information

for each sensor type and introduce the classification information in the log-likelihood function in

the Structured-Branching Multiple Hypothesis Tracker (SB-MHT) and also in the cost function

of the Track Segment Association (TSA) algorithm. Our results show that the introduction of

classification improves the track segment association and the track continuity between several

fly paths whenever the target are well illuminated by Unattended Ground Sensor (UGS) sensors

when several targets evolve in close formation. Our future research works will consist to: 1) use

other cost functions for the TSA algorithm by introducing the entropic distance and evaluate

the performances obtained, 2) detect the conflicts between the segment association and let the
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P
P
P

P
P
P
P
P
PP

Algorithm

Target
1 2 3 4 5 6 7 8 9 10

TSP 0.56 0.77 0.68 0.67 0.92 0.67 0.76 0.74 0.76 0.64
TSA wo class info.

PCC 0 0 0 0 0 0 0 0 0 0

TSP 0.70 0.80 0.88 0.61 0.90 0.69 0.87 0.79 0.81 0.94
TSA w class info. scoring

PCC 0.41 0.61 0.44 0.47 0.29 0.37 0.08 0.43 0.59 0.03

TSP 0.74 0.89 0.83 0.84 0.93 0.80 0.86 0.80 0.88 0.94
TSA w class info. gating

PCC 0.45 0.62 0.35 0.61 0.31 0.58 0.11 0.55 0.77 0.03

P
P
P

P
P
P
P
P
PP

Algorithm

Target
11 12 13 14 15 16 17 18 19 20

TSP 0.50 0.85 0.59 0 69 0.58 0.79 0.58 0.76 0.65 0.53
TSA wo class info.

PCC 0 0 0 0 0 0 0 0 0 0

TSP 0.90 0.88 0.79 0.81 0.76 0.72 0.68 0.80 0.52 0.43
TSA w class info. scoring

PCC 0.44 0.40 0.21 0.67 0.70 0.41 0.21 0.22 0.02 0.29

TSP 0.93 0.87 0.86 0.82 0.96 0.83 0.68 0.69 0.77 0.86
TSA w class info. gating

PCC 0.62 0.42 0.40 0.61 0.66 0.55 0.22 0.20 0.03 0.59

Table II: MOP of the TSA algorithm without class information.

operator to take a decision, 3) use the conflict detector and the UGS location to automatically

differ the TSA algorithm execution, 4) study the problem of UGS deployment by taking into

account the contextual information, and 5) work on the signal processing to improve the GMTI

classification information.
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