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Abstract. This paper deals with a parametrized family of partially
observed bivariate Markov chains. We establish that, under very mild
assumptions, the limit of the normalized log-likelihood function is max-
imized when the parameters belong to the equivalence class of the true
parameter, which is a key feature for obtaining the consistency of the
maximum likelihood estimators (MLEs) in well-specified models. This
result is obtained in the general framework of partially dominated mod-
els. We examine two specific cases of interest, namely, hidden Markov
models (HMMs) and observation-driven time series models. In contrast
with previous approaches, the identifiability is addressed by relying on
the uniqueness of the invariant distribution of the Markov chain asso-
ciated to the complete data, regardless its rate of convergence to the
equilibrium.

1. Introduction

Maximum likelihood estimation is a widespread method for identifying
a parametric model of a time series from a sample of observations. Under
a well-specified model assumption, it is of prime interest to show the con-
sistency of the estimator, that is, its convergence to the true parameter,
say θ⋆, as the sample size goes to infinity. The proof generally involves two
important steps: 1) the maximum likelihood estimator (MLE) converges to
the maximizing set Θ⋆ of the asymptotic normalized log-likelihood, and 2)
the maximizing set indeed reduces to the true parameter. The second step is
usually referred to as solving the identifiability problem but it can actually
be split in two sub-problems: 2.1) show that any parameter in Θ⋆ yields
the same distribution for the observations as for the true parameter, and
2.2) show that for a sufficiently large sample size, the set of such parame-
ters reduces to θ⋆. Problem 2.2 can be difficult to solve, see [2, 18] and the
references therein for recent advances in the case of hidden Markov models
(HMMs). Nevertheless, Problem 2.1 can be solved independently, and with
Step 1 above, this directly yields that the MLE is consistent in a weakened
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sense, namely, that the estimated parameter converges to the set of all the
parameters associated to the same distribution as the one of the observed
sample. This consistency result is referred to as equivalence-class consis-
tency, as introduced by [24]. In this contribution, our goal is to provide a
general approach to solve Problem 2.1 in the general framework of partially
observed Markov models. These include many classes of models of interest,
see for instance [28] or [16]. The novel aspect of this work is that the result
mainly relies on the uniqueness of the invariant distribution of the Markov
chain associated to the complete data, regardless its rate of convergence to
the equilibrium. We then detail how this approach applies in the context of
two important subclasses of partially observed Markov models, namely, the
class of HMMs and the class of observation-driven time series models.

In the context of HMMs, the consistency of the MLE is of primary impor-
tance, either as a subject of study (see [11,12,24]) or as a basic assumption
(see [4, 22]). The characterization of the maximizing set Θ⋆ of the asymp-
totic log-likelihood (and thus the equivalence-class consistency of the MLE)
remains a delicate question for HMMs. As an illustration, we consider the
following example. In this example and throughout the paper we denote by
R+ = [0,∞), R− = (−∞, 0], R∗

+ = (0,∞) and R
∗
− = (−∞, 0), the sets

of nonnegative, nonpositive, (strictly) positive and (strictly) negative real
numbers, respectively. Similarly, we use the notation Z+, Z−, Z

∗
+ and Z

∗
−

for the corresponding subsets of integers. Also, a+ = max(a, 0) denotes the
nonnegative part of a.

Example 1. Set X = R+, X = B(R+), Y = R and Y = B(R) and define an
HMM on X× Y by the following recursions:

Xk = (Xk−1 + Uk −m)+ ,

Yk = aXk + Vk ,
(1.1)

where (m,a) ∈ R
∗
+ × R, and the sequence ((Uk, Vk))k∈Z+

is independent

and identically distributed (i.i.d.) and is independent from X0. This Markov
model (Xk)k∈Z+

was proposed by [30] and further considered by [21] as an

example of polynomially ergodic Markov chain, under specific assumptions

made on Uk’s. Namely, if Uk’s are centered and E[eλU
+

k ] = ∞ for any λ >
0, it can be shown that the chain (Xk)k∈Z+

is not geometrically ergodic

(see Lemma 13 below). In such a situation, the exponential separation of
measures condition introduced in [11] seems difficult to check. We will show,
nevertheless, in Proposition 14, that under some mild conditions the chain
(Xk)k∈Z+

is ergodic and the equivalence-class consistency holds.

Observation-driven time series models were introduced by [7] and later
considered, among others, by [8, 15, 17, 26, 29] and [10]. The celebrated
GARCH(1,1) model introduced by [5] is an observation-driven model as
well as most of the models derived from this one, see [6] for a list of some of
them. This class of models has the nice feature that the (conditional) like-
lihood function and its derivatives are easy to compute. The consistency of
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the MLE can however be cumbersome and is often derived using computa-
tions specific to the studied model. When the observed variable is discrete,
general consistency results have been obtained only recently in [9] or [10]
(see also in [20] for the existence of stationary and ergodic solutions to some
observation-driven time series models). However, in these contributions, the
way of proving that the maximizing set Θ⋆ reduces to {θ⋆} requires checking
specific conditions in each given example and seems difficult to assert in a
more general context, for instance when the distribution of the observations
given the hidden variable also depends on an unknown parameter. Let us
describe two such examples. The first one (Example 2) was introduced in
[31]. Up to our knowledge the consistency of the MLE has not been treated
for this model.

Example 2. The negative binomial integer-valued GARCH (NBIN-
GARCH(1, 1)) model is defined by:

Xk+1 = ω + aXk + bYk ,

Yk+1|X0:k+1, Y0:k ∼ NB

(

r,
Xk+1

1 +Xk+1

)

,
(1.2)

whereXk takes values in X = R+, Yk takes values in Z+ and θ = (ω, a, b, r) ∈
(R∗

+)
4 is an unknown parameter. In (1.2), NB(r, p) denotes the negative bi-

nomial distribution with parameters r > 0 and p ∈ (0, 1), whose probability

function is Γ(k+r)
k!Γ(r) p

r(1 − p)k for all k ∈ Z+, where Γ stands for the Gamma

function.

The second example, Example 3, proposed by [19] and [1], is a natural
extension of GARCH processes, where the usual Gaussian conditional dis-
tribution of the observations given the hidden volatility variable is replaced
by a mixture of Gaussian distributions given a hidden vector volatility vari-
able. Up to our knowledge, the usual consistency proof of the MLE for the
GARCH cannot be directly adapted to this model.

Example 3. The normal mixture GARCH (NM(d)-GARCH(1, 1)) model
is defined by:

Xk+1 = ω +AXk + Y 2
k b ,

Yk+1|X0:k+1, Y0:k ∼ Gθ(Xk+1; ·) ,

Gθ(x; dy) =

(

d
∑

ℓ=1

γℓ
e−y

2/2xℓ

(2πxℓ)1/2

)

dy , x = (xi)1≤i≤d ∈ (R∗
+)

d, y ∈ R ,

(1.3)

where d is a positive integer; Xk = [X1,k . . . Xd,k]
T takes values in X = R

d
+;

γ = [γ1 . . . γd]
T is a d-dimensional vector of mixture coefficients belonging

to the d-dimensional simplex Pd = {γ ∈ R
d
+ :

∑d
ℓ=1 γℓ = 1}; ω, b are

d-dimensional vector parameters with positive and nonnegative entries, re-
spectively; A is a d × d matrix parameter with nonnegative entries; and
θ = (γ,ω,A,b).
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The paper is organized as follows. Section 2 is dedicated to the main
result (Theorem 3) which shows that the argmax of the limiting criterion
reduces to the equivalence class of the true parameter, as defined in [24].
The general setting is introduced in Section 2.1. The theorem is stated and
proved in Section 2.2. In Section 2.3, we focus on the kernel involved in the
assumptions, and explain how it can be obtained explicitly. Our general
assumptions are then shown to hold for two important classes of partially
observed Markov models:

- First, the HMMs described in Section 3, for which the equivalence-
class consistency of the MLE is derived under simplified assump-
tions. The polynomially ergodic HMM of Example 1 is treated as an
application of this result.

- Second, the observation-driven time series models described in
Section 4. The obtained results apply to the models of Example 2
and Example 3, where the generating process of the observations
may also depend on the parameter.

The technical proofs are gathered in Appendix A.

2. A general approach to identifiability

2.1. General setting and notation: partially dominated and par-

tially observed Markov models. Let (X,X ) and (Y,Y) be two Borel
spaces, that is, measurable spaces that are isomorphic to a Borel subset of
[0, 1] and let Θ be a set of parameters. Consider a statistical model deter-
mined by a class of Markov kernels

(

Kθ
)

θ∈Θ
on (X×Y)×(X⊗Y). Throughout

the paper, we denote by P
θ
ξ the probability (and by E

θ
ξ the corresponding

expectation) induced on (X× Y)Z+ by a Markov chain ((Xk, Yk))k∈Z+
with

transition kernel Kθ and initial distribution ξ on X × Y. In the case where
ξ is a Dirac mass at (x, y) we will simply write P

θ
(x,y).

For partially observed Markov chains, that is, when only a sample Y1:n :=
(Y1, . . . , Yn) ∈ Yn of the second component is observed, it is convenient to
write Kθ as

Kθ((x, y); dx′dy′) = Qθ((x, y); dx′)Gθ((x, y, x′); dy′) ,(2.1)

whereQθ andGθ are probability kernels on (X×Y)×X and on (X×Y×X)×Y,
respectively.

We now consider the following general setting.

Definition 1. We say that the Markov model
(

Kθ
)

θ∈Θ
of the form (2.1) is

partially dominated if there exists a σ-finite measure ν on Y such that for
all (x, y), (x′, y′) ∈ X× Y,

(2.2) Gθ((x, y, x′); dy′) = gθ((x, y, x′); y′)ν(dy′) ,

where the conditional density function gθ moreover satisfies

(2.3) gθ((x, y, x′); y′) > 0, for all (x, y), (x′, y′) ∈ X× Y .
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It follows from (2.2) that, for all (x, y) ∈ X× Y, A ∈ X and B ∈ Y,

Kθ ((x, y);A ×B) =

∫

B
κθ〈y, y′〉 (x;A) ν(dy′) ,

where, for all y, y′ ∈ Y, κθ〈y, y′〉 is a kernel defined on (X,X ) by

(2.4) κθ〈y, y′〉
(

x; dx′
)

:= Qθ((x, y); dx′)gθ((x, y, x′); y′) .

Remark 1. Note that, in general, the kernel κθ〈y, y′〉 is unnormalized
since κθ〈y, y′〉 (x;X) may be different from one. Moreover, we have for all
(x, y, y′) ∈ X× Y × Y,

(2.5) κθ〈y, y′〉 (x;X) =

∫

X

Qθ((x, y); dx′)gθ((x, y, x′); y′) > 0 ,

where the positiveness follows from the fact that Qθ((x, y); ·) is a probability
on (X,X ) and Condition (2.3).

In well-specified models, it is assumed that the observations Y1:n are gen-
erated from a process ((Xk, Yk))k∈Z+

, which follows the distribution P
θ⋆
ξ⋆

associated to an unknown parameter θ⋆ ∈ Θ and an unknown initial dis-
tribution ξ⋆ (usually, ξ⋆ is such that, under P

θ⋆
ξ⋆
, (Yk)k∈Z+

is a stationary

sequence). To form a consistent estimate of θ⋆ on the basis of the obser-
vations Y1:n only, i.e., without access to the hidden process (Xk)k∈Z+

, we

define the maximum likelihood estimator (MLE) θ̂ξ,n by

θ̂ξ,n ∈ argmax
θ∈Θ

Lξ,n(θ) ,

where Lξ,n(θ) is the (conditional) log-likelihood function of the observations
under parameter θ with some arbitrary initial distribution ξ on X×Y, that
is,

Lξ,n(θ) := ln

∫ n
∏

k=1

Qθ((xk−1, yk−1); dxk) g
θ((xk−1, yk−1, xk); yk)ξ(dx0dy0)

= ln

∫

κθ〈y0, y1〉κ
θ〈y1, y2〉 . . . κ

θ〈yn−1, yn〉 (x0;X) ξ(dx0dy0) .

This corresponds to the log of the conditional density of Y1:n given (X0, Y0)
with the latter integrated according to ξ. In practice ξ is often taken as a
Dirac mass at (x, y) with x arbitrarily chosen and y equal to the observation
Y0 when it is available. In this context, a classical way (see for example [24])

to prove the consistency of a maximum-likelihood-type estimator θ̂ξ,n may

be decomposed in the following steps. The first step is to show that θ̂ξ,n is,
with probability tending to one, in a neighborhood of the set

(2.6) Θ⋆ := argmax
θ∈Θ

Ẽ
θ⋆
[

ln pθ,θ⋆(Y1|Y−∞:0)
]

.

This formula involves two quantities that have not yet been defined since
they may require additional assumptions: first, the expectation Ẽ

θ, which
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corresponds to the distribution P̃
θ of a sequence (Yk)k∈Z in accordance with

the kernelKθ, and second, the density pθ,θ⋆(·|·), which shows up when taking

the limit, under P̃
θ⋆ , of the P̃

θ-conditional density of Y1 given its m-order
past, as m goes to infinity. In many cases, such quantities appear naturally
because the model is ergodic and the normalized log-likelihood n−1Lξ,n(θ)
can be approximated by

1

n

n
∑

k=1

ln pθ,θ⋆(Yk|Y−∞:k−1) .

We will provide below some general assumptions, Assumptions (K-1)

and (K-2), that yield precise definitions of P̃θ and pθ,θ
′

(·|·).
The second step consists in proving that the set Θ⋆ in (2.6) is related to the

true parameter θ⋆ in an exploitable way. Ideally, one could have Θ⋆ = {θ⋆},

which would yield the consistency of θ̂ξ,n for estimating θ⋆. In this work, our
first objective is to provide a set of general assumptions which ensures that
Θ⋆ is exactly the set of parameters θ such that P̃

θ = P̃
θ⋆ . Then this result

guarantees that the estimator converges to the set of parameters compatible
with the true stationary distribution of the observations. If moreover the

model
(

P̃
θ
)

θ∈Θ
is identifiable, then this set reduces to {θ⋆} and consistency

of θ̂ξ,n directly follows.
To conclude with our general setting, we state the main assumption on

the model and some subsequent notation and definitions used throughout
the paper.

(K-1) For all θ ∈ Θ, the transition kernel Kθ admits a unique invariant prob-
ability πθ.

We now introduce some important notation used throughout the paper.

Definition 2. Under Assumption (K-1), we denote by πθ1 and πθ2 the mar-

ginal distributions of πθ on X and Y, respectively, and by P
θ and P̃

θ the
probability distributions defined respectively as follows.

a) P
θ denotes the extension of Pθ

πθ on the whole line (X × Y)Z.

b) P̃
θ is the corresponding projection on the component YZ.

We also use the symbols Eθ and Ẽ
θ to denote the expectations corresponding

to P
θ and P̃

θ, respectively. Moreover, for all θ, θ′ ∈ Θ, we write θ ∼ θ′ if and
only if P̃θ = P̃

θ′ . This defines an equivalence relation on the parameter set
Θ and the corresponding equivalence class of θ is denoted by [θ] := {θ′ ∈
Θ : θ ∼ θ′}.

The equivalence relationship ∼ was introduced by [24] as an alternative
to the classical identifiability condition.

2.2. Main result. Assumption (K-1) is supposed to hold all along this sec-

tion and P
θ, P̃θ and ∼ are given in Definition 2. Our main result is stated

under the following general assumption.
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(K-2) For all θ 6= θ′ in Θ, there exists a probability kernel Φθ,θ
′

on YZ− × X
such that for all A ∈ X ,

∫

X

Φθ,θ
′

(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0;A)

∫

X

Φθ,θ
′

(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0;X)

= Φθ,θ
′

(Y−∞:1;A), P̃
θ′-a.s.

Remark 2. Note that from Remark 1, the denominator in the left-hand
side of the last displayed equation is strictly positive, which ensures that
the ratio is well defined.

Remark 3. Let us give some insight about the formula appearing in (K-2)
and explain why it is important to consider the cases θ = θ′ and θ 6= θ′ sepa-
rately. Since X is a Borel space, [23, Theorem 6.3] applies and the conditional
distribution of X0 given Y−∞:0 under P

θ defines a probability kernel denoted
by Φθ. We prove in Section A.1 of Appendix A that this kernel satisfies, for
all A ∈ X ,

(2.7)

∫

X

Φθ(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0;A)

∫

X

Φθ(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0;X)

= Φθ(Y−∞:1;A), P̃
θ-a.s.

Assumption (K-2) asserts that the kernel Φθ,θ
′

satisfies a similar identity

P̃
θ′-a.s. for θ′ 6= θ. It is not necessary at this stage to precise how Φθ,θ

′

shows
up. This is done in Section 2.3.

Remark 4. The denominator in the ratio displayed in (K-2) can be written

as pθ,θ
′

(Y1|Y−∞:0), where, for all y ∈ Y and y−∞:0 ∈ YZ− ,

(2.8) pθ,θ
′

(y|y−∞:0) :=

∫

X

Φθ,θ
′

(y−∞:0; dx0)κ
θ〈y0, y〉 (x0;X)

is a conditional density with respect to the measure ν, since for all (x, y) ∈
X× Y,

∫

κθ〈y, y′〉 (x;X) ν(dy′) = 1.

Since Y is a Borel space, [23, Theorem 6.3] applies and the conditional

distribution of Y1:n given Y−∞:0 defines a probability kernel. Since P̃θ(Y1:n ∈
·) is dominated by ν⊗n, this in turns defines a conditional density with
respect to ν⊗n, which we denote by pθn(·|·), so that for all B ∈ Y⊗n,

(2.9) P̃
θ (Y1:n ∈ B |Y−∞:0) =

∫

B
pθn(y1:n|Y−∞:0) ν(dy1) · · · ν(dyn), P̃

θ-a.s.

Let us now state the main result.

Theorem 3. Assume that (K-1) holds and define P
θ, P̃

θ and [θ] as in
Definition 2. Suppose that Assumption (K-2) holds. For all θ, θ′ ∈ Θ, de-

fine pθ,θ
′

(Y1|Y−∞:0) by (2.8) if θ 6= θ′ and by pθ,θ(Y1|Y−∞:0) = pθ1(Y1|Y−∞:0)
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as in (2.9) otherwise. Then for all θ⋆ ∈ Θ, we have

(2.10) argmax
θ∈Θ

Ẽ
θ⋆
[

ln pθ,θ⋆(Y1|Y−∞:0)
]

= [θ⋆] .

Before proving Theorem 3, we first extend the definition of the conditional
density on Y in (2.8) to a conditional density on Yn.

Definition 4. For every positive integer n and θ 6= θ′ ∈ Θ, define the

function pθ,θ
′

n (·|·) on Yn × YZ− by
(2.11)

pθ,θ
′

n (y1:n|y−∞:0) :=

∫

Xn

Φθ,θ
′

(y−∞:0; dx0)

n−1
∏

k=0

κθ〈yk, yk+1〉 (xk; dxk+1) .

Again, it is easy to check that each pθ,θ
′

n ( · |y−∞:0) is indeed a density on
Yn. Assumption (K-2) ensures that these density functions moreover satisfy
the successive conditional formula, as for conditional densities, provided that
we restrict ourselves to sequences in a set of P̃θ

′

-probability one, as stated
in the following lemma.

Lemma 5. Suppose that Assumption (K-2) holds and let pθ,θ
′

n (·|·) be as
defined in Definition 4. Then for all θ, θ′ ∈ Θ and n ≥ 2, we have

(2.12) pθ,θ
′

n (Y1:n|Y−∞:0) = pθ,θ
′

1 (Yn|Y−∞:n−1)p
θ,θ′

n−1(Y1:n−1|Y−∞:0), P̃
θ′-a.s.

The proof of this lemma is postponed to Section A.2 in Appendix A. We
now have all the tools for proving the main result.

Proof of Theorem 3. Within this proof section, we will drop the subscript
n and respectively write pθ,θ

′

(y1:n|y−∞:0) and pθ(y1:n|y−∞:0) instead of

pθ,θ
′

n (y1:n|y−∞:0) and p
θ
n(y1:n|y−∞:0) when no ambiguity occurs.

For all θ ∈ Θ, we have by conditioning on Y−∞:0 and by using (2.9),

Ẽ
θ⋆
[

ln pθ⋆(Y1|Y−∞:0)
]

− Ẽ
θ⋆
[

ln pθ,θ⋆(Y1|Y−∞:0)
]

= Ẽ
θ⋆

[

Ẽ
θ⋆

[

ln
pθ⋆(Y1|Y−∞:0)

pθ,θ⋆(Y1|Y−∞:0)

∣

∣

∣

∣

Y−∞:0

]]

= Ẽ
θ⋆
[

KL
(

pθ⋆1 ( · |Y−∞:0)
∥

∥pθ,θ⋆1 ( · |Y−∞:0)
)]

,(2.13)

where KL(p‖q) denotes the Kullback-Leibler divergence between the den-
sities p and q. The nonnegativity of the Kullback-Leibler divergence shows
that θ⋆ belongs to the maximizing set on the left-hand side of (2.10). This
implies

(2.14) argmax
θ∈Θ

Ẽ
θ⋆
[

ln pθ,θ⋆(Y1|Y−∞:0)
]

⊇ [θ⋆] ,

where we have used the following lemma.
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Lemma 6. Assume that (K-1) holds and define Ẽθ and [θ] as in Definition 2.
Suppose that for all θ ∈ Θ, G(θ) is a σ(Y−∞:∞)-measurable random variable
such that, for all θ⋆ ∈ Θ,

sup
θ∈Θ

Ẽ
θ⋆ [G(θ)] = Ẽ

θ⋆ [G(θ⋆)] .

Then for all θ⋆ ∈ Θ and θ′ ∈ [θ⋆], we have

Ẽ
θ⋆
[

G(θ′)
]

= sup
θ∈Θ

Ẽ
θ⋆ [G(θ)] .

Proof. Take θ⋆ ∈ Θ and θ′ ∈ [θ⋆]. Then we have, for all θ ∈ Θ, Ẽθ⋆ [G(θ)] =

Ẽ
θ′ [G(θ)], and it follows that

Ẽ
θ⋆
[

G(θ′)
]

= Ẽ
θ′
[

G(θ′)
]

= sup
θ∈Θ

Ẽ
θ′ [G(θ)] = sup

θ∈Θ
Ẽ
θ⋆ [G(θ)] ,

which concludes the proof. �

The proof of the reverse inclusion of (2.14) is more tricky. Let us take
θ ∈ Θ⋆ such that θ 6= θ⋆ and show that it implies θ ∼ θ⋆. By (2.13) we have

Ẽ
θ⋆
[

KL
(

pθ⋆1 ( · |Y−∞:0)
∥

∥pθ,θ⋆1 ( · |Y−∞:0)
)]

= 0 .

Consequently,

pθ⋆(Y1|Y−∞:0) = pθ,θ⋆(Y1|Y−∞:0), P̃
θ⋆-a.s.

Applying Lemma 5 and using that P̃θ⋆ is shift-invariant, this relation prop-
agates to all n ≥ 2, so that

(2.15) pθ⋆ (Y1:n|Y−∞:0) = pθ,θ⋆ (Y1:n|Y−∞:0) , P̃
θ⋆-a.s.

For any measurable function H : Yn → R+, we get

Ẽ
θ⋆ [H(Y1:n)] = Ẽ

θ⋆

{

Ẽ
θ⋆

[

H(Y1:n)
pθ,θ⋆(Y1:n|Y−∞:0)

pθ⋆(Y1:n|Y−∞:0)

∣

∣

∣

∣

Y−∞:0

]}

= Ẽ
θ⋆

[
∫

H(y1:n)p
θ,θ⋆(y1:n|Y−∞:0)ν

⊗n(dy1:n)

]

,
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where the last equality follows from (2.9). Using Definition 4 and Tonelli’s
theorem, we obtain

Ẽ
θ⋆ [H(Y1:n)] = Ẽ

θ⋆

∫

H(y1:n)

∫

Φθ,θ⋆(Y−∞:0; dx0)κ
θ〈Y0, y1〉 (x0; dx1)×

n−1
∏

k=1

κθ〈yk, yk+1〉 (xk; dxk+1) ν
⊗n(dy1:n) ,

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0; dx0)

∫

H(y1:n)κ
θ〈Y0, y1〉 (x0; dx1)×

n−1
∏

k=1

κθ〈yk, yk+1〉 (xk; dxk+1))ν
⊗n(dy1:n) ,

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0; dx0)E
θ
(x0,Y0)

[H(Y1:n)] ,

= E
θ
πθ,θ⋆ [H(Y1:n)] ,

where πθ,θ⋆ is a probability on X× Y defined by

πθ,θ⋆(A×B) := Ẽ
θ⋆
[

Φθ,θ⋆(Y−∞:0;A)1B (Y0)] ,

for all (A,B) ∈ X × Y. Consequently, for all B ∈ Y⊗Z
∗

+ ,

(2.16) P̃
θ⋆(YZ− ×B) = P

θ
πθ,θ⋆ (X

Z+ × (Y ×B)) .

If we had πθ = πθ,θ⋆ , then we could conclude that the two shift-invariant
distributions P̃θ⋆ and P̃

θ are the same and thus θ ∼ θ⋆. Therefore, to com-
plete the proof, it only remains to show that πθ = πθ,θ⋆ , which by (K-1) is
equivalent to showing that πθ,θ⋆ is an invariant distribution for Kθ.

Let us now prove this latter fact. Using that P̃
θ⋆ is shift-invariant and

then conditioning on Y−∞:0, we have, for any (A,B) ∈ X × Y,

πθ,θ⋆(A×B) = Ẽ
θ⋆
[

Φθ,θ⋆(Y−∞:1;A)1B (Y1)] ,

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0, y1;A)1B (y1) pθ⋆(y1|Y−∞:0) ν(dy1) ,

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0, y1;A)1B (y1) pθ,θ⋆(y1|Y−∞:0) ν(dy1) ,

where in the last equality we have used (2.15). Using (K-2) we then get

πθ,θ⋆(A×B)

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0; dx0)κ
θ〈Y0, y1〉 (x0; dx1) 1A(x1)1B (y1)ν(dy1) ,

= Ẽ
θ⋆

∫

Φθ,θ⋆(Y−∞:0; dx0)K
θ((x0, Y0);A×B) ,

= πθ,θ⋆Kθ(A×B) .

Thus, πθ,θ⋆ is an invariant distribution for Kθ, which concludes the proof.
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�

2.3. Construction of the kernel Φθ,θ
′

as a backward limit. Again, all
along this section, Assumption (K-1) is supposed to hold and the symbols

P
θ and P̃

θ refer to the probabilities introduced in Definition 2. In addition
to Assumption (K-1), Theorem 3 fundamentally relies on Assumption (K-2).

These assumptions ensure the existence of the probability kernel Φθ,θ
′

that

yields the definition of pθ,θ
′

1 (·|·). We now explain how the kernel Φθ,θ
′

may

arise as a limit under Pθ
′

of explicit kernels derived from Kθ. It will generally
apply to observation-driven models, treated in Section 4, but also in the
more classical case of HMMs, as explained in Section 3. A natural approach
is to define the kernel Φθ,θ

′

as the weak limit of the following ones.

Definition 7. Let n be a positive integer. For all θ ∈ Θ and x ∈ X, we
define the probability kernel Φθx,n on Yn+1 × X by, for all y0:n ∈ Yn+1 and
A ∈ X ,

Φθx,n(y0:n;A) :=

∫

Xn−1×A

n−1
∏

k=0

κθ〈yk, yk+1〉 (xk; dxk+1)

∫

Xn

n−1
∏

k=0

κθ〈yk, yk+1〉 (xk; dxk+1)

with x0 = x.

We will drop the subscript n when no ambiguity occurs.

It is worth noting that Φθx,n(Y0:n; ·) is the conditional distribution of Xn

given Y1:n under Pθ(x,Y0). To derive the desired Φθ,θ
′

we take, for a well-chosen

x, the limit of Φθx,n(y0:n; ·) as n → ∞ for a sequence y0:n corresponding to

a path under P̃
θ′ . The precise statement is provided in Assumption (K-3)

below, which requires the following definition. For all θ ∈ Θ and for all
nonnegative measurable functions f defined on X, we set

Fθ
f :=

{

x 7→ κθ〈y, y′〉 (x; f) : (y, y′) ∈ Y2
}

.

We can now state the assumption as follows.

(K-3) For all θ 6= θ′ ∈ Θ, there exist x ∈ X, a probability kernel Φθ,θ
′

on
YZ− × X and a countable class F of X → R+ measurable functions
such that for all f ∈ F ,

P̃
θ′
(

∀f ′ ∈ Fθ
f ∪ {f}, lim

m→∞
Φθx,m(Y−m:0; f

′) = Φθ,θ
′

(Y−∞:0; f
′) <∞

)

= 1 .

The next lemma shows that, provided that F is rich enough, Assump-
tion (K-3) can be directly used to obtain Assumption (K-2). In what follows,
we say that a class of X → R functions is separating if, for any two proba-
bility measures µ1 and µ2 on (X,X ), the equality of µ1(f) and µ2(f) over f
in the class implies the equality of the two measures.
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Lemma 8. Suppose that Assumption (K-3) holds and that F is a separating

class of functions containing 1X. Then the kernel Φθ,θ
′

satisfies Assump-
tion (K-2).

Proof. Let x ∈ X be given in Assumption (K-3). From Definition 7, we may
write, for all f ∈ F , setting x−m = x,

Φθx,m(Y−m:0; f) =

∫

f(x0)

−1
∏

k=−m

κθ〈Yk, Yk+1〉 (xk; dxk+1)

∫ −1
∏

k=−m

κθ〈Yk, Yk+1〉 (xk; dxk+1)

and, similarly,

(2.17) Φθx,m+1(Y−m:1; f) =

∫

f(x1)

0
∏

k=−m

κθ〈Yk, Yk+1〉 (xk; dxk+1)

∫ 0
∏

k=−m

κθ〈Yk, Yk+1〉 (xk; dxk+1)

.

Dividing both numerator and denominator of (2.17) by

∫ −1
∏

k=−m

κθ〈Yk, Yk+1〉 (xk; dxk+1) ,

which is strictly positive by Remark 1, then (2.17) can be rewritten as

(2.18) Φθx,m+1(Y−m:1; f) =
Φθx,m

(

Y−m:0;κ
θ〈Y0, Y1〉 (·; f)

)

Φθx,m (Y−m:0;κθ〈Y0, Y1〉 (·; 1X)) .
Letting m→ ∞ and applying Assumption (K-3), then P̃

θ′-a.s.,

Φθ,θ
′

(Y−∞:1; f) =
Φθ,θ

′
(

Y−∞:0;κ
θ〈Y0, Y1〉 (·; f)

)

Φθ,θ′ (Y−∞:0;κθ〈Y0, Y1〉 (·; 1X)) ,
=

∫

Φθ,θ
′

(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0; f)

∫

Φθ,θ
′

(Y−∞:0; dx0)κ
θ〈Y0, Y1〉 (x0; 1X) .

Since F is a separating class, the proof is concluded.
�

3. Application to hidden Markov models

3.1. Definitions and assumptions. Hidden Markov models belong to a
subclass of partially observed Markov models defined as follows.
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Definition 9. Consider a partially observed and partially dominated
Markov model given in Definition 1 with Markov kernels

(

Kθ
)

θ∈Θ
. We will

say that this model is a hidden Markov model if the kernel Kθ satisfies

(3.1) Kθ((x, y); dx′dy′) = Qθ(x; dx′)Gθ(x′; dy′) .

Moreover, in this context, we always assume that (X,dX) is a complete sep-
arable metric space and X denotes the associated Borel σ-field.

In (3.1), Qθ and Gθ are transition kernels on X×X and X×Y, respectively.
Since the model is partially dominated, we denote by gθ the corresponding
Radon-Nikodym derivative of Gθ(x; ·) with respect to the dominating mea-
sure ν: for all (x, y) ∈ X× Y,

dGθ(x; ·)

dν
(y) = gθ(x; y) .

One can directly observe that the unnormalized kernel κθ〈y, y′〉 defined in
(2.4) does no longer depend on y, and in this case, one can write

(3.2) κθ〈y, y′〉
(

x; dx′
)

= κθ〈y′〉
(

x; dx′
)

= Qθ(x; dx′)gθ(x′; y′) .

For any integer n ≥ 1, θ ∈ Θ and sequence y0:n−1 ∈ Yn, consider the
unnormalized kernel Lθ〈y0:n−1〉 on X × X defined by, for all x0 ∈ X and
A ∈ X ,

(3.3) Lθ〈y0:n−1〉(x0;A) =

∫

· · ·

∫

[

n−1
∏

k=0

gθ(xk; yk)Q
θ(xk; dxk+1)

] 1A(xn) ,
so that the MLE θ̂ξ,n, associated to the observations Y0:n−1 with an arbitrary
initial distribution ξ on X is defined by

θ̂ξ,n ∈ argmax
θ∈Θ

ξLθ〈Y0:n−1〉1X .
We now follow the approach taken by [13] in misspecified models and show
that in the context of well-specified models, the maximizing set of the as-
ymptotic normalized log-likelihood can be identified by relying neither on
the exponential separation of measures, nor on the rates of convergence to
the equilibrium, but only on the uniqueness of the invariant probability. We
note the following fact which can be used to check (K-1).

Remark 5. In the HMM context, πθ is an invariant distribution ofKθ if and
only if πθ1 is an invariant distribution of Qθ and πθ(dxdy) = πθ1(dx)G

θ(x; dy).

We illustrate the application of the main result (Theorem 3) in the context
of HMMs by considering the assumptions of [13] in the particular case of
blocks of size 1 (r = 1). Of course, general assumptions with arbitrary sizes
of blocks could also be used but this complicates significantly the expressions
and may confine the attention of the reader to unnecessary technicalities. To
keep the discussion simple, we only consider blocks of size 1, which already
covers many cases of interest.
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Before listing the main assumptions, we recall the definition of a so-called
local Doeblin set (in the particular case where r = 1) as introduced in [13,
Definition 1].

Definition 10. A set C is local Doeblin with respect to the family of kernels
(

Qθ
)

θ∈Θ
if there exist positive constants ǫ−C , ǫ

+
C and a family of probability

measures
(

λθC
)

θ∈Θ
such that, for any θ ∈ Θ , λθC(C) = 1, and, for any A ∈ X

and x ∈ C,

ǫ−Cλ
θ
C(A) ≤ Qθ(x;A ∩ C) ≤ ǫ+Cλ

θ
C(A) .

Consider now the following set of assumptions.

(D-1) There exists a σ-finite measure µ on (X,X ) that dominates Qθ(x; ·)

for all (x, θ) ∈ X×Θ. Moreover, denoting qθ(x;x′) := dQθ(x;·)
dµ (x′), we

have

qθ(x;x′) > 0 , for all (x, x′, θ) ∈ X× X×Θ .

(D-2) For all y ∈ Y, we have sup
θ∈Θ

sup
x∈X

gθ(x; y) <∞.

(D-3) (a) For all θ⋆ ∈ Θ, there exists a set K ∈ Y with P̃
θ⋆(Y0 ∈ K) > 2/3

such that for all η > 0, there exists a local Doeblin set C ∈ X
with respect to

(

Qθ
)

θ∈Θ
satisfying, for all θ ∈ Θ and all y ∈ K,

(3.4) sup
x∈Cc

gθ(x; y) ≤ η sup
x∈X

gθ(x; y) <∞ .

(b) For all θ⋆ ∈ Θ, there exists a set D ∈ X satisfying

inf
θ∈Θ

inf
x∈D

Qθ(x;D) > 0 and Ẽ
θ⋆

[

ln− inf
θ∈Θ

inf
x∈D

gθ(x;Y0)

]

<∞ .

(D-4) For all θ⋆ ∈ Θ, Ẽθ⋆
[

ln+ sup
θ∈Θ

sup
x∈X

gθ(x;Y0)

]

<∞.

(D-5) There exists p ∈ Z+ such that for any x ∈ X and n ≥ p, the function

θ 7→ Lθ〈Y0:n〉(x;X) is P̃
θ⋆-a.s. continuous on Θ.

Remark 6. Under (D-1), for all θ ∈ Θ, the Markov kernel Qθ is µ-
irreducible, so that, using Remark 5, (K-1) reduces to the existence of a
stationary distribution for Qθ.

Remark 7. Assumptions (D-3), (D-4) and (D-5) and (2.3) in Definition 1
correspond to (A1), (A2) and (A3) in [13], where the blocks are of size r = 1.

Remark 8. Assumption (D-4) implies (D-2) up to a modification of gθ(x; y)
on ν-negligible set of y ∈ Y for all x ∈ X. Indeed, (D-4) implies that

supθ supx g
θ(x;Y0) < ∞, P̃θ⋆-a.s., and it can be shown that under (D-1),

πθ⋆2 = πθ⋆(X× ·) is equivalent to ν for all θ ∈ Θ.
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In these models, the kernel Φθx,n introduced in Definition 7 writes

Φθx,n(y1:n;A) =

∫

Xn−1×A

n−1
∏

k=0

Qθ(xk; dxk+1)g
θ(xk+1; yk+1)

∫

Xn

n−1
∏

k=0

Qθ(xk; dxk+1)g
θ(xk+1; yk+1)

with x0 = x .

The distribution Φθx,n(Y0:n; ·) is usually referred to as the filter distribution.
Proposition 11 (below) can be derived from [13, Proposition 1]. For blocks
of size 1, the initial distributions in [13] are constrained to belong to the set
Mθ⋆(D) of all probability distributions ξ defined on (X,X ) such that

(3.5) Ẽ
θ⋆

[

ln− inf
θ∈Θ

∫

ξ(dx)gθ(x;Y0)Q
θ(x;D)

]

<∞ ,

whereD ∈ X is the set appearing in (D-3). It turns out that under (D-3)-(b),
all probability distributions ξ satisfy (3.5), so the constraint on the initial
distribution vanishes in our case.

Proposition 11. Assume (D-3) and (D-4). Then the following assertions
hold.

(i) For any θ, θ⋆ ∈ Θ, there exists a probability kernel Φθ,θ⋆ on YZ− ×X
such that for any x ∈ X,

P̃
θ⋆
(

for all bounded f, lim
m→∞

Φθx,m(Y−m:0; f) = Φθ,θ⋆(Y−∞:0; f)
)

= 1 .

(ii) For any θ, θ⋆ ∈ Θ and probability measure ξ,

lim
n→∞

n−1 ln ξLθ〈Y0:n−1〉1X = ℓ(θ, θ⋆), P
θ⋆-a.s. ,

where

(3.6) ℓ(θ, θ⋆) := Ẽ
θ⋆

[

ln

∫

Φθ,θ⋆(Y−∞:0; dx0)κ
θ〈Y1〉 (x0;X)

]

.

3.2. Equivalence-class consistency. We can now state the main result
on the consistency of the MLE for HMMs.

Theorem 12. Assume that (K-1) holds and define P
θ, P̃θ and the equiva-

lence class [θ] as in Definition 2. Moreover, suppose that (Θ,∆) is a compact
metric space and that Assumptions (D-1)–(D-5) hold. Then, for any proba-
bility measure ξ,

lim
n→∞

∆(θ̂ξ,n, [θ⋆]) = 0, P̃
θ⋆-a.s.

Proof. According to [13, Theorem 2], θ 7→ ℓ(θ, θ⋆) defined by (3.6) is up-
per semi-continuous (so that Θ⋆ := argmaxθ∈Θ ℓ(θ, θ⋆) is non-empty) and
moreover

lim
n→∞

∆(θ̂ξ,n,Θ⋆) = 0 , P̃
θ⋆-a.s.
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The proof then follows from Theorem 3, provided that ℓ(θ, θ⋆) can be ex-
pressed as in the statement of Theorem 3 and that (K-2) is satisfied. First
note that, for θ 6= θ⋆, the integral appearing within the logarithm in (3.6)
corresponds to pθ,θ⋆(Y1|Y−∞:0) with p

θ,θ⋆ as defined in (2.8).
Let F be a countable separating class of nonnegative bounded functions

containing 1X , see [27, Theorem 6.6, Chapter 6] for the existence of such
a class. By Lemma 8, we check (K-2) by showing that (K-3) is satisfied.
Condition (D-2) and (3.2) imply that for all bounded functions f , Fθ

f is

a class of bounded functions, and this in turn implies (K-3) by applying
Proposition 11-(i) to all x. Thus, (K-2) is satisfied, and for θ 6= θ⋆, ℓ(θ, θ⋆)
can be expressed as in the statement of Theorem 3. To complete the proof,
it only remains to consider the case where θ = θ⋆ and to show that ℓ(θ⋆, θ⋆)
can be written as

(3.7) ℓ(θ⋆, θ⋆) = Ẽ
θ⋆
[

ln pθ⋆1 (Y1|Y−∞:0)
]

,

where pθ⋆1 (·|·) is the conditional density given in (2.9). According to [3, The-
orem 1], we have

(3.8) Ẽ
θ⋆
[

ln pθ⋆1 (Y1|Y−∞:0)
]

= lim
n→∞

n−1 lnπθ⋆1 Lθ⋆〈Y0:n−1〉1X , P̃
θ⋆-a.s.

On the other hand, applying Proposition 11-(ii) yields

(3.9) ℓ(θ⋆, θ⋆) = lim
n→∞

n−1 ln ξLθ⋆〈Y0:n−1〉1X , P̃
θ⋆-a.s.

Observe that, by using (D-1), the probability measure ξLθ⋆〈y0〉 admits a
density with respect to µ given by

(3.10)
dξLθ⋆〈y0〉

dµ
(x1) =

∫

ξ(dx0)g
θ⋆(x0; y0) q

θ⋆(x0;x1) .

We further get, for all y0:n−1 ∈ Yn,

ξLθ⋆〈y0:n−1〉1X =

∫

dξLθ⋆〈y0〉

dµ
(x1)×

(

δx1L
θ⋆〈y1:n−1〉1X) µ(dx1) ,

and under Pθ⋆, the joint density of (X1, Y0:n−1) with respect to µ ⊗ ν⊗n is
given by

pθ⋆1,n(x1, y0:n−1) :=
dπθ⋆1 Lθ⋆〈y0〉

dµ
(x1)×

(

δx1L
θ⋆〈y1:n−1〉1X) .

Note that we similarly have, for all y0 ∈ Y and x1 ∈ X,

(3.11)
dπθ⋆1 Lθ⋆〈y0〉

dµ
(x1) =

∫

πθ⋆1 (dx0)g
θ⋆(x0; y0) q

θ⋆(x0;x1) .
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The four previous displays yield, for all y0:n−1 ∈ Yn,

ξLθ⋆〈y0:n−1〉1X
=

∫

∫

ξ(dx0)g
θ⋆(x0; y0)q

θ⋆(x0;x1)
∫

πθ⋆1 (dx0)gθ⋆(x0; y0)qθ⋆(x0;x1)
pθ⋆1,n(x1, y0:n−1) µ(dx1) .

Dividing by the density of Y0:n−1 with respect to ν⊗n under Pθ⋆, we get

ξLθ⋆〈Y0:n−1〉1X
πθ⋆1 Lθ⋆〈Y0:n−1〉1X = E

θ⋆ [R(X1, Y0) |Y0:n−1] , P̃
θ⋆-a.s. ,

where R(x1, y0) is the ratio between (3.10) and (3.11), which are positive
densities with respect to µ⊗ ν. Since the denominator (3.11) is the density
of (X1, Y0) under P

θ⋆ , we then have

E
θ⋆ [R(X1, Y0)] = 1 .

By Lévy’s zero-one law, we thus get that

lim
n→∞

ξLθ⋆〈Y0:n−1〉1X
πθ⋆1 Lθ⋆〈Y0:n−1〉1X = E

θ⋆ [R(X1, Y0) |Y0:∞] , P̃
θ⋆-a.s. ,

and since by (D-1), R(x1, y0) takes only positive values, this limit is thus
positive. This implies

lim
n→∞

n−1 ln
ξLθ⋆〈Y0:n−1〉1X
πθ⋆1 Lθ⋆〈Y0:n−1〉1X = 0 P̃

θ⋆-a.s.

Combining with (3.8) and (3.9), we finally obtain (3.7), which concludes the
proof. �

3.3. A polynomially ergodic example. As an application of
Theorem 12, we consider the HMM model described in Example 1. In
addition to the assumptions introduced in Example 1, we assume that U0

and V0 are independent and centered and they both admit densities with
respect to the Lebesgue measure λ over R, denoted by r and h, respectively,
and

(E-1) the density r satisfies:
(a) r is continuous and positive over R,
(b) there exists α > 2 such that r(u)|u|α+1 is bounded away from ∞

as |u| → ∞ and from 0 as u→ ∞,

(E-2) the density h satisfies:
(a) h is continuous and positive over R, and lim|v|→∞ h(v) = 0,
(b) there exist β ∈ [1, α − 1) (where α is given in (E-1)) and b, c > 0

such that E(|V0|
β) <∞ and h(v) ≥ b e−c|v|

β
for all v ∈ R.

For example, a symmetric Pareto distribution with a parameter strictly
larger than 2 satisfies (E-1) and provided that α > 3, (E-2) holds with a cen-
tered Gaussian distribution. The model is parameterized by θ = (m,a) ∈
Θ := [m,m] × [a, a] where 0 < m < m and a < a. In this model, the
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Markov transition Qθ of (Xk)k∈Z+
has a transition density qθ with respect

to the dominating measure µ(dx) = λ(dx) + δ0(dx), which can be written
as follows: for all (x, x′) ∈ R

2
+,

(3.12) qθ(x;x′) = r(x′ − x+m)1{x′ > 0}+

(
∫ m−x

−∞
r(u) du

) 1{x′ = 0} .

Moreover, (1.1) implies

(3.13) gθ(x; y) = h(y − ax) .

Following [21], we have the following lemma.

Lemma 13. Assume (E-1) and (E-2). For all θ ∈ Θ, the Markov ker-
nel Qθ is not geometrically ergodic. Moreover, Qθ is polynomially ergodic
and its (unique) stationary distribution πθ1, defined on X = R+, satisfies
∫

πθ1(dx)x
β <∞, for all β ∈ [1, α − 1).

Proof. The proof of this Lemma is postponed to Section A.3 in Appendix A.
�

Proposition 14. Consider the HMM of Example 1 under Assump-
tions (E-1) and (E-2). Then (K-1) holds and we define P

θ, P̃θ and the equiv-
alence class [θ] as in Definition 2. Moreover, for any probability measure ξ,

the MLE θ̂ξ,n is equivalence-class consistent, that is, for any θ⋆ ∈ Θ,

lim
n→∞

∆(θ̂ξ,n, [θ⋆]) = 0, P̃
θ⋆-a.s.

Proof. To apply Theorem 12, we need to check (K-1) and (D-1)–(D-5). First
observe that Assumption (K-1) immediately follows from Remark 5 and
Lemma 13, and Assumptions (D-1) and (D-2) directly follow from the posi-
tiveness of the density r and the boundedness of the density h, respectively.
Now, using (E-1)-(a), it can be easily shown that all compact sets are local
Doeblin sets and this in turn implies, via lim|x|→∞ h(x) = 0, that Assump-
tion (D-3)-(a) is satisfied. We now check (D-3)-(b). By (E-1)-(a), we have
for all compact sets D, inf

{

r(x′ − x+m) : (x, x′,m) ∈ D2 × [m,m]
}

> 0,
which by (3.12) implies

inf
θ∈Θ

inf
x∈D

Qθ(x;D) > 0 .

To obtain (D-3)-(b), it thus remains to show

Ẽ
θ⋆

[

ln− inf
θ∈Θ

inf
x∈D

gθ(x;Y0)

]

<∞ .
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By (E-2)-(b), there exist positive constants b and c such that h(v) ≥ be−c|v|
β
.

Plugging this into (3.13) yields

Ẽ
θ⋆

[

ln− inf
θ∈Θ

inf
x∈D

gθ(x;Y0)

]

≤ Ẽ
θ⋆

[

| ln b|+ c(|Y0|+ a sup
x∈D

|x|)β
]

= E
θ⋆

[

| ln b|+ c(|aX0 + V0|+ a sup
x∈D

|x|)β
]

<∞ ,

where the finiteness follows from (E-2)-(b) and Lemma 13. Finally, (D-3) is
satisfied. (D-4) is checked by writing

Ẽ
θ⋆

[

ln+ sup
θ∈Θ

sup
x∈X

gθ(x;Y0)

]

≤ ln+ sup
x∈R

h(x) <∞ .

To obtain (D-5), we show by induction on n that for all n ≥ 1, y0:n−1 ∈ R
n

and x0 ∈ R+, the function θ 7→ Lθ〈y0:n−1〉(x0;X) is continuous on Θ. The

case where n = 1 is obvious since Lθ〈y0〉(x0;X) = gθ(x0; y0) = h(y0 − ax0).
We next assume the induction hypothesis on n and note that

Lθ〈y0:n〉(x0;X) = gθ(x0; y0)

∫

µ(dx1)q
θ(x0;x1)L

θ〈y1:n〉(x1;X) .

The continuity of θ 7→ gθ(x0; y0) follows from (3.13) and the continuity
of h. Similarly, the continuity of θ 7→ qθ(x0;x1) follows from (3.12) and the
continuity of r. Moreover, θ 7→ Lθ〈y1:n〉(x1;X) is continuous by the induction
assumption. The continuity of θ 7→

∫

µ(dx1)q
θ(x0;x1)L

θ〈y1:n〉(x1;X) then
follows from the Lebesgue convergence theorem provided that

(3.14)

∫

µ(dx1) sup
θ∈Θ

qθ(x0;x1)L
θ〈y1:n〉(x1;X) <∞

holds. Note further that by the expression of qθ(x0;x1) given in (3.12) and
the tail assumption (E-1)-(b), we obtain for all x0 ∈ X,

∫

µ(dx1) sup
θ∈Θ

qθ(x0;x1) <∞ .

Combining with that Lθ〈y1:n〉(x1;X) ≤ (supx∈R h(x))
n yields (3.14). Finally,

we have (D-5), and thus Theorem 12 holds under (E-1) and (E-2). �

4. Application to observation-driven models

Observation-driven models are a subclass of partially dominated and par-
tially observed Markov models.

We split our study of the observation-driven model into several parts. Spe-
cific definitions and notation are introduced in Section 4.1. Then we provide
sufficient conditions that allow to apply our general result Theorem 3, that
is, Θ⋆ = [θ⋆]. This is done in Section 4.2.
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4.1. Definitions and notation. Observation-driven models are formally
defined as follows.

Definition 15. Consider a partially observed and partially dominated
Markov model given in Definition 1 with Markov kernels

(

Kθ
)

θ∈Θ
. We say

that this model is an observation-driven model if the kernel Kθ satisfies

(4.1) Kθ((x, y); dx′dy′) = δψθ
y(x)

(dx′) Gθ(x′; dy′) ,

where δa denotes the Dirac mass at point a, Gθ is a probability kernel on
X × Y and

(

(x, y) 7→ ψθy(x)
)

θ∈Θ
is a family of measurable functions from

(X×Y,X ⊗Y) to (X,X ). Moreover, in this context, we always assume that
(X,dX) is a complete separable metric space and X denotes the associated
Borel σ-field.

Note that a Markov chain ((Xk, Yk))k∈Z+
with probability kernel given

by (4.1) can be equivalently defined by the following recursions

Xk+1 = ψθYk(Xk) ,

Yk+1|X0:k+1, Y0:k ∼ Gθ(Xk+1; ·) .
(4.2)

The most celebrated example is the GARCH(1, 1) process, where Gθ(x; ·)
is a centered (say Gaussian) distribution with variance x and ψθy(x) is an

affine function of x and y2.
As a special case of Definition 1, for all x ∈ X, Gθ(x; ·) is domi-

nated by some σ-finite measure ν on (Y,Y) and we denote by gθ(x; ·) its

Radon-Nikodym derivative, gθ(x; y) = dGθ(x;·)
dν (y). A dominated paramet-

ric observation-driven model is thus defined by the collection
(

(gθ, ψθ)
)

θ∈Θ
.

Moreover, (2.3) may be rewritten in this case: for all (x, y) ∈ X× Y and for
all θ ∈ Θ,

gθ(x; y) > 0 .

Under (K-1), we assume that the model is well-specified, i.e., the observa-

tion sample (Y1, . . . , Yn) is distributed according to P̃
θ⋆ for some unknown

parameter θ⋆. The inference of θ⋆ is based on the conditional likelihood of
(Y1, . . . , Yn) given X1 = x for an arbitrary x ∈ X. The corresponding density
function with respect to ν⊗n is, under parameter θ,

(4.3) y1:n 7→
n
∏

k=1

gθ
(

ψθ〈y1:k−1〉(x); yk
)

,

where, for any vector y1:p = (y1, . . . , yp) ∈ Yp, ψθ〈y1:p〉 is the X → X function
defined as the successive composition of ψθy1 , ψ

θ
y2 , ..., and ψ

θ
yp ,

(4.4) ψθ〈y1:p〉 = ψθyp ◦ ψ
θ
yp−1

◦ · · · ◦ ψθy1 ,
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with the convention ψθ〈ys:t〉(x) = x for s > t. Then the corresponding

(conditional) MLE θ̂x,n of the parameter θ is defined by

(4.5) θ̂x,n ∈ argmax
θ∈Θ

Lθx,n〈Y1:n〉 ,

where

(4.6) Lθx,n〈y1:n〉 := n−1 ln

(

n
∏

k=1

gθ
(

ψθ〈y1:k−1〉(x); yk
)

)

.

We will provide simple conditions for the consistency of θ̂x,n in the sense

that, with probability tending to one, for a well chosen x, θ̂x,n belongs to a
neighborhood of the equivalence class [θ⋆] of θ⋆, as given by Definition 2.

4.2. Identifiability. Let us consider the following assumptions.

(C-1) For all θ 6= θ⋆ ∈ Θ, there exist x ∈ X and a measurable function ψθ,θ⋆〈·〉
defined on YZ− such that

(4.7) lim
m→∞

ψθ〈Y−m:0〉(x) = ψθ,θ⋆〈Y−∞:0〉, P̃
θ⋆-a.s.

(C-2) For all θ ∈ Θ and y ∈ Y, the function x 7→ gθ(x; y) is continuous on X.
(C-3) For all θ ∈ Θ and y ∈ Y, the function x 7→ ψθy(x) is continuous on X.

In observation-driven models, the kernel κθ defined in (2.4) reads

κθ〈y, y′〉
(

x; dx′
)

= gθ(x′; y′) δψθ
y(x)

(dx′)

= gθ
(

ψθy(x); y
′
)

δψθ
y(x)

(dx′) ,(4.8)

and the probability kernel Φθx,n in Definition 7 reads, for all x ∈ X and

y0:n ∈ Yn+1,

(4.9) Φθx,n(y0:n; ·) = δψθ〈y0:n−1〉(x)

(the Dirac point mass at ψθ〈y0:n−1〉(x)). Using these expressions, we get the
following result which is a special case of Theorem 3.

Theorem 16. Assume that (K-1) holds in the observation-driven model

setting and define P
θ, P̃θ and [θ] as in Definition 2. Suppose that Assump-

tions (C-1), (C-2) and (C-3) hold and define pθ,θ⋆(·|·) by setting, for P̃θ⋆-a.e.
y−∞:0 ∈ YZ−,

(4.10) pθ,θ⋆(y1 | y−∞:0) =

{

gθ
(

ψθ,θ⋆〈y−∞:0〉; y1
)

if θ 6= θ⋆,

pθ1(y1 | y−∞:0) as defined by (2.9) otherwise.

Then, for all θ⋆ ∈ Θ, we have

(4.11) argmax
θ∈Θ

Ẽ
θ⋆
[

ln pθ,θ⋆(Y1|Y−∞:0)
]

= [θ⋆] .
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Proof. We apply Theorem 3. It is thus sufficent to show that (C-1), (C-2)
and (C-3) implies (K-2) with

(4.12) Φθ,θ⋆(y−∞:0; ·) = δψθ,θ⋆ 〈y−∞:−1〉, for all y−∞:0 ∈ YZ− ,

and that for θ 6= θ⋆, the conditional density pθ,θ⋆ defined by (2.8) satisfies

(4.13) pθ,θ⋆(y|Y−∞:0) = gθ
(

ψθ,θ⋆〈Y−∞:0〉; y
)

, P̃
θ⋆-a.s.

By Lemma 8, it is sufficient to prove that Assumption (K-3) holds for the
kernel Φθ,θ⋆ defined above. Denote by C(X) the set of continuous functions on
X, and by Cb(X) the set of bounded functions in C(X). By [27, Theorem 6.6,
Chapter 6], there is a countable and separating subclass F of nonnegative
functions in Cb(X) such that 1X ∈ F . Now, let us take θ, θ⋆ ∈ Θ and f ∈ F .
Then, by (C-2), (C-3) and (4.8), we have

Fθ
f =

{

x 7→ κθ〈y, y′〉 (x; f) : (y, y′) ∈ Y2
}

⊂ C(X) .

By (4.9), (C-1) and (4.12), we obtain (K-3) with x chosen as in (C-1).
To conclude, we need to show (4.13). Note that (4.12) together with (4.8)

and the usual definition (2.8) of pθ,θ⋆ yields

pθ,θ⋆(y|y−∞:0) = gθ
(

ψθy0

(

ψθ,θ⋆〈y−∞:−1〉
)

; y
)

.

By Assumption (C-3) and the definition of ψθ,θ⋆〈·〉 in (C-1), we get (4.13). �

4.3. Examples. In the context of observation-driven time series, easy-to-
check conditions are derived in [14] in order to establish the convergence

of the MLE θ̂x,n defined by (4.5) to the maximizing set of the asymptotic
normalized log-likelihood. It turns out that the conditions of [14, Theorem 3]
also imply the conditions of Theorem 16. More precisely, the assumptions
(B-2) and (B-3) of [14, Theorem 1] are stronger than (C-2) and (C-3) used in
Theorem 16 above, and it is shown that the assumptions of [14, Theorem 1]
imply (C-1) (see the proof of Lemma 2 in Section 6.3 of [14]). Moreover,
the conditions of Theorem 1 are shown to be satisfied in the context of
Examples 2 and 3 (see [14, Theorem 3 and Theorem 4]), provided that Θ
in (4.5) is a compact metric space such that

(1) in the case of Example 2, all θ = (ω, a, b, r) ∈ Θ satisfy rb+ a < 1;
(2) in the case of Example 3, all θ = (γ,ω,A,b) ∈ Θ are such that the

spectral radius of A+ bγT is strictly less than 1.

Under these assumptions, we conclude that the MLE is equivalence-class
consistent for both examples, which up to our best knowledge had not been
proven so far.
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Appendix A. Postponed proofs

A.1. Proof of Eq. (2.7). Let θ ∈ Θ. Recall that in Remark 3, Φθ is defined
as the probability kernel of the conditional distribution of X0 given Y−∞:0

under Pθ, that is, for all A ∈ X ,

Φθ(Y−∞:0;A) = P
θ (X0 ∈ A |Y−∞:0) , P̃

θ-a.s.

Conditioning on X0, Y0 and using the definition of κθ in (2.4), we get that,
for all A ∈ X , B ∈ Y and C ∈ Y⊗Z− ,

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C)

= E
θ

[
∫

B
κθ〈Y0, y1〉 (X0;A) 1C (Y−∞:0) ν(dy1)

]

= Ẽ
θ

[
∫

X×B
Φθ(Y−∞:0; dx0)κ

θ〈Y0, y1〉 (x0;A) 1C (Y−∞:0) ν(dy1)

]

.(A.1)

Let us denote

Φ̂θ(Y−∞:0, y1;A) =

∫

Φθ(Y−∞:0; dx0)κ
θ〈Y0, y1〉 (x0;A)

∫

Φθ(Y−∞:0; dx0)κθ〈Y0, y1〉 (x0;X)
,

which is always defined since the denominator does not vanish by Remark 1.
With this notation, we deduce from (A.1) that

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C)

= Ẽ
θ

[

∫

B
Φ̂θ(Y−∞:0, y1;A)

(
∫

Φθ(Y−∞:0; dx0)κ
θ〈Y0, y1〉 (x0;X)

)1C (Y−∞:0) ν(dy1)

]

.

This can be more compactly written as

(A.2) P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C) = Ẽ

θ

[

∫

Φ̂θ(Y−∞:0, y1;A)1B (y1) 1C (Y−∞:0)Φ
θ(Y−∞:0; dx0)κ

θ〈Y0, y1〉 (x0;X) ν(dy1)

]

.

Observe that (A.1) with A = X provides a way to write Ẽθ [g(Y−∞:0, Y1)] for
g = 1C×B that can be extended to any nonnegative measurable function g
defined on YZ− × Y as

Ẽ
θ [g(Y−∞:0, Y1)]

= Ẽ
θ

[
∫

g(Y−∞:0, y1)Φ
θ(Y−∞:0; dx0)κ

θ〈Y0, y1〉 (x0;X) ν(dy1)

]

.

Now, we observe that the right-hand side of (A.2) can be interpreted
as the right-hand side of the previous display with g(Y−∞:0, y1) =
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Φ̂θ(Y−∞:0, y1;A)1B (y1)1C (Y−∞:0). Hence, we conclude that, for all A ∈ X
and C ∈ Y⊗Z− ,

P
θ (X1 ∈ A,Y1 ∈ B,Y−∞:0 ∈ C) = E

θ

[

Φ̂θ(Y−∞:0, Y1;A)1B (Y1)1C (Y−∞:0)

]

.

Notice that Φ̂θ(Y−∞:0, Y1;A) precisely is the probability kernel on
(

YZ− × Y
)

× X appearing on the left-hand side of (2.7). The last display
implies that this probability kernel is the conditional distribution of X1

given Y−∞:1 under Pθ, which concludes the proof of (2.7).

A.2. Proof of Lemma 5. First observe that, by induction on n, hav-
ing (2.12) for all n ≥ 2 is equivalent to having, for all n ≥ 2,

pθ,θ⋆(Y1:n|Y−∞:0)

= pθ,θ⋆(Yn|Y−∞:n−1)p
θ,θ⋆(Yn−1|Y−∞:n−2) · · · p

θ,θ⋆(Y1|Y−∞:0), P̃
θ⋆-a.s. ,

which, using that P̃θ⋆ is shift-invariant, is in turn equivalent to having that,
for all n ≥ 2,

(A.3) pθ,θ⋆(Y1:n|Y−∞:0) = pθ,θ⋆(Y2:n|Y−∞:1)p
θ,θ⋆(Y1|Y−∞:0), P̃

θ⋆-a.s.

Thus to conclude the proof, we only need to show that (A.3) holds for all
n ≥ 2. By Definition 4, we have, for all n ≥ 2 and y−∞:n ∈ YZ− ,

pθ,θ⋆(y2:n|y−∞:1)p
θ,θ⋆(y1|y−∞:0)

=

∫

Φθ,θ⋆(y−∞:1; dx1)p
θ,θ⋆(y1|y−∞:0)

n−1
∏

k=1

κθ〈yk, yk+1〉 (xk; dxk+1) .

Using (K-2) we now get, for all n ≥ 2,

pθ,θ⋆(Y2:n|Y−∞:1)p
θ,θ⋆(Y1|Y−∞:0)

=

∫

Φθ,θ⋆(Y−∞:0; dx0)

n−1
∏

k=0

κθ〈Yk, Yk+1〉 (xk; dxk+1) , P̃
θ⋆-a.s.

We conclude (A.3) by observing that, according to Definition 4, the second
line of the last display is pθ,θ⋆(Y1:n|Y−∞:0).

A.3. Proof of Lemma 13. Let β ∈ [1, α − 1). Since 1 + β < α and by
(E-1)-(b), we obtain E

[

(U+
0 )1+β

]

< ∞. Combining this with E(U0 −m) =

−m < 0, we may apply [21, Proposition 5.1] so that the Markov kernel Qθ is
polynomially ergodic and thus admits a unique stationary distribution πθ1,
which is well defined on X = R+. Moreover, [21, Proposition 5.1] also shows
that there exist a finite interval C = [0, x0] and some constants ̺, ̺′ ∈ (0,∞)
such that

QθV ≤ V − ̺W + ̺′1C ,
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where V (x) = (1 + x)1+β and W (x) = (1 + x)β . Applying [25, Theorem
14.0.1] yields

∫

πθ1(dx)x
β ≤ πθ1W <∞ .

It remains to show that the kernel Qθ is not geometrically ergodic for all
θ ∈ Θ and this will be done by contradiction.

Now suppose on the contrary that the kernel Qθ is geometrically ergodic
for some θ ∈ Θ. Since the singleton {0} is an accessible atom (for Qθ), then
there exists some ρ > 1 such that

∞
∑

k=0

ρk
∣

∣

∣
(Qθ)k(0, {0}) − πθ1({0})

∣

∣

∣
<∞ .

Hence, the atom {0} is geometrically ergodic as defined in [25, Section
15.1.3]. Applying [25, Theorem 15.1.5], then there exists some κ > 1 such
that E0[κ

τ0 ] < ∞, where τ0 = inf{n ≥ 1 : Xn = 0} is the first return time
to {0}.

Recall that the i.i.d. sequence (Uk)k∈Z+
is linked to (Xk)k∈Z+

through

(1.1), and note that E0[κ
τ0 ] = E[κτ(0)], where we have set for all u ∈ R,

τ(u) := inf

{

n ≥ 1 :

n
∑

k=1

(Uk −m) < u

}

.

Now, denote

τ̃(u) := inf

{

n ≥ 1 :

n
∑

k=1

(Uk+1 −m) < u

}

.

To arrive at the contradiction, it is finally sufficient to show that for all
κ > 1, E[κτ(0)] = ∞. Actually, we will show that there exists a constant
γ > 0 such that

(A.4) lim inf
u→∞

κ−γuE[κτ(−u+m)] > 0 .

This will indeed imply E[κτ(0)] = ∞ by writing

E[κτ(0)] ≥ E[κτ(0)1{U1 ≥ m}] = E[κ1+τ̃(−U1+m)1{U1 ≥ m}]

= E

[
∫ ∞

m
κ1+τ̃ (−u+m)r(u)du

]

= κ

∫ ∞

m
E[κτ(−u+m)]r(u)du ,(A.5)

where the last equality follows from τ
d
= τ̃ . Provided that (A.4) holds, the

right-hand side of (A.5) is infinite since r(u) & u−α−1 as u → ∞ by (E-1)-
(b).

We now turn to the proof of (A.4). By Markov’s inequality, we have for
any γ > 0,

(A.6) κ−γuE[κτ(−u+m)] ≥ P(τ(−u+m) > γu) .
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Now, let Mn =
∑n

k=1 Ui, n ≥ 1, and note that for all nonnegative u,
{(

inf
1≤k≤γu

Mk

)

− γum ≥ −u+m

}

⊂

{

inf
1≤k≤γu

(Mk − km) ≥ −u+m

}

= {τ(−u+m) > γu} .(A.7)

Moreover, since (Uk)k∈Z∗

+
is i.i.d. and centered, Doob’s maximal inequality

implies, for all γ̃ > 0,

P

(

inf
1≤k≤γu

Mk < −γ̃

)

≤ P

(

sup
1≤k≤γu

|Mk| > γ̃

)

≤
E
[

|M⌊γu⌋|
]

γ̃
≤

⌊γu⌋E [|U1|]

γ̃
.(A.8)

Now, pick γ > 0 sufficiently small so that γE [|U1|] /(1 − γm) < 1. Observe
that for this γ, γ̃ = (1−γm)u−m is positive for u sufficiently large, so that
combining (A.8) with (A.7) and (A.6) yields

lim inf
u→∞

κ−γuE[κτ(−u+m)] ≥ 1− lim sup
u→∞

⌊γu⌋E [|U1|]

(1− γm)u−m
= 1−

γE [|U1|]

1− γm
> 0 .

This shows (A.4) and the proof is completed.
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